code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ : List[str] = "\\n\n" a__ : Union[str, Any] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" a__ : Union[str, Any] = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string'), }) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : int = 16 , lowerCAmelCase : bool = True , lowerCAmelCase : int=None) -> str: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowercase__ = 'cuda' else: lowercase__ = 'cuda' if torch.cuda.is_available() else 'cpu' lowercase__ = AutoModelForCausalLM.from_pretrained(lowerCAmelCase) lowercase__ = model.to(lowerCAmelCase) lowercase__ = AutoTokenizer.from_pretrained(lowerCAmelCase) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowercase__ = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(lowerCAmelCase) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowercase__ = model.config.max_length - 1 else: lowercase__ = model.config.max_length lowercase__ = tokenizer( lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors='pt' , return_attention_mask=lowerCAmelCase , ).to(lowerCAmelCase) lowercase__ = encodings['input_ids'] lowercase__ = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowercase__ = [] lowercase__ = CrossEntropyLoss(reduction='none') for start_index in logging.tqdm(range(0 , len(lowerCAmelCase) , lowerCAmelCase)): lowercase__ = min(start_index + batch_size , len(lowerCAmelCase)) lowercase__ = encoded_texts[start_index:end_index] lowercase__ = attn_masks[start_index:end_index] if add_start_token: lowercase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(lowerCAmelCase) lowercase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) lowercase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(lowerCAmelCase), attn_mask] , dim=1) lowercase__ = encoded_batch with torch.no_grad(): lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase).logits lowercase__ = out_logits[..., :-1, :].contiguous() lowercase__ = labels[..., 1:].contiguous() lowercase__ = attn_mask[..., 1:].contiguous() lowercase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , lowerCAmelCase) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCAmelCase)}
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
a__ : Optional[Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" a__ : Union[str, Any] = [{"type": "code", "content": INSTALL_CONTENT}] a__ : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput a__ : Dict = "scheduler_config.json" class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = 1 A : Union[str, Any] = 2 A : str = 3 A : Union[str, Any] = 4 A : List[Any] = 5 @dataclass class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : jnp.ndarray class UpperCAmelCase__: '''simple docstring''' A : Dict = SCHEDULER_CONFIG_NAME A : int = ["dtype"] A : int = [] A : Optional[Any] = True @classmethod def UpperCAmelCase ( cls : str , lowerCAmelCase : Dict[str, Any] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : List[str]=False , **lowerCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__, lowercase__ = cls.load_config( pretrained_model_name_or_path=lowerCAmelCase , subfolder=lowerCAmelCase , return_unused_kwargs=lowerCAmelCase , **lowerCAmelCase , ) lowercase__, lowercase__ = cls.from_config(lowerCAmelCase , return_unused_kwargs=lowerCAmelCase , **lowerCAmelCase) if hasattr(lowerCAmelCase , 'create_state') and getattr(lowerCAmelCase , 'has_state' , lowerCAmelCase): lowercase__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, os.PathLike] , lowerCAmelCase : bool = False , **lowerCAmelCase : int) -> str: """simple docstring""" self.save_config(save_directory=lowerCAmelCase , push_to_hub=lowerCAmelCase , **lowerCAmelCase) @property def UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[Any]) -> Optional[Any]: """simple docstring""" lowercase__ = list(set([cls.__name__] + cls._compatibles)) lowercase__ = importlib.import_module(__name__.split('.')[0]) lowercase__ = [ getattr(lowerCAmelCase , lowerCAmelCase) for c in compatible_classes_str if hasattr(lowerCAmelCase , lowerCAmelCase) ] return compatible_classes def _lowerCAmelCase ( A__ , A__ ): assert len(A__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A__ ) - x.ndim) ) , A__ ) def _lowerCAmelCase ( A__ , A__=0.9_99 , A__=jnp.floataa ): def alpha_bar(A__ ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 lowercase__ = [] for i in range(A__ ): lowercase__ = i / num_diffusion_timesteps lowercase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A__ ) / alpha_bar(A__ ) , A__ ) ) return jnp.array(A__ , dtype=A__ ) @flax.struct.dataclass class UpperCAmelCase__: '''simple docstring''' A : jnp.ndarray A : jnp.ndarray A : jnp.ndarray @classmethod def UpperCAmelCase ( cls : Tuple , lowerCAmelCase : str) -> str: """simple docstring""" lowercase__ = scheduler.config if config.trained_betas is not None: lowercase__ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype) elif config.beta_schedule == "linear": lowercase__ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''') lowercase__ = 1.0 - betas lowercase__ = jnp.cumprod(lowerCAmelCase , axis=0) return cls( alphas=lowerCAmelCase , betas=lowerCAmelCase , alphas_cumprod=lowerCAmelCase , ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = state.alphas_cumprod lowercase__ = alphas_cumprod[timesteps] ** 0.5 lowercase__ = sqrt_alpha_prod.flatten() lowercase__ = broadcast_to_shape_from_left(A__ , original_samples.shape ) lowercase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ = sqrt_one_minus_alpha_prod.flatten() lowercase__ = broadcast_to_shape_from_left(A__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ ) lowercase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ ) lowercase__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
import math def _lowerCAmelCase ( ): lowercase__ = input('Enter message: ' ) lowercase__ = int(input(F'''Enter key [2-{len(A__ ) - 1}]: ''' ) ) lowercase__ = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): lowercase__ = encrypt_message(A__ , A__ ) elif mode.lower().startswith('d' ): lowercase__ = decrypt_message(A__ , A__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + '|'}''' ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = [''] * key for col in range(A__ ): lowercase__ = col while pointer < len(A__ ): cipher_text[col] += message[pointer] pointer += key return "".join(A__ ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = math.ceil(len(A__ ) / key ) lowercase__ = key lowercase__ = (num_cols * num_rows) - len(A__ ) lowercase__ = [''] * num_cols lowercase__ = 0 lowercase__ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowercase__ = 0 row += 1 return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _lowerCAmelCase ( A__ ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class UpperCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase : nn.Module , lowerCAmelCase : int) -> Dict: """simple docstring""" super().__init__() lowercase__ = module lowercase__ = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase , bias=lowerCAmelCase) , nn.Linear(lowerCAmelCase , module.out_features , bias=lowerCAmelCase) , ) lowercase__ = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def UpperCAmelCase ( self : str , lowerCAmelCase : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> List[str]: """simple docstring""" return self.module(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) + self.adapter(lowerCAmelCase) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' A : Optional[int] = "bigscience/bloom-1b7" # Constant values A : List[str] = 2.109_6595_5269_2574 A : Any = "Hello my name is" A : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) A : List[Any] = 10 def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(self.model_name) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" super().setUp() # Models and tokenizer lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto') def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase , 'quantization_config')) lowercase__ = config.to_dict() lowercase__ = config.to_diff_dict() lowercase__ = config.to_json_string() def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" from bitsandbytes.nn import Paramsabit lowercase__ = self.model_fpaa.get_memory_footprint() lowercase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) lowercase__ = get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer(self.input_text , return_tensors='pt') lowercase__ = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase) , self.EXPECTED_OUTPUTS) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = BitsAndBytesConfig() lowercase__ = True lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , device_map='auto') lowercase__ = self.tokenizer(self.input_text , return_tensors='pt') lowercase__ = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase) , self.EXPECTED_OUTPUTS) def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" with self.assertRaises(lowerCAmelCase), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" lowercase__ = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase): lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , load_in_abit=lowerCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" with self.assertRaises(lowerCAmelCase): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(lowerCAmelCase): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(lowerCAmelCase): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(lowerCAmelCase): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase__ = self.tokenizer(self.input_text , return_tensors='pt') lowercase__ = self.model_fpaa.to(torch.floataa) lowercase__ = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) # Check this does not throw an error lowercase__ = self.model_fpaa.to('cpu') # Check this does not throw an error lowercase__ = self.model_fpaa.half() # Check this does not throw an error lowercase__ = self.model_fpaa.float() def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=lowerCAmelCase , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = 't5-small' lowercase__ = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense lowercase__ = AutoTokenizer.from_pretrained(cls.model_name) lowercase__ = 'Translate in German: Hello, my dog is cute' def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Union[str, Any]) -> Any: """simple docstring""" from transformers import TaForConditionalGeneration lowercase__ = TaForConditionalGeneration._keep_in_fpaa_modules lowercase__ = None # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto') lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0) lowercase__ = model.generate(**lowerCAmelCase) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map='auto') lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0) lowercase__ = model.generate(**lowerCAmelCase) lowercase__ = modules def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0) lowercase__ = model.generate(**lowerCAmelCase) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map='auto') lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0) lowercase__ = model.generate(**lowerCAmelCase) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" super().setUp() # model_name lowercase__ = 'bigscience/bloom-560m' lowercase__ = 't5-small' # Different types of model lowercase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto') # Sequence classification model lowercase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map='auto') # CausalLM model lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto') # Seq2seq model lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase , device_map='auto') def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" lowercase__ = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase__ = self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" super().setUp() def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model lowercase__ = self.tokenizer(self.input_text , return_tensors='pt') # Second real batch lowercase__ = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase) , self.EXPECTED_OUTPUTS) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" lowercase__ = 'facebook/opt-350m' super().setUp() def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): lowercase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase__ = param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase)): lowercase__ = LoRALayer(module.q_proj , rank=16) lowercase__ = LoRALayer(module.k_proj , rank=16) lowercase__ = LoRALayer(module.v_proj , rank=16) # Step 3: dummy batch lowercase__ = self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase__ = model.forward(**lowerCAmelCase) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase , lowerCAmelCase): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(lowerCAmelCase , nn.Embedding): self.assertTrue(module.weight.grad is None) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = "gpt2-xl" A : Any = 3.3191_8548_5415_2187
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
def _lowerCAmelCase ( A__ ): if not isinstance(A__ , A__ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) lowercase__ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter a__ : Optional[int] = True except ImportError: a__ : List[Any] = False a__ : int = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( A__ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @staticmethod def UpperCAmelCase ( lowerCAmelCase : ArgumentParser) -> List[str]: """simple docstring""" lowercase__ = parser.add_parser('add-new-model') add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.') add_new_model_parser.add_argument('--testing_file' , type=lowerCAmelCase , help='Configuration file on which to run.') add_new_model_parser.add_argument( '--path' , type=lowerCAmelCase , help='Path to cookiecutter. Should only be used for testing purposes.') add_new_model_parser.set_defaults(func=lowerCAmelCase) def __init__( self : Union[str, Any] , lowerCAmelCase : bool , lowerCAmelCase : str , lowerCAmelCase : List[Any]=None , *lowerCAmelCase : int) -> int: """simple docstring""" lowercase__ = testing lowercase__ = testing_file lowercase__ = path def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.') if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowercase__ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowerCAmelCase) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.') lowercase__ = ( Path(lowerCAmelCase).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) lowercase__ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase)) else: with open(self._testing_file , 'r') as configuration_file: lowercase__ = json.load(lowerCAmelCase) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path) , no_input=lowerCAmelCase , extra_context=lowerCAmelCase , ) lowercase__ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r') as configuration_file: lowercase__ = json.load(lowerCAmelCase) lowercase__ = configuration['lowercase_modelname'] lowercase__ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'''{directory}/configuration.json''') lowercase__ = 'PyTorch' in generate_tensorflow_pytorch_and_flax lowercase__ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax lowercase__ = 'Flax' in generate_tensorflow_pytorch_and_flax lowercase__ = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowerCAmelCase) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , 'w'): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowerCAmelCase : Optional[int]): with open(lowerCAmelCase , 'r') as f: lowercase__ = f.readlines() with open(lowerCAmelCase , 'w') as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''') shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''') os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''') if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''') shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''') os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''') if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''') shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''') os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''') shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str]): # Create temp file lowercase__, lowercase__ = mkstemp() lowercase__ = False with fdopen(lowerCAmelCase , 'w') as new_file: with open(lowerCAmelCase) as old_file: for line in old_file: new_file.write(lowerCAmelCase) if line_to_copy_below in line: lowercase__ = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''') # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase , lowerCAmelCase) # Remove original file remove(lowerCAmelCase) # Move new file move(lowerCAmelCase , lowerCAmelCase) def skip_units(lowerCAmelCase : Tuple): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase : Any): with open(lowerCAmelCase) as datafile: lowercase__ = [] lowercase__ = False lowercase__ = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowercase__ = line.split('"')[1] lowercase__ = skip_units(lowerCAmelCase) elif "# Below: " in line and "##" not in line: lowercase__ = line.split('"')[1] lowercase__ = skip_units(lowerCAmelCase) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = [] elif "# Replace with" in line and "##" not in line: lowercase__ = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase) remove(lowerCAmelCase) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''') os.rmdir(lowerCAmelCase)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a__ : Union[str, Any] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } a__ : List[str] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _lowerCAmelCase ( A__ , A__=False ): lowercase__, lowercase__ = create_model( 'HTSAT-tiny' , 'roberta' , A__ , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=A__ , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def _lowerCAmelCase ( A__ ): lowercase__ = {} lowercase__ = r'.*sequential.(\d+).*' lowercase__ = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase__ = key.replace(A__ , A__ ) if re.match(A__ , A__ ): # replace sequential layers with list lowercase__ = re.match(A__ , A__ ).group(1 ) lowercase__ = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(A__ )//3}.linear.''' ) elif re.match(A__ , A__ ): lowercase__ = int(re.match(A__ , A__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase__ = 1 if projecton_layer == 0 else 2 lowercase__ = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase__ = value lowercase__ = mixed_qkv.size(0 ) // 3 lowercase__ = mixed_qkv[:qkv_dim] lowercase__ = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase__ = mixed_qkv[qkv_dim * 2 :] lowercase__ = query_layer lowercase__ = key_layer lowercase__ = value_layer else: lowercase__ = value return model_state_dict def _lowerCAmelCase ( A__ , A__ , A__ , A__=False ): lowercase__, lowercase__ = init_clap(A__ , enable_fusion=A__ ) clap_model.eval() lowercase__ = clap_model.state_dict() lowercase__ = rename_state_dict(A__ ) lowercase__ = ClapConfig() lowercase__ = enable_fusion lowercase__ = ClapModel(A__ ) # ignore the spectrogram embedding layer model.load_state_dict(A__ , strict=A__ ) model.save_pretrained(A__ ) transformers_config.save_pretrained(A__ ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") a__ : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__ , A__ , A__ ): # Initialise PyTorch model lowercase__ = RemBertConfig.from_json_file(A__ ) print('Building PyTorch model from configuration: {}'.format(str(A__ ) ) ) lowercase__ = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a__ : int = get_logger(__name__) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase__ = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(A__ , A__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase__ = os.path.join(A__ , A__ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(A__ , A__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ = os.path.join(A__ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowercase__ = {'model': state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowercase__ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase__ = os.path.join(A__ , A__ ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase__ = torch.load(A__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase__ = os.path.join(A__ , A__ ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase__ = torch.load(A__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ = ( os.path.join(A__ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowercase__ = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) lowercase__ = state_dict['model'] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(A__ ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase__ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase__ = os.path.join(A__ , A__ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(A__ , A__ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowercase__ = os.path.join(A__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase__ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase__ = os.path.join(A__ , A__ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowercase__ = torch.load(A__ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowercase__ = ( os.path.join(A__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowercase__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(A__ ) , ) lowercase__ = optim_state['optimizer'] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowercase__ = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a__ : str = logging.get_logger(__name__) a__ : int = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = "marian" A : int = ["past_key_values"] A : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[str] , lowerCAmelCase : Tuple=5_81_01 , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=10_24 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : List[str]=40_96 , lowerCAmelCase : Any=16 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=40_96 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : int=0.02 , lowerCAmelCase : List[str]=5_81_00 , lowerCAmelCase : int=False , lowerCAmelCase : int=5_81_00 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Any: """simple docstring""" lowercase__ = vocab_size lowercase__ = decoder_vocab_size or vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: lowercase__, lowercase__ = self.num_layers for i in range(lowerCAmelCase): lowercase__ = {0: 'batch', 2: 'past_sequence + sequence'} lowercase__ = {0: 'batch', 2: 'past_sequence + sequence'} else: lowercase__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase ( self : List[str]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = super().outputs else: lowercase__ = super(lowerCAmelCase , self).outputs if self.use_past: lowercase__, lowercase__ = self.num_layers for i in range(lowerCAmelCase): lowercase__ = {0: 'batch', 2: 'past_sequence + sequence'} lowercase__ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Generate decoder inputs lowercase__ = seq_length if not self.use_past else 1 lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase__ = dict(**lowerCAmelCase , **lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch lowercase__, lowercase__ = common_inputs['input_ids'].shape lowercase__ = common_inputs['decoder_input_ids'].shape[1] lowercase__, lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = decoder_seq_length + 3 lowercase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase)] , dim=1) lowercase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__, lowercase__ = self.num_layers lowercase__ = min(lowerCAmelCase , lowerCAmelCase) lowercase__ = max(lowerCAmelCase , lowerCAmelCase) - min_num_layers lowercase__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase), )) # TODO: test this. lowercase__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase))) return common_inputs def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch lowercase__, lowercase__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase__ = seqlen + 2 lowercase__, lowercase__ = self.num_layers lowercase__, lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = common_inputs['attention_mask'].dtype lowercase__ = torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase)] , dim=1) lowercase__ = [ (torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase)) for _ in range(lowerCAmelCase) ] return common_inputs def UpperCAmelCase ( self : List[str] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = tokenizer.num_special_tokens_to_add(lowerCAmelCase) lowercase__ = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence lowercase__ = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size lowercase__ = dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase)) return common_inputs def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase) else: lowercase__ = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase) return common_inputs def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) else: lowercase__ = super(lowerCAmelCase , self)._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Tuple) -> float: """simple docstring""" return 1E-4
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
def _lowerCAmelCase ( A__ ): lowercase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ = set() return any( node not in visited and depth_first_search(A__ , A__ , A__ , A__ ) for node in graph ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): visited.add(A__ ) rec_stk.add(A__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(A__ , A__ , A__ , A__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(A__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) a__ : Optional[Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') a__ : str = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) a__ : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) a__ : Optional[Any] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) a__ : List[Any] = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions a__ : int = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) a__ : Optional[Any] = tf.keras.preprocessing.image.img_to_array(test_image) a__ : Any = np.expand_dims(test_image, axis=0) a__ : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: a__ : Tuple = "Normal" if result[0][0] == 1: a__ : Any = "Abnormality detected"
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import logging from transformers.configuration_utils import PretrainedConfig a__ : Any = logging.getLogger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = "masked_bert" def __init__( self : Dict , lowerCAmelCase : Dict=3_05_22 , lowerCAmelCase : Dict=7_68 , lowerCAmelCase : Any=12 , lowerCAmelCase : int=12 , lowerCAmelCase : List[Any]=30_72 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Dict=5_12 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : str=1E-1_2 , lowerCAmelCase : Tuple=0 , lowerCAmelCase : List[str]="topK" , lowerCAmelCase : Dict="constant" , lowerCAmelCase : Dict=0.0 , **lowerCAmelCase : int , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = pruning_method lowercase__ = mask_init lowercase__ = mask_scale
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : List[str] = CycleDiffusionPipeline A : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } A : int = PipelineTesterMixin.required_optional_params - {"latents"} A : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) A : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS A : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" torch.manual_seed(0) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase__ = CLIPTextModel(lowerCAmelCase) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int=0) -> Any: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase)).to(lowerCAmelCase) lowercase__ = image / 2 + 0.5 if str(lowerCAmelCase).startswith('mps'): lowercase__ = torch.manual_seed(lowerCAmelCase) else: lowercase__ = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) lowercase__ = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" lowercase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = CycleDiffusionPipeline(**lowerCAmelCase) lowercase__ = pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs(lowerCAmelCase) lowercase__ = pipe(**lowerCAmelCase) lowercase__ = output.images lowercase__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase__ = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCAmelCase , 'half'): lowercase__ = module.half() lowercase__ = CycleDiffusionPipeline(**lowerCAmelCase) lowercase__ = pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs(lowerCAmelCase) lowercase__ = pipe(**lowerCAmelCase) lowercase__ = output.images lowercase__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase__ = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline') def UpperCAmelCase ( self : List[Any]) -> Tuple: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase ( self : int) -> List[str]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') lowercase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy') lowercase__ = init_image.resize((5_12, 5_12)) lowercase__ = 'CompVis/stable-diffusion-v1-4' lowercase__ = DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='scheduler') lowercase__ = CycleDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa , revision='fp16') pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) pipe.enable_attention_slicing() lowercase__ = 'A black colored car' lowercase__ = 'A blue colored car' lowercase__ = torch.manual_seed(0) lowercase__ = pipe( prompt=lowerCAmelCase , source_prompt=lowerCAmelCase , image=lowerCAmelCase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase , output_type='np' , ) lowercase__ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5E-1 def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') lowercase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy') lowercase__ = init_image.resize((5_12, 5_12)) lowercase__ = 'CompVis/stable-diffusion-v1-4' lowercase__ = DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='scheduler') lowercase__ = CycleDiffusionPipeline.from_pretrained(lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) pipe.enable_attention_slicing() lowercase__ = 'A black colored car' lowercase__ = 'A blue colored car' lowercase__ = torch.manual_seed(0) lowercase__ = pipe( prompt=lowerCAmelCase , source_prompt=lowerCAmelCase , image=lowerCAmelCase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase , output_type='np' , ) lowercase__ = output.images assert np.abs(image - expected_image).max() < 2E-2
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Optional[Any] = 16 a__ : Optional[int] = 32 def _lowerCAmelCase ( A__ , A__ = 16 ): lowercase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowercase__ = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : Any = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( A__ , A__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A__ ) == "1": lowercase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['lr'] lowercase__ = int(config['num_epochs'] ) lowercase__ = int(config['seed'] ) lowercase__ = int(config['batch_size'] ) set_seed(A__ ) lowercase__, lowercase__ = get_dataloaders(A__ , A__ ) lowercase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ = batch_size // MAX_GPU_BATCH_SIZE lowercase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowercase__ = os.path.split(A__ )[-1].split('.' )[0] accelerator.init_trackers(A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowercase__ = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**A__ ) lowercase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , A__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(A__ ), 'epoch': epoch, } , step=A__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=A__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase__ = parser.parse_args() lowercase__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ : int = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowerCAmelCase ( A__ ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def _lowerCAmelCase ( A__ ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowercase__ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
a__ : str = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
import pytest import datasets # Import fixture modules as plugins a__ : Union[str, Any] = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def _lowerCAmelCase ( A__ , A__ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _lowerCAmelCase ( A__ ): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=A__ ) def _lowerCAmelCase ( A__ , A__ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? lowercase__ = tmp_path_factory.getbasetemp() / 'cache' lowercase__ = test_hf_cache_home / 'datasets' lowercase__ = test_hf_cache_home / 'metrics' lowercase__ = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(A__ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(A__ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(A__ ) ) lowercase__ = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(A__ ) ) lowercase__ = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(A__ ) ) @pytest.fixture(autouse=A__ , scope='session' ) def _lowerCAmelCase ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=A__ ) def _lowerCAmelCase ( A__ ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , A__ ) @pytest.fixture def _lowerCAmelCase ( A__ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , A__ )
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = ["image_processor", "tokenizer"] A : Optional[int] = "ViTImageProcessor" A : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" lowercase__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase , ) lowercase__ = kwargs.pop('feature_extractor') lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowerCAmelCase , lowerCAmelCase) def __call__( self : Dict , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Tuple) -> int: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.') if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.') if text is not None: lowercase__ = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if visual_prompt is not None: lowercase__ = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: lowercase__ = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if visual_prompt is not None and images is not None: lowercase__ = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase__ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase__ = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : str) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase , ) return self.image_processor
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.nn.Linear(10 , 10) lowercase__ = torch.optim.SGD(model.parameters() , 0.1) lowercase__ = Accelerator() lowercase__ = accelerator.prepare(lowerCAmelCase) try: pickle.loads(pickle.dumps(lowerCAmelCase)) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase : AutoencoderKL , lowerCAmelCase : CLIPTextModel , lowerCAmelCase : CLIPTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase : StableDiffusionSafetyChecker , lowerCAmelCase : CLIPImageProcessor , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , ) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[Union[str, int]] = "auto") -> List[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 5_12 , lowerCAmelCase : int = 5_12 , lowerCAmelCase : int = 50 , lowerCAmelCase : float = 7.5 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[torch.FloatTensor] = None , **lowerCAmelCase : str , ) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = 1 elif isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = len(lowerCAmelCase) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase)}''') if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase , lowerCAmelCase) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCAmelCase)}.''') # get prompt text embeddings lowercase__ = self.tokenizer( lowerCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''') lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__, lowercase__, lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , lowerCAmelCase , 1) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''] elif type(lowerCAmelCase) is not type(lowerCAmelCase): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase)} !=''' f''' {type(lowerCAmelCase)}.''') elif isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = [negative_prompt] elif batch_size != len(lowerCAmelCase): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase)}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.') else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='pt' , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(lowerCAmelCase , lowerCAmelCase , 1) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( lowerCAmelCase , generator=lowerCAmelCase , device='cpu' , dtype=lowerCAmelCase).to(self.device) lowercase__ = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device='cpu' , dtype=lowerCAmelCase).to( self.device) else: lowercase__ = torch.randn( lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase) lowercase__ = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') lowercase__ = latents_reference.to(self.device) lowercase__ = latents.to(self.device) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0) lowercase__ = max(-dy , 0) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase)): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase) # predict the noise residual lowercase__ = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase).sample # perform guidance if do_classifier_free_guidance: lowercase__, lowercase__ = noise_pred.chunk(2) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = 1 / 0.1_82_15 * latents lowercase__ = self.vae.decode(lowerCAmelCase).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase) , return_tensors='pt').to( self.device) lowercase__, lowercase__ = self.safety_checker( images=lowerCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCAmelCase) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase , nsfw_content_detected=lowerCAmelCase)
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _lowerCAmelCase ( A__ = "laptop" ): lowercase__ = F'''https://www.amazon.in/laptop/s?k={product}''' lowercase__ = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowercase__ = BeautifulSoup(requests.get(A__ , headers=A__ ).text ) # Initialize a Pandas dataframe with the column titles lowercase__ = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: lowercase__ = item.ha.text lowercase__ = 'https://www.amazon.in/' + item.ha.a['href'] lowercase__ = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: lowercase__ = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: lowercase__ = 'Not available' try: lowercase__ = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: lowercase__ = '' try: lowercase__ = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: lowercase__ = float('nan' ) except AttributeError: pass lowercase__ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowercase__ = ' ' lowercase__ = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": a__ : Any = "headphones" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
from __future__ import annotations import math def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) ) def _lowerCAmelCase ( ): lowercase__ = [90, 23, 6, 33, 21, 65, 123, 34_423] lowercase__ = math.log(len(A__ ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , A__ , A__ , A__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Union[str, Any] = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCAmelCase ( A__ ): if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCAmelCase ( A__ , A__ = True ): lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(A__ ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(A__ , 'forward' ) lowercase__ = model.__dict__.pop('_original_forward' , A__ ) if original_forward is not None: while hasattr(A__ , '__wrapped__' ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(A__ , '_converted_to_transformer_engine' , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def _lowerCAmelCase ( ): PartialState().wait_for_everyone() def _lowerCAmelCase ( A__ , A__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def _lowerCAmelCase ( **A__ ): for key, value in kwargs.items(): lowercase__ = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCAmelCase ( A__ ): if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ): lowercase__ = getattr(A__ , '__class__' , A__ ) if hasattr(A__ , '__qualname__' ): return obj.__qualname__ if hasattr(A__ , '__name__' ): return obj.__name__ return str(A__ ) def _lowerCAmelCase ( A__ , A__ ): for key, value in source.items(): if isinstance(A__ , A__ ): lowercase__ = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: lowercase__ = value return destination def _lowerCAmelCase ( A__ = None ): if port is None: lowercase__ = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
from __future__ import annotations def _lowerCAmelCase ( A__ ): lowercase__ = [True] * limit lowercase__ = False lowercase__ = False lowercase__ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase__ = i * 2 while index < limit: lowercase__ = False lowercase__ = index + i lowercase__ = [2] for i in range(3 , A__ , 2 ): if is_prime[i]: primes.append(A__ ) return primes def _lowerCAmelCase ( A__ = 1_000_000 ): lowercase__ = prime_sieve(A__ ) lowercase__ = 0 lowercase__ = 0 for i in range(len(A__ ) ): for j in range(i + length , len(A__ ) ): lowercase__ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ = j - i lowercase__ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Dict = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): if height >= 1: move_tower(height - 1 , A__ , A__ , A__ ) move_disk(A__ , A__ ) move_tower(height - 1 , A__ , A__ , A__ ) def _lowerCAmelCase ( A__ , A__ ): print('moving disk from' , A__ , 'to' , A__ ) def _lowerCAmelCase ( ): lowercase__ = int(input('Height of hanoi: ' ).strip() ) move_tower(A__ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
a__ : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): # Return True if there is node that has not iterated. lowercase__ = [False] * len(A__ ) lowercase__ = [s] lowercase__ = True while queue: lowercase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A__ ) lowercase__ = True lowercase__ = u return visited[t] def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = [-1] * (len(A__ )) lowercase__ = 0 lowercase__ = [] lowercase__ = [i[:] for i in graph] # Record original cut, copy. while bfs(A__ , A__ , A__ , A__ ): lowercase__ = float('Inf' ) lowercase__ = sink while s != source: # Find the minimum value in select path lowercase__ = min(A__ , graph[parent[s]][s] ) lowercase__ = parent[s] max_flow += path_flow lowercase__ = sink while v != source: lowercase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase__ = parent[v] for i in range(len(A__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ): lowercase__ = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=A__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=A__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=A__ ) return parser.parse_args() def _lowerCAmelCase ( ): lowercase__ = parse_args() # Import training_script as a module. lowercase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase__ = script_fpath.stem lowercase__ = importlib.import_module(A__ ) # Patch sys.argv lowercase__ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
def _lowerCAmelCase ( A__ ): lowercase__ = [0 for i in range(len(A__ ) )] # initialize interval's left pointer and right pointer lowercase__, lowercase__ = 0, 0 for i in range(1 , len(A__ ) ): # case when current index is inside the interval if i <= right_pointer: lowercase__ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowercase__ = min_edge while go_next(A__ , A__ , A__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowercase__, lowercase__ = i, i + z_result[i] - 1 return z_result def _lowerCAmelCase ( A__ , A__ , A__ ): return i + z_result[i] < len(A__ ) and s[z_result[i]] == s[i + z_result[i]] def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowercase__ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(A__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _lowerCAmelCase ( A__ ): lowercase__ = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A__ , A__ , bias=A__ ) lowercase__ = emb.weight.data return lin_layer def _lowerCAmelCase ( A__ ): lowercase__ = torch.load(A__ , map_location='cpu' ) lowercase__ = Namespace(**checkpoint['cfg']['model'] ) lowercase__ = checkpoint['model'] remove_ignore_keys_(A__ ) lowercase__ = state_dict['decoder.embed_tokens.weight'].shape[0] lowercase__ = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} lowercase__ = XGLMConfig( vocab_size=A__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowercase__ = XGLMForCausalLM(A__ ) lowercase__ = model.load_state_dict(A__ , strict=A__ ) print(A__ ) lowercase__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": a__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") a__ : Union[str, Any] = parser.parse_args() a__ : Union[str, Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import math import sys import cva import numpy as np def _lowerCAmelCase ( A__ , A__ ): # For applying gaussian function for each element in matrix. lowercase__ = math.sqrt(A__ ) lowercase__ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _lowerCAmelCase ( A__ , A__ ): # Creates a gaussian kernel of given dimension. lowercase__ = np.zeros((kernel_size, kernel_size) ) for i in range(0 , A__ ): for j in range(0 , A__ ): lowercase__ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(A__ , A__ ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , ): lowercase__ = np.zeros(img.shape ) lowercase__ = get_gauss_kernel(A__ , A__ ) lowercase__, lowercase__ = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowercase__ = get_slice(A__ , A__ , A__ , A__ ) lowercase__ = img_s - img_s[kernel_size // 2, kernel_size // 2] lowercase__ = vec_gaussian(A__ , A__ ) lowercase__ = np.multiply(A__ , A__ ) lowercase__ = np.multiply(A__ , A__ ) lowercase__ = np.sum(A__ ) / np.sum(A__ ) lowercase__ = val return imga def _lowerCAmelCase ( A__ ): lowercase__ = args[1] if args[1:] else '../image_data/lena.jpg' lowercase__ = float(args[2] ) if args[2:] else 1.0 lowercase__ = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowercase__ = int(args[4] ) lowercase__ = kernel_size + abs(kernel_size % 2 - 1 ) else: lowercase__ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a__ , a__ , a__ , a__ : List[Any] = parse_args(sys.argv) a__ : Any = cva.imread(filename, 0) cva.imshow("input image", img) a__ : Optional[int] = img / 2_55 a__ : List[Any] = out.astype("float32") a__ : Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a__ : Optional[Any] = out * 2_55 a__ : Dict = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
from __future__ import annotations from collections.abc import Generator def _lowerCAmelCase ( ): lowercase__ = {} lowercase__ = 2 while True: lowercase__ = factor_map.pop(A__ , A__ ) if factor: lowercase__ = factor + prime while x in factor_map: x += factor lowercase__ = factor else: lowercase__ = prime yield prime prime += 1 def _lowerCAmelCase ( A__ = 1E1_0 ): lowercase__ = sieve() lowercase__ = 1 while True: lowercase__ = next(A__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(A__ ) n += 2 if __name__ == "__main__": print(solution())
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = 1.5 lowercase__ = int(factor * num_class_images ) lowercase__ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=A__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=A__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase__ = client.query(text=A__ ) if len(A__ ) >= factor * num_class_images or num_images > 1E4: break else: lowercase__ = int(factor * num_images ) lowercase__ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=A__ , aesthetic_weight=0.1 , ) lowercase__ = 0 lowercase__ = 0 lowercase__ = tqdm(desc='downloading real regularization images' , total=A__ ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase__ = class_images[count] count += 1 try: lowercase__ = requests.get(images['url'] ) if img.status_code == 200: lowercase__ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser('' , add_help=A__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=A__ , type=A__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=A__ , type=A__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=A__ ) return parser.parse_args() if __name__ == "__main__": a__ : int = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a__ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> None: """simple docstring""" warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase ) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A : ClassVar[Features] = Features({"audio": Audio()} ) A : ClassVar[Features] = Features({"transcription": Value("string" )} ) A : str = "audio" A : str = "transcription" def UpperCAmelCase ( self : str , lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''') if not isinstance(features[self.audio_column] , lowerCAmelCase): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''') lowercase__ = copy.deepcopy(self) lowercase__ = self.input_schema.copy() lowercase__ = features[self.audio_column] lowercase__ = input_schema return task_template @property def UpperCAmelCase ( self : List[str]) -> Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : int = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int) -> None: """simple docstring""" lowercase__ = value lowercase__ = None lowercase__ = None class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : Node) -> None: """simple docstring""" lowercase__ = tree def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Node | None) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self : Optional[Any]) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase__( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : float , lowerCAmelCase : Callable , lowerCAmelCase : int , lowerCAmelCase : float = 1.0 , lowerCAmelCase : str = None , ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = initial_learning_rate lowercase__ = warmup_steps lowercase__ = power lowercase__ = decay_schedule_fn lowercase__ = name def __call__( self : Optional[int] , lowerCAmelCase : str) -> Any: """simple docstring""" with tf.name_scope(self.name or 'WarmUp') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase__ = tf.cast(lowerCAmelCase , tf.floataa) lowercase__ = tf.cast(self.warmup_steps , tf.floataa) lowercase__ = global_step_float / warmup_steps_float lowercase__ = self.initial_learning_rate * tf.math.pow(lowerCAmelCase , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase , ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCAmelCase ( A__ , A__ , A__ , A__ = 0.0 , A__ = 0.9 , A__ = 0.9_99 , A__ = 1E-8 , A__ = None , A__ = None , A__ = 0.0 , A__ = 1.0 , A__ = None , ): lowercase__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A__ , ) if num_warmup_steps: lowercase__ = WarmUp( initial_learning_rate=A__ , decay_schedule_fn=A__ , warmup_steps=A__ , ) if weight_decay_rate > 0.0: lowercase__ = AdamWeightDecay( learning_rate=A__ , weight_decay_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=A__ , ) else: lowercase__ = tf.keras.optimizers.Adam( learning_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 , lowerCAmelCase : float = 0.9 , lowerCAmelCase : float = 0.9_99 , lowerCAmelCase : float = 1E-7 , lowerCAmelCase : bool = False , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "AdamWeightDecay" , **lowerCAmelCase : Dict , ) -> List[str]: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) lowercase__ = weight_decay_rate lowercase__ = include_in_weight_decay lowercase__ = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" lowercase__ = {'WarmUp': WarmUp} return super(lowerCAmelCase , cls).from_config(lowerCAmelCase , custom_objects=lowerCAmelCase) def UpperCAmelCase ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Any) -> Any: """simple docstring""" super(lowerCAmelCase , self)._prepare_local(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate') def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" lowercase__, lowercase__ = list(zip(*lowerCAmelCase)) return super(lowerCAmelCase , self).apply_gradients(zip(lowerCAmelCase , lowerCAmelCase) , name=lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase__ = apply_state or {} lowercase__ = apply_state.get((var_device, var_dtype)) if coefficients is None: lowercase__ = self._fallback_apply_state(lowerCAmelCase , lowerCAmelCase) lowercase__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None) -> str: """simple docstring""" lowercase__, lowercase__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase) lowercase__ = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) with tf.control_dependencies([decay]): return super(lowerCAmelCase , self)._resource_apply_dense(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]=None) -> List[Any]: """simple docstring""" lowercase__, lowercase__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase) lowercase__ = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) with tf.control_dependencies([decay]): return super(lowerCAmelCase , self)._resource_apply_sparse(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate}) return config def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]) -> Optional[int]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase , lowerCAmelCase) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase , lowerCAmelCase) is not None: return False return True class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any]) -> List[Any]: """simple docstring""" lowercase__ = [] lowercase__ = None @property def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" if self._accum_steps is None: lowercase__ = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients') return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" if not self._gradients: lowercase__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase) != len(self._gradients): raise ValueError(f'''Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase)}''') for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase) self._accum_steps.assign_add(1) def UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase))
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a__ : Dict = "<<<<<<< This should probably be modified because it mentions: " a__ : Optional[Any] = "=======\n>>>>>>>\n" a__ : int = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] a__ : Any = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def _lowerCAmelCase ( A__ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @staticmethod def UpperCAmelCase ( lowerCAmelCase : ArgumentParser) -> Any: """simple docstring""" lowercase__ = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.') train_parser.set_defaults(func=lowerCAmelCase) def __init__( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : str , *lowerCAmelCase : Any) -> Dict: """simple docstring""" lowercase__ = get_logger('datasets-cli/converting') lowercase__ = tfds_path lowercase__ = datasets_directory def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" if os.path.isdir(self._tfds_path): lowercase__ = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): lowercase__ = os.path.dirname(self._tfds_path) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.') lowercase__ = os.path.abspath(self._datasets_directory) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''') lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path): lowercase__ = os.listdir(lowerCAmelCase) else: lowercase__ = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''') lowercase__ = os.path.join(lowerCAmelCase , lowerCAmelCase) lowercase__ = os.path.join(lowerCAmelCase , lowerCAmelCase) if not os.path.isfile(lowerCAmelCase) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file') continue with open(lowerCAmelCase , encoding='utf-8') as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here lowercase__ = '' continue elif "from absl import logging" in out_line: lowercase__ = 'from datasets import logging\n' elif "getLogger" in out_line: lowercase__ = out_line.replace('getLogger' , 'get_logger') elif any(expression in out_line for expression in TO_HIGHLIGHT): lowercase__ = True lowercase__ = list(filter(lambda lowerCAmelCase: e in out_line , lowerCAmelCase)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase) + '\n') out_lines.append(lowerCAmelCase) out_lines.append(lowerCAmelCase) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase) tfds_imports.extend(imp.strip() for imp in match.group(1).split(',')) lowercase__ = 'from . import ' + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''') if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(lowerCAmelCase) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace('.py' , '') lowercase__ = os.path.join(lowerCAmelCase , lowerCAmelCase) lowercase__ = os.path.join(lowerCAmelCase , lowerCAmelCase) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase) self._logger.info(f'''Adding directory {output_dir}''') imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase) if needs_manual_update: with_manual_update.append(lowerCAmelCase) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.writelines(lowerCAmelCase) self._logger.info(f'''Converted in {output_file}''') for utils_file in utils_files: try: lowercase__ = os.path.basename(lowerCAmelCase) lowercase__ = imports_to_builder_map[f_name.replace('.py' , '')] self._logger.info(f'''Moving {dest_folder} to {utils_file}''') shutil.copy(lowerCAmelCase , lowerCAmelCase) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''') if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''')
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = "▁" a__ : Union[str, Any] = {"vocab_file": "spiece.model"} a__ : List[str] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } a__ : Dict = { "google/pegasus-xsum": 5_12, } a__ : Dict = logging.get_logger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Any = VOCAB_FILES_NAMES A : Tuple = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : Optional[Any]="<mask_2>" , lowerCAmelCase : Optional[Any]="<mask_1>" , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=1_03 , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[str] , ) -> None: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCAmelCase)}, but is''' f''' {type(lowerCAmelCase)}''') lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCAmelCase) , self.offset - 1) ] if len(set(lowerCAmelCase)) != len(lowerCAmelCase): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''') lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset)] lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , mask_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token_sent=lowerCAmelCase , offset=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) lowercase__ = mask_token_sent lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase) # add special tokens to encoder dict lowercase__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) lowercase__ = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return len(self.sp_model) + self.offset def UpperCAmelCase ( self : Dict) -> Dict[str, int]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : str) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : str) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase__ = self.sp_model.piece_to_id(lowerCAmelCase) return sp_id + self.offset def UpperCAmelCase ( self : List[str] , lowerCAmelCase : int) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase__ = self.sp_model.IdToPiece(index - self.offset) return token def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[int]) -> int: """simple docstring""" lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase) + token lowercase__ = [] else: current_sub_tokens.append(lowerCAmelCase) out_string += self.sp_model.decode(lowerCAmelCase) return out_string.strip() def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int=False) -> List[Any]: """simple docstring""" return 1 def UpperCAmelCase ( self : str , lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" lowercase__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase , 'wb') as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase) return (out_vocab_file,)
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = analyze_text(A__ ) lowercase__ = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowercase__ = sum(single_char_strings.values() ) # one length string lowercase__ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowercase__ = single_char_strings[ch] lowercase__ = my_str / all_sum my_fir_sum += prob * math.loga(A__ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowercase__ = sum(two_char_strings.values() ) lowercase__ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowercase__ = cha + cha if sequence in two_char_strings: lowercase__ = two_char_strings[sequence] lowercase__ = int(A__ ) / all_sum my_sec_sum += prob * math.loga(A__ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _lowerCAmelCase ( A__ ): lowercase__ = Counter() # type: ignore lowercase__ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(A__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _lowerCAmelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a__ : Optional[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( A__ , A__=False , A__=False ): lowercase__ = 'backbone.' if is_semantic else '' lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _lowerCAmelCase ( A__ , A__ , A__=False , A__=False ): for i in range(config.num_hidden_layers ): lowercase__ = 'backbone.' if is_semantic else '' # queries, keys and values lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = q_bias lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase__ = gamma_a lowercase__ = gamma_a def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = dct.pop(A__ ) lowercase__ = val def _lowerCAmelCase ( ): lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( A__ , A__ , A__=False ): lowercase__ = False if 'rvlcdip' in checkpoint_url else True lowercase__ = BeitConfig(use_absolute_position_embeddings=A__ , use_mask_token=A__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase__ = 1_024 lowercase__ = 4_096 lowercase__ = 24 lowercase__ = 16 # labels if "rvlcdip" in checkpoint_url: lowercase__ = 16 lowercase__ = 'huggingface/label-files' lowercase__ = 'rvlcdip-id2label.json' lowercase__ = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(A__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase__ = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['model'] lowercase__ = create_rename_keys(A__ , has_lm_head=A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , has_lm_head=A__ ) # load HuggingFace model lowercase__ = BeitForMaskedImageModeling(A__ ) if has_lm_head else BeitForImageClassification(A__ ) model.eval() model.load_state_dict(A__ ) # Check outputs on an image lowercase__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=A__ ) lowercase__ = prepare_img() lowercase__ = image_processor(images=A__ , return_tensors='pt' ) lowercase__ = encoding['pixel_values'] lowercase__ = model(A__ ) lowercase__ = outputs.logits # verify logits lowercase__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(A__ ), "Shape of logits not as expected" Path(A__ ).mkdir(exist_ok=A__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: if has_lm_head: lowercase__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , ) model.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) a__ : str = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[int] = "deformable_detr" A : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : List[Any] , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=3 , lowerCAmelCase : Any=3_00 , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : str=6 , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : List[str]=8 , lowerCAmelCase : List[str]=6 , lowerCAmelCase : Any=10_24 , lowerCAmelCase : List[str]=8 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Any=True , lowerCAmelCase : int="relu" , lowerCAmelCase : List[Any]=2_56 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : List[str]=1.0 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int="sine" , lowerCAmelCase : int="resnet50" , lowerCAmelCase : Dict=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : Dict=4 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Any=False , lowerCAmelCase : Tuple=3_00 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : int=5 , lowerCAmelCase : str=2 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : Any=2 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=0.25 , lowerCAmelCase : Optional[Any]=False , **lowerCAmelCase : str , ) -> str: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') lowercase__ = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = backbone_config.get('model_type') lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(lowerCAmelCase) lowercase__ = use_timm_backbone lowercase__ = backbone_config lowercase__ = num_channels lowercase__ = num_queries lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = init_xavier_std lowercase__ = encoder_layerdrop lowercase__ = auxiliary_loss lowercase__ = position_embedding_type lowercase__ = backbone lowercase__ = use_pretrained_backbone lowercase__ = dilation # deformable attributes lowercase__ = num_feature_levels lowercase__ = encoder_n_points lowercase__ = decoder_n_points lowercase__ = two_stage lowercase__ = two_stage_num_proposals lowercase__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = mask_loss_coefficient lowercase__ = dice_loss_coefficient lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient lowercase__ = focal_alpha lowercase__ = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase) @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase ( self : str) -> int: """simple docstring""" return self.d_model def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , ): lowercase__ = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def _lowerCAmelCase ( A__ ): lowercase__ = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print('' ) print(len(A__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
def _lowerCAmelCase ( A__ ): if isinstance(A__ , A__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(A__ , A__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" lowercase__ = False if num < 0: lowercase__ = True lowercase__ = -num lowercase__ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A__ ) for e in binary ) return "0b" + "".join(str(A__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
from __future__ import annotations a__ : str = tuple[int, int, int] a__ : int = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a__ : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- a__ : List[str] = "EGZWVONAHDCLFQMSIPJBYUKXTR" a__ : List[str] = "FOBHMDKEXQNRAULPGSJVTYICZW" a__ : Optional[int] = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- a__ : int = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- a__ : Any = "RMDJXFUWGISLHVTCQNKYPBEZOA" a__ : Tuple = "SGLCPQWZHKXAREONTFBVIYJUDM" a__ : List[Any] = "HVSICLTYKQUBXDWAJZOMFGPREN" a__ : int = "RZWQHFMVDBKICJLNTUXAGYPSOE" a__ : int = "LFKIJODBEGAMQPXVUHYSTCZRWN" a__ : str = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def _lowerCAmelCase ( A__ , A__ , A__ ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(A__ ) )) < 3: lowercase__ = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(A__ ) # Checks if rotor positions are valid lowercase__, lowercase__, lowercase__ = rotpos if not 0 < rotorposa <= len(A__ ): lowercase__ = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(A__ ) if not 0 < rotorposa <= len(A__ ): lowercase__ = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(A__ ) if not 0 < rotorposa <= len(A__ ): lowercase__ = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(A__ ) # Validates string and returns dict lowercase__ = _plugboard(A__ ) return rotpos, rotsel, pbdict def _lowerCAmelCase ( A__ ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(A__ , A__ ): lowercase__ = F'''Plugboard setting isn\'t type string ({type(A__ )})''' raise TypeError(A__ ) elif len(A__ ) % 2 != 0: lowercase__ = F'''Odd number of symbols ({len(A__ )})''' raise Exception(A__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowercase__ = set() for i in pbstring: if i not in abc: lowercase__ = F'''\'{i}\' not in list of symbols''' raise Exception(A__ ) elif i in tmppbl: lowercase__ = F'''Duplicate symbol ({i})''' raise Exception(A__ ) else: tmppbl.add(A__ ) del tmppbl # Created the dictionary lowercase__ = {} for j in range(0 , len(A__ ) - 1 , 2 ): lowercase__ = pbstring[j + 1] lowercase__ = pbstring[j] return pb def _lowerCAmelCase ( A__ , A__ , A__ = (rotora, rotora, rotora) , A__ = "" , ): lowercase__ = text.upper() lowercase__, lowercase__, lowercase__ = _validator( A__ , A__ , plugb.upper() ) lowercase__, lowercase__, lowercase__ = rotor_position lowercase__, lowercase__, lowercase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase__ = plugboard[symbol] # rotor ra -------------------------- lowercase__ = abc.index(A__ ) + rotorposa lowercase__ = rotora[index % len(A__ )] # rotor rb -------------------------- lowercase__ = abc.index(A__ ) + rotorposa lowercase__ = rotora[index % len(A__ )] # rotor rc -------------------------- lowercase__ = abc.index(A__ ) + rotorposa lowercase__ = rotora[index % len(A__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase__ = reflector[symbol] # 2nd rotors lowercase__ = abc[rotora.index(A__ ) - rotorposa] lowercase__ = abc[rotora.index(A__ ) - rotorposa] lowercase__ = abc[rotora.index(A__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(A__ ): lowercase__ = 0 rotorposa += 1 if rotorposa >= len(A__ ): lowercase__ = 0 rotorposa += 1 if rotorposa >= len(A__ ): lowercase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(A__ ) return "".join(A__ ) if __name__ == "__main__": a__ : List[Any] = "This is my Python script that emulates the Enigma machine from WWII." a__ : Any = (1, 1, 1) a__ : Union[str, Any] = "pictures" a__ : str = (rotora, rotora, rotora) a__ : List[str] = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowerCAmelCase ( ): lowercase__ = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } lowercase__ = Dataset.from_dict(A__ ) return dataset class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" lowercase__ = get_dataset() lowercase__ = make_duplicate_clusters(lowerCAmelCase , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def UpperCAmelCase ( self : Any) -> str: """simple docstring""" lowercase__ = get_dataset() lowercase__, lowercase__ = deduplicate_dataset(lowerCAmelCase) self.assertEqual(len(lowerCAmelCase) , 2) print(lowerCAmelCase) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowerCAmelCase)
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
def _lowerCAmelCase ( ): for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def _lowerCAmelCase ( A__ ): lowercase__ = 1 lowercase__ = 2 while i * i <= n: lowercase__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCAmelCase ( ): return next(i for i in triangle_number_generator() if count_divisors(A__ ) > 500 ) if __name__ == "__main__": print(solution())
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase__ = {'unk_token': '<unk>'} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowerCAmelCase)) lowercase__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowercase__ = os.path.join(self.tmpdirname , lowerCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase : Any) -> List[str]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **lowerCAmelCase) def UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **lowerCAmelCase) def UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" lowercase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] lowercase__ = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) processor_slow.save_pretrained(self.tmpdirname) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase) lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) processor_fast.save_pretrained(self.tmpdirname) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> List[str]: """simple docstring""" lowercase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowercase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') lowercase__ = self.get_image_processor(do_normalize=lowerCAmelCase) lowercase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCAmelCase , return_tensors='np') lowercase__ = processor(images=lowerCAmelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = 'lower newer' lowercase__ = processor(text=lowerCAmelCase , return_tensors='np') lowercase__ = tokenizer(lowerCAmelCase , return_tensors='np') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = 'lower newer' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCAmelCase , images=lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase): processor() def UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" lowercase__ = 'google/owlvit-base-patch32' lowercase__ = OwlViTProcessor.from_pretrained(lowerCAmelCase) lowercase__ = ['cat', 'nasa badge'] lowercase__ = processor(text=lowerCAmelCase) lowercase__ = 16 self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase): processor() def UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" lowercase__ = 'google/owlvit-base-patch32' lowercase__ = OwlViTProcessor.from_pretrained(lowerCAmelCase) lowercase__ = [['cat', 'nasa badge'], ['person']] lowercase__ = processor(text=lowerCAmelCase) lowercase__ = 16 lowercase__ = len(lowerCAmelCase) lowercase__ = max([len(lowerCAmelCase) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase): processor() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = 'google/owlvit-base-patch32' lowercase__ = OwlViTProcessor.from_pretrained(lowerCAmelCase) lowercase__ = ['cat', 'nasa badge'] lowercase__ = processor(text=lowerCAmelCase) lowercase__ = 16 lowercase__ = inputs['input_ids'] lowercase__ = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = self.prepare_image_inputs() lowercase__ = self.prepare_image_inputs() lowercase__ = processor(images=lowerCAmelCase , query_images=lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ['query_pixel_values', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase): processor() def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(lowerCAmelCase) lowercase__ = tokenizer.batch_decode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
from copy import deepcopy class UpperCAmelCase__: '''simple docstring''' def __init__( self : str , lowerCAmelCase : list[int] | None = None , lowerCAmelCase : int | None = None) -> None: """simple docstring""" if arr is None and size is not None: lowercase__ = size lowercase__ = [0] * size elif arr is not None: self.init(lowerCAmelCase) else: raise ValueError('Either arr or size must be specified') def UpperCAmelCase ( self : Any , lowerCAmelCase : list[int]) -> None: """simple docstring""" lowercase__ = len(lowerCAmelCase) lowercase__ = deepcopy(lowerCAmelCase) for i in range(1 , self.size): lowercase__ = self.next_(lowerCAmelCase) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase ( self : Tuple) -> list[int]: """simple docstring""" lowercase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1): lowercase__ = self.next_(lowerCAmelCase) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase ( lowerCAmelCase : int) -> int: """simple docstring""" return index + (index & (-index)) @staticmethod def UpperCAmelCase ( lowerCAmelCase : int) -> int: """simple docstring""" return index - (index & (-index)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int) -> None: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowercase__ = self.next_(lowerCAmelCase) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : int) -> None: """simple docstring""" self.add(lowerCAmelCase , value - self.get(lowerCAmelCase)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> int: """simple docstring""" if right == 0: return 0 lowercase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowercase__ = self.prev(lowerCAmelCase) return result def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int) -> int: """simple docstring""" return self.prefix(lowerCAmelCase) - self.prefix(lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> int: """simple docstring""" return self.query(lowerCAmelCase , index + 1) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> int: """simple docstring""" value -= self.tree[0] if value < 0: return -1 lowercase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowercase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a__ : str = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = ["pixel_values"] def __init__( self : Union[str, Any] , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 2_55 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : bool = True , **lowerCAmelCase : Any , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = size if size is not None else {'shortest_edge': 2_24} lowercase__ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase) lowercase__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowercase__ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase , param_name='crop_size') lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ = do_convert_rgb def UpperCAmelCase ( self : Dict , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') lowercase__ = get_resize_output_image_size(lowerCAmelCase , size=size['shortest_edge'] , default_to_square=lowerCAmelCase) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(lowerCAmelCase) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(lowerCAmelCase , size=(size['height'], size['width']) , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : int = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase : Tuple , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(lowerCAmelCase , param_name='size' , default_to_square=lowerCAmelCase) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(lowerCAmelCase , param_name='crop_size' , default_to_square=lowerCAmelCase) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ = make_list_of_images(lowerCAmelCase) if not valid_images(lowerCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ = [convert_to_rgb(lowerCAmelCase) for image in images] # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(lowerCAmelCase) for image in images] if do_resize: lowercase__ = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase) for image in images] if do_rescale: lowercase__ = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase) for image in images] if do_normalize: lowercase__ = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase) for image in images] lowercase__ = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase) for image in images] lowercase__ = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase)
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' pass class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' pass class UpperCAmelCase__: '''simple docstring''' def __init__( self : str) -> Union[str, Any]: """simple docstring""" lowercase__ = [ [], [], [], ] def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int) -> None: """simple docstring""" try: if len(self.queues[priority]) >= 1_00: raise OverflowError('Maximum queue size is 100') self.queues[priority].append(lowerCAmelCase) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2') def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError('All queues are empty') def __str__( self : List[str]) -> str: """simple docstring""" return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues)) class UpperCAmelCase__: '''simple docstring''' def __init__( self : int) -> Any: """simple docstring""" lowercase__ = [] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> None: """simple docstring""" if len(self.queue) == 1_00: raise OverFlowError('Maximum queue size is 100') self.queue.append(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" if not self.queue: raise UnderFlowError('The queue is empty') else: lowercase__ = min(self.queue) self.queue.remove(lowerCAmelCase) return data def __str__( self : Any) -> str: """simple docstring""" return str(self.queue) def _lowerCAmelCase ( ): lowercase__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _lowerCAmelCase ( ): lowercase__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): a__ : int = True from torch.cuda.amp import autocast a__ : str = logging.getLogger(__name__) def _lowerCAmelCase ( A__=None , A__=None ): return field(default_factory=lambda: default , metadata=A__ ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A : Optional[bool] = field( default=lowerCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) A : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) A : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) A : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) A : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) A : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) A : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : Optional[str] = field( default=lowerCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) A : bool = field( default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A : Optional[int] = field( default=lowerCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) A : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) A : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : WavaVecaProcessor A : Union[bool, str] = True A : Optional[int] = None A : Optional[int] = None A : Optional[int] = None A : Optional[int] = None def __call__( self : Any , lowerCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: """simple docstring""" lowercase__ = [{'input_values': feature['input_values']} for feature in features] lowercase__ = [{'input_ids': feature['labels']} for feature in features] lowercase__ = self.processor.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowercase__ = self.processor.pad( labels=lowerCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly lowercase__ = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -1_00) lowercase__ = labels return batch class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : nn.Module , lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """simple docstring""" model.train() lowercase__ = self._prepare_inputs(lowerCAmelCase) if self.use_amp: with autocast(): lowercase__ = self.compute_loss(lowerCAmelCase , lowerCAmelCase) else: lowercase__ = self.compute_loss(lowerCAmelCase , lowerCAmelCase) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowercase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase__ = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''') if self.args.gradient_accumulation_steps > 1: lowercase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase) else: loss.backward() return loss.detach() def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__, lowercase__, lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__, lowercase__, lowercase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowercase__ = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) lowercase__ = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer lowercase__ = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(A__ ): lowercase__ = re.sub(A__ , '' , batch['sentence'] ).lower() + ' ' return batch lowercase__ = train_dataset.map(A__ , remove_columns=['sentence'] ) lowercase__ = eval_dataset.map(A__ , remove_columns=['sentence'] ) def extract_all_chars(A__ ): lowercase__ = ' '.join(batch['text'] ) lowercase__ = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} lowercase__ = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) lowercase__ = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) lowercase__ = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) lowercase__ = {v: k for k, v in enumerate(A__ )} lowercase__ = vocab_dict[' '] del vocab_dict[" "] lowercase__ = len(A__ ) lowercase__ = len(A__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) lowercase__ = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) lowercase__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowercase__ = min(len(A__ ) , data_args.max_train_samples ) lowercase__ = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: lowercase__ = eval_dataset.select(range(data_args.max_val_samples ) ) lowercase__ = torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__ ): lowercase__, lowercase__ = torchaudio.load(batch['path'] ) lowercase__ = resampler(A__ ).squeeze().numpy() lowercase__ = 16_000 lowercase__ = batch['text'] return batch lowercase__ = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowercase__ = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__ ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' lowercase__ = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(A__ ) return batch lowercase__ = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) lowercase__ = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric lowercase__ = datasets.load_metric('wer' ) def compute_metrics(A__ ): lowercase__ = pred.predictions lowercase__ = np.argmax(A__ , axis=-1 ) lowercase__ = processor.tokenizer.pad_token_id lowercase__ = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics lowercase__ = processor.batch_decode(pred.label_ids , group_tokens=A__ ) lowercase__ = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowercase__ = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer lowercase__ = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowercase__ = model_args.model_name_or_path else: lowercase__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowercase__ = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() lowercase__ = train_result.metrics lowercase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) lowercase__ = min(A__ , len(A__ ) ) trainer.log_metrics('train' , A__ ) trainer.save_metrics('train' , A__ ) trainer.save_state() # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ = trainer.evaluate() lowercase__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) lowercase__ = min(A__ , len(A__ ) ) trainer.log_metrics('eval' , A__ ) trainer.save_metrics('eval' , A__ ) return results if __name__ == "__main__": main()
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
from math import pow, sqrt def _lowerCAmelCase ( *A__ ): lowercase__ = len(A__ ) > 0 and all(value > 0.0 for value in values ) return result def _lowerCAmelCase ( A__ , A__ ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _lowerCAmelCase ( A__ , A__ , A__ ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _lowerCAmelCase ( A__ , A__ , A__ ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _lowerCAmelCase ( A__ , A__ , A__ ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _lowerCAmelCase ( A__ , A__ , A__ ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
from typing import TYPE_CHECKING from ..utils import _LazyModule a__ : str = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowerCAmelCase ( A__ ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _lowerCAmelCase ( ): lowercase__ = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=A__ ) lowercase__ = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A__ ) EnvironmentCommand.register_subcommand(A__ ) TestCommand.register_subcommand(A__ ) RunBeamCommand.register_subcommand(A__ ) DummyDataCommand.register_subcommand(A__ ) # Parse args lowercase__, lowercase__ = parser.parse_known_args() if not hasattr(A__ , 'func' ): parser.print_help() exit(1 ) lowercase__ = parse_unknown_args(A__ ) # Run lowercase__ = args.func(A__ , **A__ ) service.run() if __name__ == "__main__": main()
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 a__ : Dict = get_tests_dir("fixtures/dummy_feature_extractor_config.json") a__ : Optional[Any] = get_tests_dir("fixtures/vocab.json") a__ : List[Any] = get_tests_dir("fixtures") class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' A : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" lowercase__ = 0 def UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" lowercase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h') self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaConfig() lowercase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h') # save in new folder model_config.save_pretrained(lowerCAmelCase) processor.save_pretrained(lowerCAmelCase) lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase)) copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , 'vocab.json')) lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaFeatureExtractor() lowercase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h') lowercase__ = WavaVecaProcessor(lowerCAmelCase , lowerCAmelCase) # save in new folder processor.save_pretrained(lowerCAmelCase) # drop `processor_class` in tokenizer with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'r') as f: lowercase__ = json.load(lowerCAmelCase) config_dict.pop('processor_class') with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'w') as f: f.write(json.dumps(lowerCAmelCase)) lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaFeatureExtractor() lowercase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h') lowercase__ = WavaVecaProcessor(lowerCAmelCase , lowerCAmelCase) # save in new folder processor.save_pretrained(lowerCAmelCase) # drop `processor_class` in feature extractor with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'r') as f: lowercase__ = json.load(lowerCAmelCase) config_dict.pop('processor_class') with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'w') as f: f.write(json.dumps(lowerCAmelCase)) lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaConfig(processor_class='Wav2Vec2Processor') model_config.save_pretrained(lowerCAmelCase) # copy relevant files copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , 'vocab.json')) # create emtpy sample processor with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'w') as f: f.write('{}') lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" with self.assertRaises(lowerCAmelCase): lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase): lowercase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase) lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__ , 'NewProcessor') lowercase__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') lowercase__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version lowercase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase) lowercase__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" try: AutoConfig.register('custom' , lowerCAmelCase) AutoFeatureExtractor.register(lowerCAmelCase , lowerCAmelCase) AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase) AutoProcessor.register(lowerCAmelCase , lowerCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase): AutoProcessor.register(lowerCAmelCase , lowerCAmelCase) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = os.path.join(lowerCAmelCase , 'vocab.txt') with open(lowerCAmelCase , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) lowercase__ = CustomTokenizer(lowerCAmelCase) lowercase__ = CustomProcessor(lowerCAmelCase , lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCAmelCase) lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = False class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = False class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Any = "AutoFeatureExtractor" A : Any = "AutoTokenizer" A : Union[str, Any] = False try: AutoConfig.register('custom' , lowerCAmelCase) AutoFeatureExtractor.register(lowerCAmelCase , lowerCAmelCase) AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase) AutoProcessor.register(lowerCAmelCase , lowerCAmelCase) # If remote code is not set, the default is to use local classes. lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor') self.assertEqual(processor.__class__.__name__ , 'NewProcessor') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. lowercase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase) self.assertEqual(processor.__class__.__name__ , 'NewProcessor') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. lowercase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase) self.assertEqual(processor.__class__.__name__ , 'NewProcessor') self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast') def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext') self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor') @is_staging_test class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' A : List[str] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCAmelCase ( cls : Union[str, Any]) -> List[str]: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(lowerCAmelCase) @classmethod def UpperCAmelCase ( cls : Dict) -> List[str]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-processor') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor') except HTTPError: pass def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = WavaVecaProcessor.from_pretrained(lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase , 'test-processor') , push_to_hub=lowerCAmelCase , use_auth_token=self._token) lowercase__ = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(new_processor.feature_extractor , lowerCAmelCase)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = WavaVecaProcessor.from_pretrained(lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase , 'test-processor-org') , push_to_hub=lowerCAmelCase , use_auth_token=self._token , organization='valid_org' , ) lowercase__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(new_processor.feature_extractor , lowerCAmelCase)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def UpperCAmelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase__ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = os.path.join(lowerCAmelCase , 'vocab.txt') with open(lowerCAmelCase , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) lowercase__ = CustomTokenizer(lowerCAmelCase) lowercase__ = CustomProcessor(lowerCAmelCase , lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token) lowercase__ = Repository(lowerCAmelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token) processor.save_pretrained(lowerCAmelCase) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCAmelCase , 'tokenizer_config.json')) as f: lowercase__ = json.load(lowerCAmelCase) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_feature_extraction.py'))) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_tokenization.py'))) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_processing.py'))) repo.push_to_hub() lowercase__ = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=lowerCAmelCase) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor')
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
import random from .binary_exp_mod import bin_exp_mod def _lowerCAmelCase ( A__ , A__=1_000 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__ = n - 1 lowercase__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__ = 0 while count < prec: lowercase__ = random.randint(2 , n - 1 ) lowercase__ = bin_exp_mod(A__ , A__ , A__ ) if b != 1: lowercase__ = True for _ in range(A__ ): if b == n - 1: lowercase__ = False break lowercase__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a__ : Any = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) a__ : List[str] = "Hello, World!" a__ : str = "en_XX" def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = Path('data_bin' ) lowercase__ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(A__ ).parent ) , checkpoint_file=Path(A__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(A__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(A__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(A__ ) lowercase__ = xmod.model.encoder.sentence_encoder lowercase__ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowercase__ = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , A__ ) lowercase__ = XmodForSequenceClassification(A__ ) if classification_head else XmodForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings lowercase__ = xmod_sent_encoder.embed_tokens.weight lowercase__ = xmod_sent_encoder.embed_positions.weight lowercase__ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase__ = xmod_sent_encoder.layernorm_embedding.weight lowercase__ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase__ = model.roberta.encoder.layer[i] lowercase__ = xmod_sent_encoder.layers[i] # self attention lowercase__ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) lowercase__ = xmod_layer.self_attn.q_proj.weight lowercase__ = xmod_layer.self_attn.q_proj.bias lowercase__ = xmod_layer.self_attn.k_proj.weight lowercase__ = xmod_layer.self_attn.k_proj.bias lowercase__ = xmod_layer.self_attn.v_proj.weight lowercase__ = xmod_layer.self_attn.v_proj.bias # self-attention output lowercase__ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) lowercase__ = xmod_layer.self_attn.out_proj.weight lowercase__ = xmod_layer.self_attn.out_proj.bias lowercase__ = xmod_layer.self_attn_layer_norm.weight lowercase__ = xmod_layer.self_attn_layer_norm.bias # intermediate lowercase__ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) lowercase__ = xmod_layer.fca.weight lowercase__ = xmod_layer.fca.bias # output lowercase__ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) lowercase__ = xmod_layer.fca.weight lowercase__ = xmod_layer.fca.bias lowercase__ = xmod_layer.final_layer_norm.weight lowercase__ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase__ = xmod_layer.adapter_layer_norm.weight lowercase__ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase__ = bert_output.adapter_modules[lang_code] lowercase__ = xmod_layer.adapter_modules[lang_code] lowercase__ = from_adapter.fca.weight lowercase__ = from_adapter.fca.bias lowercase__ = from_adapter.fca.weight lowercase__ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase__ = xmod_sent_encoder.layer_norm.weight lowercase__ = xmod_sent_encoder.layer_norm.bias if classification_head: lowercase__ = xmod.model.classification_heads['mnli'].dense.weight lowercase__ = xmod.model.classification_heads['mnli'].dense.bias lowercase__ = xmod.model.classification_heads['mnli'].out_proj.weight lowercase__ = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowercase__ = xmod.model.encoder.lm_head.dense.weight lowercase__ = xmod.model.encoder.lm_head.dense.bias lowercase__ = xmod.model.encoder.lm_head.layer_norm.weight lowercase__ = xmod.model.encoder.lm_head.layer_norm.bias lowercase__ = xmod.model.encoder.lm_head.weight lowercase__ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase__ = xmod.encode(A__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(A__ ) lowercase__ = model(A__ )[0] if classification_head: lowercase__ = xmod.model.classification_heads['mnli'](xmod.extract_features(A__ ) ) else: lowercase__ = xmod.model(A__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowercase__ = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase__ = torch.allclose(A__ , A__ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) a__ : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _lowerCAmelCase ( A__ ): lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A__ , A__ , bias=A__ ) lowercase__ = emb.weight.data return lin_layer def _lowerCAmelCase ( A__ , A__=None ): lowercase__ = {} for old_key in state_dict.keys(): lowercase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowercase__ = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: lowercase__ = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: lowercase__ = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: lowercase__ = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: lowercase__ = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: lowercase__ = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: lowercase__ = key.replace('final_layer_norm' , 'ff_layer_norm' ) lowercase__ = state_dict[old_key] return new_dict def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ = WEIGHTS_NAME ): lowercase__ = [] lowercase__ = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): lowercase__ = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(A__ ): lowercase__ = torch.load(A__ )['model'] remove_ignore_keys_(A__ ) lowercase__ = rename_fairseq_keys(A__ , A__ ) lowercase__ = os.path.join( A__ , weights_name.replace('.bin' , F'''-{len(A__ )+1:05d}-of-???.bin''' ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block lowercase__ = os.path.join(A__ , weights_name.replace('.bin' , F'''-{len(A__ )+1:05d}-of-???.bin''' ) ) lowercase__ = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(A__ ) lowercase__ = rename_fairseq_keys(A__ , A__ ) lowercase__ = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: lowercase__ = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index lowercase__ = {} for idx, shard in enumerate(A__ ): lowercase__ = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(A__ ):05d}.bin''' ) lowercase__ = os.path.join(A__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {'total_size': total_size} lowercase__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(A__ , A__ ) , 'w' , encoding='utf-8' ) as f: lowercase__ = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n' f.write(A__ ) return metadata, index if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) a__ : Optional[Any] = parser.parse_args() a__ , a__ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a__ : Tuple = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a__ : Optional[int] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } lowercase__ = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join(self.tmpdirname , lowerCAmelCase) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase) + '\n') with open(self.feature_extraction_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase) + '\n') # load decoder from hub lowercase__ = 'hf-internal-testing/ngram-beam-search-decoder' def UpperCAmelCase ( self : Tuple , **lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : str , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_feature_extractor() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowercase__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match lowercase__ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx']) with self.assertRaisesRegex(lowerCAmelCase , 'include'): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) lowercase__ = floats_list((3, 10_00)) lowercase__ = feature_extractor(lowerCAmelCase , return_tensors='np') lowercase__ = processor(lowerCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) lowercase__ = 'This is a test string' lowercase__ = processor(text=lowerCAmelCase) lowercase__ = tokenizer(lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase ( self : Any , lowerCAmelCase : Tuple=(2, 10, 16) , lowerCAmelCase : int=77) -> Optional[Any]: """simple docstring""" np.random.seed(lowerCAmelCase) return np.random.rand(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) lowercase__ = self._get_dummy_logits(shape=(10, 16) , seed=13) lowercase__ = processor.decode(lowerCAmelCase) lowercase__ = decoder.decode_beams(lowerCAmelCase)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual('</s> <s> </s>' , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ['fork'], ['spawn']]) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) lowercase__ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowercase__ = processor.batch_decode(lowerCAmelCase) else: with get_context(lowerCAmelCase).Pool() as pool: lowercase__ = processor.batch_decode(lowerCAmelCase , lowerCAmelCase) lowercase__ = list(lowerCAmelCase) with get_context('fork').Pool() as p: lowercase__ = decoder.decode_beams_batch(lowerCAmelCase , lowerCAmelCase) lowercase__, lowercase__, lowercase__ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(lowerCAmelCase , decoded_processor.text) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text) self.assertListEqual(lowerCAmelCase , decoded_processor.logit_score) self.assertListEqual(lowerCAmelCase , decoded_processor.lm_score) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) lowercase__ = self._get_dummy_logits() lowercase__ = 15 lowercase__ = -20.0 lowercase__ = -4.0 lowercase__ = processor.batch_decode( lowerCAmelCase , beam_width=lowerCAmelCase , beam_prune_logp=lowerCAmelCase , token_min_logp=lowerCAmelCase , ) lowercase__ = decoded_processor_out.text lowercase__ = list(lowerCAmelCase) with get_context('fork').Pool() as pool: lowercase__ = decoder.decode_beams_batch( lowerCAmelCase , lowerCAmelCase , beam_width=lowerCAmelCase , beam_prune_logp=lowerCAmelCase , token_min_logp=lowerCAmelCase , ) lowercase__ = [d[0][0] for d in decoded_decoder_out] lowercase__ = [d[0][2] for d in decoded_decoder_out] lowercase__ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , lowerCAmelCase) self.assertTrue(np.array_equal(lowerCAmelCase , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , lowerCAmelCase , atol=1E-3)) self.assertTrue(np.array_equal(lowerCAmelCase , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , lowerCAmelCase , atol=1E-3)) def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) lowercase__ = self._get_dummy_logits() lowercase__ = 2.0 lowercase__ = 5.0 lowercase__ = -20.0 lowercase__ = True lowercase__ = processor.batch_decode( lowerCAmelCase , alpha=lowerCAmelCase , beta=lowerCAmelCase , unk_score_offset=lowerCAmelCase , lm_score_boundary=lowerCAmelCase , ) lowercase__ = decoded_processor_out.text lowercase__ = list(lowerCAmelCase) decoder.reset_params( alpha=lowerCAmelCase , beta=lowerCAmelCase , unk_score_offset=lowerCAmelCase , lm_score_boundary=lowerCAmelCase , ) with get_context('fork').Pool() as pool: lowercase__ = decoder.decode_beams_batch( lowerCAmelCase , lowerCAmelCase , ) lowercase__ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , lowerCAmelCase) lowercase__ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -20.0) self.assertEqual(lm_model.score_boundary , lowerCAmelCase) def UpperCAmelCase ( self : int) -> List[str]: """simple docstring""" lowercase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') lowercase__ = processor.decoder.model_container[processor.decoder._model_key] lowercase__ = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() lowercase__ = os.listdir(lowerCAmelCase) lowercase__ = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" lowercase__ = snapshot_download('hf-internal-testing/processor_with_lm') lowercase__ = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase) lowercase__ = processor.decoder.model_container[processor.decoder._model_key] lowercase__ = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() lowercase__ = os.listdir(lowerCAmelCase) lowercase__ = os.listdir(lowerCAmelCase) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm') lowercase__ = floats_list((3, 10_00)) lowercase__ = processor_wavaveca(lowerCAmelCase , return_tensors='np') lowercase__ = processor_auto(lowerCAmelCase , return_tensors='np') for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2) lowercase__ = self._get_dummy_logits() lowercase__ = processor_wavaveca.batch_decode(lowerCAmelCase) lowercase__ = processor_auto.batch_decode(lowerCAmelCase) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_decoder() lowercase__ = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase , decoder=lowerCAmelCase) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def UpperCAmelCase ( lowerCAmelCase : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') lowercase__ = self._get_dummy_logits()[0] lowercase__ = processor.decode(lowerCAmelCase , output_word_offsets=lowerCAmelCase) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase)) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word')) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset') , [1, 3, 5]) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" lowercase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') lowercase__ = self._get_dummy_logits() lowercase__ = processor.batch_decode(lowerCAmelCase , output_word_offsets=lowerCAmelCase) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase)) self.assertListEqual( [' '.join(self.get_from_offsets(lowerCAmelCase , 'word')) for o in outputs['word_offsets']] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset') , [1, 3, 5]) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" import torch lowercase__ = load_dataset('common_voice' , 'en' , split='train' , streaming=lowerCAmelCase) lowercase__ = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00)) lowercase__ = iter(lowerCAmelCase) lowercase__ = next(lowerCAmelCase) lowercase__ = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') lowercase__ = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowercase__ = processor(sample['audio']['array'] , return_tensors='pt').input_values with torch.no_grad(): lowercase__ = model(lowerCAmelCase).logits.cpu().numpy() lowercase__ = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase) lowercase__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowercase__ = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] lowercase__ = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase , 'word')) , lowerCAmelCase) self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase , 'word')) , output.text) # output times lowercase__ = torch.tensor(self.get_from_offsets(lowerCAmelCase , 'start_time')) lowercase__ = torch.tensor(self.get_from_offsets(lowerCAmelCase , 'end_time')) # fmt: off lowercase__ = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99]) lowercase__ = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94]) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=0.01)) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=0.01))
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
import fire from utils import calculate_rouge, save_json def _lowerCAmelCase ( A__ , A__ , A__=None , **A__ ): lowercase__ = [x.strip() for x in open(A__ ).readlines()] lowercase__ = [x.strip() for x in open(A__ ).readlines()][: len(A__ )] lowercase__ = calculate_rouge(A__ , A__ , **A__ ) if save_path is not None: save_json(A__ , A__ , indent=A__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : List[Any] = PhobertTokenizer A : List[Any] = False def UpperCAmelCase ( self : str) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = ['#version: 0.2', 'l à</w>'] lowercase__ = {'unk_token': '<unk>'} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowerCAmelCase)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Any) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : str , lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = 'Tôi là VinAI Research' lowercase__ = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" lowercase__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowercase__ = 'Tôi là VinAI Research' lowercase__ = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() lowercase__ = tokenizer.tokenize(lowerCAmelCase) print(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , lowerCAmelCase)
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
from __future__ import annotations import math def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(A__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) return min( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) def _lowerCAmelCase ( ): lowercase__ = [90, 23, 6, 33, 21, 65, 123, 34_423] lowercase__ = math.log(len(A__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , A__ , A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : Dict = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = "blip_text_model" def __init__( self : int , lowerCAmelCase : Dict=3_05_24 , lowerCAmelCase : Dict=7_68 , lowerCAmelCase : Dict=7_68 , lowerCAmelCase : Union[str, Any]=30_72 , lowerCAmelCase : Any=7_68 , lowerCAmelCase : Dict=12 , lowerCAmelCase : int=8 , lowerCAmelCase : List[Any]=5_12 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Union[str, Any]=1E-1_2 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : int=0.02 , lowerCAmelCase : str=3_05_22 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : str=0 , lowerCAmelCase : Optional[Any]=1_02 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Dict=True , **lowerCAmelCase : List[str] , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , sep_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = encoder_hidden_size lowercase__ = intermediate_size lowercase__ = projection_dim lowercase__ = hidden_dropout_prob lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = max_position_embeddings lowercase__ = layer_norm_eps lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = attention_probs_dropout_prob lowercase__ = is_decoder lowercase__ = use_cache @classmethod def UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : List[Any]) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase) lowercase__, lowercase__ = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": lowercase__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCAmelCase , **lowerCAmelCase) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Dict = "blip_vision_model" def __init__( self : Any , lowerCAmelCase : Union[str, Any]=7_68 , lowerCAmelCase : int=30_72 , lowerCAmelCase : Optional[Any]=5_12 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Optional[Any]=3_84 , lowerCAmelCase : Any=16 , lowerCAmelCase : str="gelu" , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : List[str]=1E-1_0 , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = projection_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def UpperCAmelCase ( cls : str , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : Dict) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase) lowercase__, lowercase__ = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": lowercase__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCAmelCase , **lowerCAmelCase) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "blip" A : str = True def __init__( self : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Tuple=2.65_92 , lowerCAmelCase : List[Any]=2_56 , **lowerCAmelCase : str , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase) if text_config is None: lowercase__ = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.') if vision_config is None: lowercase__ = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.') lowercase__ = BlipTextConfig(**lowerCAmelCase) lowercase__ = BlipVisionConfig(**lowerCAmelCase) lowercase__ = self.vision_config.hidden_size lowercase__ = projection_dim lowercase__ = logit_scale_init_value lowercase__ = 1.0 lowercase__ = 0.02 lowercase__ = image_text_hidden_size @classmethod def UpperCAmelCase ( cls : Dict , lowerCAmelCase : BlipTextConfig , lowerCAmelCase : BlipVisionConfig , **lowerCAmelCase : Dict) -> str: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') lowercase__ = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase__ = model(lowerCAmelCase)['last_hidden_state'] lowercase__ = tf.TensorShape((1, 10, 7_68)) self.assertEqual(output.shape , lowerCAmelCase) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from math import sqrt def _lowerCAmelCase ( A__ ): lowercase__ = 0 for i in range(1 , int(sqrt(A__ ) + 1 ) ): if n % i == 0 and i != sqrt(A__ ): total += i + n // i elif i == sqrt(A__ ): total += i return total - n def _lowerCAmelCase ( A__ = 10_000 ): lowercase__ = sum( i for i in range(1 , A__ ) if sum_of_divisors(sum_of_divisors(A__ ) ) == i and sum_of_divisors(A__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a__ : List[Any] = getLogger(__name__) def _lowerCAmelCase ( A__ , A__ , A__ , A__ = 8 , A__ = 1_024 , A__="val" , A__=None , A__=False , A__="summarization" , A__=None , A__=1 , A__ = None , A__="" , **A__ , ): lowercase__ = str(A__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=A__ ) lowercase__ = Path(A__ ) lowercase__ = save_dir.joinpath(F'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(A__ ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(A__ ).cuda() if fpaa: lowercase__ = model.half() # determine if we need to increase num_beams use_task_specific_params(A__ , A__ ) # update config with task specific params lowercase__ = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowercase__ = num_return_sequences lowercase__ = AutoTokenizer.from_pretrained(A__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: lowercase__ = tokenizer.model_max_length if prefix is None: lowercase__ = prefix or getattr(model.config , 'prefix' , '' ) or '' lowercase__ = SeqaSeqDataset( A__ , A__ , A__ , max_target_length=1_024 , type_path=A__ , n_obs=A__ , prefix=A__ , **A__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowercase__ = ds.make_sortish_sampler(A__ , distributed=A__ , add_extra_examples=A__ , shuffle=A__ ) lowercase__ = DataLoader(A__ , sampler=A__ , batch_size=A__ , collate_fn=ds.collate_fn ) lowercase__ = [] for batch in tqdm(A__ ): lowercase__ = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=A__ , num_beams=A__ , **A__ , ) lowercase__ = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) lowercase__ = batch['ids'] if num_return_sequences > 1: lowercase__ = chunks(A__ , A__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(A__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(A__ , A__ ) return results, sampler.num_replicas def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=A__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=A__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=A__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=A__ , default=A__ ) parser.add_argument( '--type_path' , type=A__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=A__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=A__ , default=8 , required=A__ , help='batch size' ) parser.add_argument( '--local_rank' , type=A__ , default=-1 , required=A__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=A__ , default=A__ , required=A__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=A__ , default=1 , required=A__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=A__ , default=600 , required=A__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=A__ , default=A__ , required=A__ ) parser.add_argument('--tgt_lang' , type=A__ , default=A__ , required=A__ ) parser.add_argument( '--prefix' , type=A__ , required=A__ , default=A__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) lowercase__ = time.time() lowercase__, lowercase__ = parser.parse_known_args() lowercase__ = parse_numeric_n_bool_cl_kwargs(A__ ) if generate_kwargs and args.local_rank <= 0: print(F'''parsed the following generate kwargs: {generate_kwargs}''' ) lowercase__ = Path(args.save_dir + '_tmp' ) Path(A__ ).mkdir(exist_ok=A__ ) # this handles locking. lowercase__ = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowercase__ = {} if args.src_lang is not None: lowercase__ = args.src_lang if args.tgt_lang is not None: lowercase__ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=A__ ) lowercase__, lowercase__ = eval_data_dir( args.data_dir , A__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=A__ , **A__ , ) if args.local_rank <= 0: lowercase__ = Path(args.save_dir ) save_dir.mkdir(exist_ok=A__ ) lowercase__ = gather_results_from_each_node(A__ , A__ , args.sync_timeout ) lowercase__ = combine_partial_results(A__ ) if args.num_return_sequences > 1: lowercase__ = save_dir.joinpath('pseudolabel_results.json' ) print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(A__ , A__ ) return lowercase__ = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(A__ ) as f: lowercase__ = [x.rstrip() for x in f.readlines()][: len(A__ )] # Calculate metrics, save metrics, and save _generations.txt lowercase__ = 'translation' in args.task lowercase__ = calculate_bleu if calc_bleu else calculate_rouge lowercase__ = 'bleu' if calc_bleu else 'rouge' lowercase__ = score_fn(A__ , A__ ) lowercase__ = len(A__ ) lowercase__ = time.time() - start_time lowercase__ = round(runtime / metrics['n_obs'] , 4 ) lowercase__ = num_replicas # TODO(@stas00): add whatever metadata to metrics lowercase__ = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' ) save_json(A__ , A__ , indent=A__ ) print(A__ ) write_txt_file(A__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(A__ , save_dir.joinpath(F'''{args.type_path}.target''' ) ) else: shutil.rmtree(A__ ) def _lowerCAmelCase ( A__ ): lowercase__ = [] for partial_result in partial_results: records.extend(A__ ) lowercase__ = sorted(A__ , key=lambda A__ : x["id"] ) lowercase__ = [x['pred'] for x in records] return preds def _lowerCAmelCase ( A__ , A__ , A__ ): # WAIT FOR lots of .json files lowercase__ = time.time() logger.info('waiting for all nodes to finish' ) lowercase__ = None while (time.time() - start_wait) < timeout: lowercase__ = list(save_dir.glob('rank_*.json' ) ) if len(A__ ) < num_replicas: continue try: # make sure all json files are fully saved lowercase__ = lmap(A__ , A__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( A__ ): if not is_accelerate_available(): return method lowercase__ = version.parse(accelerate.__version__ ).base_version if version.parse(A__ ) < version.parse('0.17.0' ): return method def wrapper(self , *A__ , **A__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *A__ , **A__ ) return wrapper
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def _lowerCAmelCase ( A__ ): lowercase__ = {} lowercase__ = job['started_at'] lowercase__ = job['completed_at'] lowercase__ = date_parser.parse(A__ ) lowercase__ = date_parser.parse(A__ ) lowercase__ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowercase__ = start lowercase__ = end lowercase__ = duration_in_min return job_info def _lowerCAmelCase ( A__ , A__=None ): lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} lowercase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowercase__ = requests.get(A__ , headers=A__ ).json() lowercase__ = {} try: job_time.update({job['name']: extract_time_from_single_job(A__ ) for job in result['jobs']} ) lowercase__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(A__ ): lowercase__ = requests.get(url + F'''&page={i + 2}''' , headers=A__ ).json() job_time.update({job['name']: extract_time_from_single_job(A__ ) for job in result['jobs']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": a__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") a__ : Any = parser.parse_args() a__ : str = get_job_time(args.workflow_run_id) a__ : Dict = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCAmelCase ( A__ , A__=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def _lowerCAmelCase ( A__ , A__=0 ): lowercase__ = [] for old_item in old_list: lowercase__ = old_item.replace('in_layers.0' , 'norm1' ) lowercase__ = new_item.replace('in_layers.2' , 'conv1' ) lowercase__ = new_item.replace('out_layers.0' , 'norm2' ) lowercase__ = new_item.replace('out_layers.3' , 'conv2' ) lowercase__ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) lowercase__ = new_item.replace('skip_connection' , 'conv_shortcut' ) lowercase__ = shave_segments(A__ , n_shave_prefix_segments=A__ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _lowerCAmelCase ( A__ , A__=0 ): lowercase__ = [] for old_item in old_list: lowercase__ = old_item lowercase__ = new_item.replace('norm.weight' , 'group_norm.weight' ) lowercase__ = new_item.replace('norm.bias' , 'group_norm.bias' ) lowercase__ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) lowercase__ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) lowercase__ = shave_segments(A__ , n_shave_prefix_segments=A__ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _lowerCAmelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None ): assert isinstance(A__ , A__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__ = old_checkpoint[path] lowercase__ = old_tensor.shape[0] // 3 lowercase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__ = old_tensor.shape[0] // config['num_head_channels'] // 3 lowercase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__, lowercase__, lowercase__ = old_tensor.split(channels // num_heads , dim=1 ) lowercase__ = query.reshape(A__ ) lowercase__ = key.reshape(A__ ) lowercase__ = value.reshape(A__ ) for path in paths: lowercase__ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) lowercase__ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) lowercase__ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__ = old_checkpoint[path['old']][:, :, 0] else: lowercase__ = old_checkpoint[path['old']] def _lowerCAmelCase ( A__ , A__ ): lowercase__ = {} lowercase__ = checkpoint['time_embed.0.weight'] lowercase__ = checkpoint['time_embed.0.bias'] lowercase__ = checkpoint['time_embed.2.weight'] lowercase__ = checkpoint['time_embed.2.bias'] lowercase__ = checkpoint['input_blocks.0.0.weight'] lowercase__ = checkpoint['input_blocks.0.0.bias'] lowercase__ = checkpoint['out.0.weight'] lowercase__ = checkpoint['out.0.bias'] lowercase__ = checkpoint['out.2.weight'] lowercase__ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(A__ ) } # Retrieves the keys for the middle blocks only lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(A__ ) } # Retrieves the keys for the output blocks only lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(A__ ) } for i in range(1 , A__ ): lowercase__ = (i - 1) // (config['num_res_blocks'] + 1) lowercase__ = (i - 1) % (config['num_res_blocks'] + 1) lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: lowercase__ = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] lowercase__ = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue lowercase__ = renew_resnet_paths(A__ ) lowercase__ = {'old': F'''input_blocks.{i}.0''', 'new': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowercase__ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path, resnet_op] , config=A__ ) if len(A__ ): lowercase__ = renew_attention_paths(A__ ) lowercase__ = { 'old': F'''input_blocks.{i}.1''', 'new': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { F'''input_blocks.{i}.1.qkv.bias''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=A__ , config=A__ , ) lowercase__ = middle_blocks[0] lowercase__ = middle_blocks[1] lowercase__ = middle_blocks[2] lowercase__ = renew_resnet_paths(A__ ) assign_to_checkpoint(A__ , A__ , A__ , config=A__ ) lowercase__ = renew_resnet_paths(A__ ) assign_to_checkpoint(A__ , A__ , A__ , config=A__ ) lowercase__ = renew_attention_paths(A__ ) lowercase__ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( A__ , A__ , A__ , attention_paths_to_split=A__ , config=A__ ) for i in range(A__ ): lowercase__ = i // (config['num_res_blocks'] + 1) lowercase__ = i % (config['num_res_blocks'] + 1) lowercase__ = [shave_segments(A__ , 2 ) for name in output_blocks[i]] lowercase__ = {} for layer in output_block_layers: lowercase__, lowercase__ = layer.split('.' )[0], shave_segments(A__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A__ ) else: lowercase__ = [layer_name] if len(A__ ) > 1: lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] lowercase__ = renew_resnet_paths(A__ ) lowercase__ = renew_resnet_paths(A__ ) lowercase__ = {'old': F'''output_blocks.{i}.0''', 'new': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) lowercase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] lowercase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(A__ ) == 2: lowercase__ = [] if len(A__ ): lowercase__ = renew_attention_paths(A__ ) lowercase__ = { 'old': F'''output_blocks.{i}.1''', 'new': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { F'''output_blocks.{i}.1.qkv.bias''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=A__ , ) else: lowercase__ = renew_resnet_paths(A__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__ = '.'.join(['output_blocks', str(A__ ), path['old']] ) lowercase__ = '.'.join(['up_blocks', str(A__ ), 'resnets', str(A__ ), path['new']] ) lowercase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") a__ : List[str] = parser.parse_args() a__ : Union[str, Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: a__ : Optional[Any] = json.loads(f.read()) a__ : List[str] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a__ : Union[str, Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a__ : Any = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) a__ : Optional[int] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) a__ : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import argparse from collections import defaultdict import yaml a__ : Optional[Any] = "docs/source/en/_toctree.yml" def _lowerCAmelCase ( A__ ): lowercase__ = defaultdict(A__ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(A__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(A__ , key=lambda A__ : s["title"].lower() ) def _lowerCAmelCase ( A__=False ): with open(A__ , encoding='utf-8' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]['sections'] # Then to the model doc lowercase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase__ = api_doc[model_idx]['sections'] lowercase__ = [(idx, section) for idx, section in enumerate(A__ ) if 'sections' in section] lowercase__ = False for idx, modality_doc in modalities_docs: lowercase__ = modality_doc['sections'] lowercase__ = clean_model_doc_toc(A__ ) if old_modality_doc != new_modality_doc: lowercase__ = True if overwrite: lowercase__ = new_modality_doc if diff: if overwrite: lowercase__ = model_doc lowercase__ = api_doc with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(A__ , allow_unicode=A__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a__ : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ : List[str] = logging.get_logger(__name__) a__ : int = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : List[str] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } a__ : Dict = {"facebook/blenderbot-3B": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ): lowercase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase__ = bs[:] lowercase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 lowercase__ = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str]="replace" , lowerCAmelCase : List[Any]="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Tuple="</s>" , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : List[Any]="<unk>" , lowerCAmelCase : Optional[Any]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Any=False , **lowerCAmelCase : List[str] , ) -> Optional[Any]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else bos_token lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else eos_token lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else sep_token lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else cls_token lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else unk_token lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token super().__init__( errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = errors # how to handle errors in decoding lowercase__ = bytes_to_unicode() lowercase__ = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in bpe_merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} lowercase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self : List[Any]) -> Tuple: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = tuple(lowerCAmelCase) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: return token while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) lowercase__ = j if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = ' '.join(lowerCAmelCase) lowercase__ = word return word def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" lowercase__ = [] for token in re.findall(self.pat , lowerCAmelCase): lowercase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase).split(' ')) return bpe_tokens def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" return self.decoder.get(lowerCAmelCase) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Dict: """simple docstring""" lowercase__ = ''.join(lowerCAmelCase) lowercase__ = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase)) + [1] return [1] + ([0] * len(lowerCAmelCase)) + [1, 1] + ([0] * len(lowerCAmelCase)) + [1] def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple=False , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" lowercase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase) > 0 and not text[0].isspace()): lowercase__ = ' ' + text return (text, kwargs) def UpperCAmelCase ( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> Optional[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : List[str] , lowerCAmelCase : "Conversation") -> List[int]: """simple docstring""" lowercase__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase) lowercase__ = ' '.join(lowerCAmelCase) lowercase__ = self.encode(lowerCAmelCase) if len(lowerCAmelCase) > self.model_max_length: lowercase__ = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''') return input_ids
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = ["image_processor", "tokenizer"] A : List[Any] = "ChineseCLIPImageProcessor" A : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" lowercase__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase , ) lowercase__ = kwargs.pop('feature_extractor') lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.image_processor def __call__( self : Dict , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : int=None , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: lowercase__ = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: lowercase__ = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if text is not None and images is not None: lowercase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCAmelCase ( self : Tuple , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : int) -> int: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCAmelCase ( self : List[str]) -> Dict: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase , ) return self.image_processor_class
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import argparse from collections import defaultdict def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): lowercase__ = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(A__ , 'r' ) as f: lowercase__ = f.readlines() lowercase__ = F'''class {class_name}(''' lowercase__ = F'''{4 * ' '}def {test_name}(''' lowercase__ = F'''{8 * ' '}{correct_line.split()[0]}''' lowercase__ = F'''{16 * ' '}{correct_line.split()[0]}''' lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 0 lowercase__ = 0 lowercase__ = [] for line in lines: if line.startswith(A__ ): lowercase__ = True elif in_class and line.startswith(A__ ): lowercase__ = True elif in_class and in_func and (line.startswith(A__ ) or line.startswith(A__ )): lowercase__ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowercase__ = True if in_class and in_func and in_line: if ")" not in line: continue else: lowercase__ = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * ' '}{correct_line}''' ) lowercase__ = lowercase__ = lowercase__ = lowercase__ = False else: new_lines.append(A__ ) with open(A__ , 'w' ) as f: for line in new_lines: f.write(A__ ) def _lowerCAmelCase ( A__ , A__=None ): if fail is not None: with open(A__ , 'r' ) as f: lowercase__ = {l.strip() for l in f.readlines()} else: lowercase__ = None with open(A__ , 'r' ) as f: lowercase__ = f.readlines() lowercase__ = defaultdict(A__ ) for line in correct_lines: lowercase__, lowercase__, lowercase__, lowercase__ = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(A__ , A__ , A__ , A__ , A__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) a__ : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a__ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase__( _lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> None: """simple docstring""" warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , A__ , ) super().__init__(*A__ , **A__)
700
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
0
import os from datetime import datetime as dt from github import Github a__ : int = [ "good first issue", "feature request", "wip", ] def _lowerCAmelCase ( ): lowercase__ = Github(os.environ['GITHUB_TOKEN'] ) lowercase__ = g.get_repo('huggingface/accelerate' ) lowercase__ = repo.get_issues(state='open' ) for issue in open_issues: lowercase__ = sorted([comment for comment in issue.get_comments()] , key=lambda A__ : i.created_at , reverse=__A ) lowercase__ = comments[0] if len(__A ) > 0 else None lowercase__ = dt.utcnow() lowercase__ = (current_time - issue.updated_at).days lowercase__ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
701
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a__ : Union[str, Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": a__ : Any = 'hopper-medium-v2' a__ : Union[str, Any] = gym.make(env_name) a__ : int = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) a__ : Tuple = env.reset() a__ : int = 0 a__ : List[Any] = 0 a__ : Optional[int] = 10_00 a__ : Optional[int] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a__ : Any = pipeline(obs, planning_horizon=32) # execute action in environment a__ : Union[str, Any] = env.step(denorm_actions) a__ : str = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) a__ : Optional[int] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
702
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
0
a__ : List[str] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = set() # keep track of all the paths to be checked lowercase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__ = queue.pop(0 ) # get the last node from the path lowercase__ = path[-1] if node not in explored: lowercase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__ = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def _lowerCAmelCase ( A__ , A__ , A__ ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__ = [start] lowercase__ = set(A__ ) # Keep tab on distances from `start` node. lowercase__ = {start: 0, target: -1} while queue: lowercase__ = queue.pop(0 ) if node == target: lowercase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) lowercase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
703
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
0
from typing import Any class UpperCAmelCase__: '''simple docstring''' def __init__( self : str , lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = data lowercase__ = None def __repr__( self : List[str]) -> str: """simple docstring""" return f'''Node({self.data})''' class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Optional[int]: """simple docstring""" lowercase__ = None def __iter__( self : List[Any]) -> Any: """simple docstring""" lowercase__ = self.head while node: yield node.data lowercase__ = node.next def __len__( self : str) -> int: """simple docstring""" return sum(1 for _ in self) def __repr__( self : List[str]) -> str: """simple docstring""" return "->".join([str(UpperCamelCase_) for item in self]) def __getitem__( self : Union[str, Any] , lowerCAmelCase : int) -> Any: """simple docstring""" if not 0 <= index < len(self): raise ValueError('list index out of range.') for i, node in enumerate(self): if i == index: return node return None def __setitem__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any) -> None: """simple docstring""" if not 0 <= index < len(self): raise ValueError('list index out of range.') lowercase__ = self.head for _ in range(UpperCamelCase_): lowercase__ = current.next lowercase__ = data def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any) -> None: """simple docstring""" self.insert_nth(len(self) , UpperCamelCase_) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Any) -> None: """simple docstring""" self.insert_nth(0 , UpperCamelCase_) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any) -> None: """simple docstring""" if not 0 <= index <= len(self): raise IndexError('list index out of range') lowercase__ = Node(UpperCamelCase_) if self.head is None: lowercase__ = new_node elif index == 0: lowercase__ = self.head # link new_node to head lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node def UpperCAmelCase ( self : Optional[int]) -> None: # print every node data """simple docstring""" print(self) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return self.delete_nth(0) def UpperCAmelCase ( self : Union[str, Any]) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self) - 1) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int = 0) -> Any: """simple docstring""" if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('List index out of range.') lowercase__ = self.head # default first node if index == 0: lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next return delete_node.data def UpperCAmelCase ( self : Tuple) -> bool: """simple docstring""" return self.head is None def UpperCAmelCase ( self : Optional[int]) -> None: """simple docstring""" lowercase__ = None lowercase__ = self.head while current: # Store the current node's next node. lowercase__ = current.next # Make the current node's next point backwards lowercase__ = prev # Make the previous node be the current node lowercase__ = current # Make the current node the next node (to progress iteration) lowercase__ = next_node # Return prev in order to put the head at the end lowercase__ = prev def _lowerCAmelCase ( ): lowercase__ = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowercase__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _lowerCAmelCase ( ): lowercase__ = [ -9, 100, Node(77_345_112 ), 'dlrow olleH', 7, 5_555, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowercase__ = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowercase__ = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowercase__ = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowercase__ = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _lowerCAmelCase ( ): from doctest import testmod testmod() lowercase__ = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) lowercase__ = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(F'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
704
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : List[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ["CLIPFeatureExtractor"] a__ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Any) -> Dict: """simple docstring""" lowercase__ = XLMRobertaModel.from_pretrained('xlm-roberta-base') lowercase__ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]]) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 7_68)) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(UpperCAmelCase_)['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3)) @slow def UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" lowercase__ = XLMRobertaModel.from_pretrained('xlm-roberta-large') lowercase__ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]]) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 10_24)) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(UpperCAmelCase_)['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3))
706
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
0
a__ : Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _lowerCAmelCase ( A__ ): lowercase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a__ : list[bool | None] = [None] * 10_00_00_00 a__ : Optional[Any] = True a__ : List[Any] = False def _lowerCAmelCase ( A__ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ = chain(next_number(A__ ) ) lowercase__ = number_chain while number < 10_000_000: lowercase__ = number_chain number *= 10 return number_chain def _lowerCAmelCase ( A__ = 10_000_000 ): for i in range(1 , A__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(A__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int]=13 , lowerCAmelCase : str=32 , lowerCAmelCase : Any=2 , lowerCAmelCase : Dict=3 , lowerCAmelCase : str=16 , lowerCAmelCase : Union[str, Any]=[1, 2, 1] , lowerCAmelCase : List[str]=[2, 2, 4] , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Tuple=2.0 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Dict=False , lowerCAmelCase : Tuple=True , lowerCAmelCase : str=0.02 , lowerCAmelCase : List[str]=1E-5 , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=10 , lowerCAmelCase : Dict=8 , lowerCAmelCase : str=["stage1", "stage2", "stage3"] , lowerCAmelCase : List[str]=[1, 2, 3] , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase ( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = MaskFormerSwinModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = MaskFormerSwinBackbone(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [16, 32, 64]) # verify ValueError with self.parent.assertRaises(lowerCAmelCase): lowercase__ = ['''stem'''] lowercase__ = MaskFormerSwinBackbone(config=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__( __A , __A , unittest.TestCase ): '''simple docstring''' A : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) A : Any = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} A : Any = False A : Dict = False A : Optional[int] = False A : Dict = False A : List[Any] = False def UpperCAmelCase ( self : Any) -> str: """simple docstring""" lowercase__ = MaskFormerSwinModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' )) def UpperCAmelCase ( self : Any) -> str: """simple docstring""" pass def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" return def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase) @unittest.skip('Swin does not use inputs_embeds') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking') def UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" pass def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear)) def UpperCAmelCase ( self : Any) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) lowercase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions') def UpperCAmelCase ( self : str) -> Any: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone') def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Dict) -> Any: """simple docstring""" lowercase__ = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase) # Swin has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width)) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints') def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase : List[str]): lowercase__ = 0 return t def check_equivalence(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]={}): with torch.no_grad(): lowercase__ = model(**lowerCAmelCase , return_dict=lowerCAmelCase , **lowerCAmelCase) lowercase__ = model(**lowerCAmelCase , return_dict=lowerCAmelCase , **lowerCAmelCase).to_tuple() def recursive_check(lowerCAmelCase : int , lowerCAmelCase : Tuple): if isinstance(lowerCAmelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase , lowerCAmelCase): recursive_check(lowerCAmelCase , lowerCAmelCase) elif isinstance(lowerCAmelCase , lowerCAmelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(lowerCAmelCase , lowerCAmelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase) , set_nan_tensor_to_zero(lowerCAmelCase) , atol=1E-5) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:''' f''' {torch.isnan(lowerCAmelCase).any()} and `inf`: {torch.isinf(lowerCAmelCase)}. Dict has''' f''' `nan`: {torch.isnan(lowerCAmelCase).any()} and `inf`: {torch.isinf(lowerCAmelCase)}.''' ) , ) recursive_check(lowerCAmelCase , lowerCAmelCase) for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {'output_hidden_states': True}) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) lowercase__ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {'output_hidden_states': True}) @require_torch class UpperCAmelCase__( unittest.TestCase , __A ): '''simple docstring''' A : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () A : int = MaskFormerSwinConfig def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" lowercase__ = MaskFormerSwinModelTester(self) def UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: lowercase__ = backbone_class(lowerCAmelCase) backbone.to(lowerCAmelCase) backbone.eval() lowercase__ = backbone(**lowerCAmelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True lowercase__ = backbone(**lowerCAmelCase , output_hidden_states=lowerCAmelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: lowercase__ = backbone(**lowerCAmelCase , output_attentions=lowerCAmelCase) self.assertIsNotNone(outputs.attentions)
708
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : List[Any] = XLNetTokenizer A : int = XLNetTokenizerFast A : List[Any] = True A : Any = True def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = '<s>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<unk>') self.assertEqual(vocab_keys[1] , '<s>') self.assertEqual(vocab_keys[-1] , '<eod>') self.assertEqual(len(_lowerCAmelCase) , 10_06) def UpperCAmelCase ( self : Any) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00) def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" lowercase__ = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(_lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [2_85, 46, 10, 1_70, 3_82]) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4]) lowercase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" lowercase__ = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['▁he', 'll', 'o']) def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = XLNetTokenizer.from_pretrained('xlnet-base-cased') lowercase__ = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase) lowercase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase) lowercase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) lowercase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = {'input_ids': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
709
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Dict = (PNDMScheduler,) A : List[Any] = (("num_inference_steps", 50),) def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" lowercase__ = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase_) return config def UpperCAmelCase ( self : int , lowerCAmelCase : str=0 , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs) lowercase__ = kwargs.pop('num_inference_steps' , UpperCamelCase_) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**UpperCamelCase_) lowercase__ = scheduler_class(**UpperCamelCase_) scheduler.set_timesteps(UpperCamelCase_) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_) lowercase__ = scheduler_class.from_pretrained(UpperCamelCase_) new_scheduler.set_timesteps(UpperCamelCase_) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample lowercase__ = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample lowercase__ = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[Any]=0 , **lowerCAmelCase : Dict) -> str: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs) lowercase__ = kwargs.pop('num_inference_steps' , UpperCamelCase_) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_) scheduler.set_timesteps(UpperCamelCase_) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_) lowercase__ = scheduler_class.from_pretrained(UpperCamelCase_) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample lowercase__ = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample lowercase__ = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**UpperCamelCase_) lowercase__ = scheduler_class(**UpperCamelCase_) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_) for i, t in enumerate(scheduler.prk_timesteps): lowercase__ = model(UpperCamelCase_ , UpperCamelCase_) lowercase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_).prev_sample for i, t in enumerate(scheduler.plms_timesteps): lowercase__ = model(UpperCamelCase_ , UpperCamelCase_) lowercase__ = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_).prev_sample return sample def UpperCAmelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs) lowercase__ = kwargs.pop('num_inference_steps' , UpperCamelCase_) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , 'set_timesteps'): scheduler.set_timesteps(UpperCamelCase_) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , 'set_timesteps'): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_).prev_sample lowercase__ = scheduler.step_prk(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) lowercase__ = scheduler.step_plms(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_).prev_sample lowercase__ = scheduler.step_plms(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_) def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**UpperCamelCase_) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02]): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_) def UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_) def UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase_) def UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=UpperCamelCase_) def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = 27 for scheduler_class in self.scheduler_classes: lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_) scheduler.set_timesteps(UpperCamelCase_) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): lowercase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_).prev_sample def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" with self.assertRaises(UpperCamelCase_): lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(UpperCamelCase_)) lowercase__ = torch.mean(torch.abs(UpperCamelCase_)) assert abs(result_sum.item() - 1_98.13_18) < 1E-2 assert abs(result_mean.item() - 0.25_80) < 1E-3 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(UpperCamelCase_)) lowercase__ = torch.mean(torch.abs(UpperCamelCase_)) assert abs(result_sum.item() - 67.39_86) < 1E-2 assert abs(result_mean.item() - 0.08_78) < 1E-3 def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01) lowercase__ = torch.sum(torch.abs(UpperCamelCase_)) lowercase__ = torch.mean(torch.abs(UpperCamelCase_)) assert abs(result_sum.item() - 2_30.03_99) < 1E-2 assert abs(result_mean.item() - 0.29_95) < 1E-3 def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01) lowercase__ = torch.sum(torch.abs(UpperCamelCase_)) lowercase__ = torch.mean(torch.abs(UpperCamelCase_)) assert abs(result_sum.item() - 1_86.94_82) < 1E-2 assert abs(result_mean.item() - 0.24_34) < 1E-3
710
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = 42 A : Optional[int] = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
711
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
0