code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
import os
def _lowerCAmelCase ( ):
with open(os.path.dirname(A__ ) + '/p022_names.txt' ) as file:
lowercase__ = str(file.readlines()[0] )
lowercase__ = names.replace('"' , '' ).split(',' )
names.sort()
lowercase__ = 0
lowercase__ = 0
for i, name in enumerate(A__ ):
for letter in name:
name_score += ord(A__ ) - 64
total_score += (i + 1) * name_score
lowercase__ = 0
return total_score
if __name__ == "__main__":
print(solution())
| 702
|
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = load_tool('text-classification')
self.tool.setup()
lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
| 642
| 0
|
from __future__ import annotations
a__ : Tuple = [True] * 1_00_00_01
a__ : Tuple = 2
while i * i <= 1_00_00_00:
if seive[i]:
for j in range(i * i, 1_00_00_01, i):
a__ : Optional[int] = False
i += 1
def _lowerCAmelCase ( A__ ):
return seive[n]
def _lowerCAmelCase ( A__ ):
return any(digit in '02468' for digit in str(A__ ) )
def _lowerCAmelCase ( A__ = 1_000_000 ):
lowercase__ = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(A__ ) and not contains_an_even_digit(A__ ):
lowercase__ = str(A__ )
lowercase__ = [int(str_num[j:] + str_num[:j] ) for j in range(len(A__ ) )]
if all(is_prime(A__ ) for i in list_nums ):
result.append(A__ )
return result
def _lowerCAmelCase ( ):
return len(find_circular_primes() )
if __name__ == "__main__":
print(F'''{len(find_circular_primes()) = }''')
| 703
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = None
A : Optional[int] = None
@property
def UpperCAmelCase ( self : str) -> Union[str, Any]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(lowerCAmelCase , 'feature_size'))
self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate'))
self.assertTrue(hasattr(lowerCAmelCase , 'padding_value'))
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name])))
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_torch
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = self.feat_extract_tester.seq_length_diff
lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff
lowercase__ = self.feat_extract_tester.min_seq_length
lowercase__ = self.feat_extract_tester.batch_size
lowercase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest')
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1]))
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
lowercase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
self.assertTrue(len(input_a[0]) == pad_min_length)
self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff)
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0])))
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a))
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size)
# Check padding value is correct
lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff))
< 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1E-3)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
# truncate to smallest
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]))
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to smallest with np
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(input_a.shape[1] == len(speech_inputs[0]))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to middle
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1]))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1]))
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = 12
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , )
lowercase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowercase__ = len(speech_inputs[0])
if expected_length % pad_to_multiple_of != 0:
lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0]) == expected_length)
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2)
@require_tf
def UpperCAmelCase ( self : str) -> str:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2)
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = min(lowerCAmelCase)
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(
list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length])
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
| 642
| 0
|
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {"vocab_file": "vocab.txt"}
a__ : int = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a__ : Dict = {
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' ) as f:
lowercase__ = f.read().splitlines()
return [l.strip() for l in lines]
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = load_vocab_file(lowerCAmelCase)
lowercase__ = dict(enumerate(self.all_tokens))
lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)}
lowercase__ = unk_token
lowercase__ = cls_token
lowercase__ = pad_token
lowercase__ = mask_token
lowercase__ = eos_token
lowercase__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
return text.split()
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]:
"""simple docstring"""
return len(self._id_to_token)
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens)}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.cls_token_id]
lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!')
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.')
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase) + [1]
return mask
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt')
with open(lowerCAmelCase , 'w') as f:
f.write('\n'.join(self.all_tokens))
return (vocab_file,)
@property
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int:
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
| 704
|
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowerCAmelCase ( A__ ):
lowercase__ = prime_factors(A__ )
if is_square_free(A__ ):
return -1 if len(A__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
import math
def _lowerCAmelCase ( A__ ):
return math.sqrt(A__ ) * math.sqrt(A__ ) == num
def _lowerCAmelCase ( A__ ):
lowercase__ = 0
lowercase__ = n
while left <= right:
lowercase__ = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
lowercase__ = mid - 1
else:
lowercase__ = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ : List[str] = logging.get_logger(__name__)
a__ : List[Any] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
A : List[str] = "focalnet"
def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = use_conv_embed
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = focal_levels
lowercase__ = focal_windows
lowercase__ = hidden_act
lowercase__ = mlp_ratio
lowercase__ = hidden_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = use_layerscale
lowercase__ = layerscale_value
lowercase__ = use_post_layernorm
lowercase__ = use_post_layernorm_in_modulation
lowercase__ = normalize_modulator
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = encoder_stride
lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)]
lowercase__, lowercase__ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
"configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
"LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
"LiltForQuestionAnswering",
"LiltForSequenceClassification",
"LiltForTokenClassification",
"LiltModel",
"LiltPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 706
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Dict = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
a__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
a__ : Any = {"facebook/blenderbot_small-90M": 5_12}
def _lowerCAmelCase ( A__ ):
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(A__ )
return pairs
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase)
with open(lowerCAmelCase , encoding='utf-8') as vocab_handle:
lowercase__ = json.load(lowerCAmelCase)
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase , encoding='utf-8') as merges_handle:
lowercase__ = merges_handle.read().split('\n')[1:-1]
lowercase__ = [tuple(merge.split()) for merge in merges]
lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase))))
lowercase__ = {}
@property
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return len(self.encoder)
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase)
lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase)
lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase)
if "\n" in token:
lowercase__ = token.replace('\n' , ' __newln__')
lowercase__ = token.split(' ')
lowercase__ = []
for token in tokens:
if not len(lowerCAmelCase):
continue
lowercase__ = token.lower()
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>'])
lowercase__ = get_pairs(lowerCAmelCase)
if not pairs:
words.append(lowerCAmelCase)
continue
while True:
lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf')))
if bigram not in self.bpe_ranks:
break
lowercase__, lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(lowerCAmelCase):
try:
lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase)
new_word.extend(word[i:j])
lowercase__ = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = new_word
if len(lowerCAmelCase) == 1:
break
else:
lowercase__ = get_pairs(lowerCAmelCase)
lowercase__ = '@@ '.join(lowerCAmelCase)
lowercase__ = word[:-4]
lowercase__ = word
words.append(lowerCAmelCase)
return " ".join(lowerCAmelCase)
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase)
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' ')))
return split_tokens
def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int:
"""simple docstring"""
lowercase__ = token.lower()
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str:
"""simple docstring"""
lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip()
return out_string
def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(lowerCAmelCase , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n')
lowercase__ = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!')
lowercase__ = token_index
writer.write(' '.join(lowerCAmelCase) + '\n')
index += 1
return vocab_file, merge_file
| 642
| 0
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _lowerCAmelCase ( A__ ):
lowercase__ = 384
lowercase__ = 7
if "tiny" in model_name:
lowercase__ = 96
lowercase__ = (2, 2, 6, 2)
lowercase__ = (3, 6, 12, 24)
elif "small" in model_name:
lowercase__ = 96
lowercase__ = (2, 2, 18, 2)
lowercase__ = (3, 6, 12, 24)
elif "base" in model_name:
lowercase__ = 128
lowercase__ = (2, 2, 18, 2)
lowercase__ = (4, 8, 16, 32)
lowercase__ = 12
lowercase__ = 512
elif "large" in model_name:
lowercase__ = 192
lowercase__ = (2, 2, 18, 2)
lowercase__ = (6, 12, 24, 48)
lowercase__ = 12
lowercase__ = 768
# set label information
lowercase__ = 150
lowercase__ = 'huggingface/label-files'
lowercase__ = 'ade20k-id2label.json'
lowercase__ = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) )
lowercase__ = {int(A__ ): v for k, v in idalabel.items()}
lowercase__ = {v: k for k, v in idalabel.items()}
lowercase__ = SwinConfig(
embed_dim=A__ , depths=A__ , num_heads=A__ , window_size=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
lowercase__ = UperNetConfig(
backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , )
return config
def _lowerCAmelCase ( A__ ):
lowercase__ = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = dct.pop(A__ )
lowercase__ = val
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowercase__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowercase__ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
lowercase__ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase__ = in_proj_weight[:dim, :]
lowercase__ = in_proj_bias[: dim]
lowercase__ = in_proj_weight[
dim : dim * 2, :
]
lowercase__ = in_proj_bias[
dim : dim * 2
]
lowercase__ = in_proj_weight[
-dim :, :
]
lowercase__ = in_proj_bias[-dim :]
# fmt: on
def _lowerCAmelCase ( A__ ):
lowercase__, lowercase__ = x.shape
lowercase__ = x.reshape(A__ , 4 , in_channel // 4 )
lowercase__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A__ , A__ )
return x
def _lowerCAmelCase ( A__ ):
lowercase__, lowercase__ = x.shape
lowercase__ = x.reshape(A__ , in_channel // 4 , 4 )
lowercase__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A__ , A__ )
return x
def _lowerCAmelCase ( A__ ):
lowercase__ = x.shape[0]
lowercase__ = x.reshape(4 , in_channel // 4 )
lowercase__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A__ )
return x
def _lowerCAmelCase ( A__ ):
lowercase__ = x.shape[0]
lowercase__ = x.reshape(in_channel // 4 , 4 )
lowercase__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A__ )
return x
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
lowercase__ = model_name_to_url[model_name]
lowercase__ = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' , file_name=A__ )[
'state_dict'
]
for name, param in state_dict.items():
print(A__ , param.shape )
lowercase__ = get_upernet_config(A__ )
lowercase__ = UperNetForSemanticSegmentation(A__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowercase__ = state_dict.pop(A__ )
if "bn" in key:
lowercase__ = key.replace('bn' , 'batch_norm' )
lowercase__ = val
# rename keys
lowercase__ = create_rename_keys(A__ )
for src, dest in rename_keys:
rename_key(A__ , A__ , A__ )
read_in_q_k_v(A__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
lowercase__ = reverse_correct_unfold_reduction_order(A__ )
if "norm" in key:
lowercase__ = reverse_correct_unfold_norm_order(A__ )
model.load_state_dict(A__ )
# verify on image
lowercase__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' )
lowercase__ = SegformerImageProcessor()
lowercase__ = processor(A__ , return_tensors='pt' ).pixel_values
with torch.no_grad():
lowercase__ = model(A__ )
lowercase__ = outputs.logits
print(logits.shape )
print('First values of logits:' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
lowercase__ = torch.tensor(
[[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] )
elif model_name == "upernet-swin-small":
lowercase__ = torch.tensor(
[[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] )
elif model_name == "upernet-swin-base":
lowercase__ = torch.tensor(
[[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] )
elif model_name == "upernet-swin-large":
lowercase__ = torch.tensor(
[[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A__ )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(A__ )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
a__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[F'''upernet-swin-{size}''' for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a__ : Any = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 707
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = F'''{sampling_rate}'''
lowercase__ = '1'
lowercase__ = 'f32le'
lowercase__ = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
lowercase__ = ffmpeg_process.communicate(A__ )
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error
lowercase__ = output_stream[0]
lowercase__ = np.frombuffer(A__ , np.floataa )
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile' )
return audio
def _lowerCAmelCase ( A__ , A__ , A__ = "f32le" , ):
lowercase__ = F'''{sampling_rate}'''
lowercase__ = '1'
if format_for_conversion == "s16le":
lowercase__ = 2
elif format_for_conversion == "f32le":
lowercase__ = 4
else:
raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
lowercase__ = platform.system()
if system == "Linux":
lowercase__ = 'alsa'
lowercase__ = 'default'
elif system == "Darwin":
lowercase__ = 'avfoundation'
lowercase__ = ':0'
elif system == "Windows":
lowercase__ = 'dshow'
lowercase__ = 'default'
lowercase__ = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
lowercase__ = _ffmpeg_stream(A__ , A__ )
for item in iterator:
yield item
def _lowerCAmelCase ( A__ , A__ , A__ = None , A__ = None , A__ = "f32le" , ):
if stream_chunk_s is not None:
lowercase__ = stream_chunk_s
else:
lowercase__ = chunk_length_s
lowercase__ = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ )
if format_for_conversion == "s16le":
lowercase__ = np.intaa
lowercase__ = 2
elif format_for_conversion == "f32le":
lowercase__ = np.floataa
lowercase__ = 4
else:
raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
if stride_length_s is None:
lowercase__ = chunk_length_s / 6
lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(A__ , (int, float) ):
lowercase__ = [stride_length_s, stride_length_s]
lowercase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
lowercase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
lowercase__ = datetime.datetime.now()
lowercase__ = datetime.timedelta(seconds=A__ )
for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ):
# Put everything back in numpy scale
lowercase__ = np.frombuffer(item['raw'] , dtype=A__ )
lowercase__ = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
lowercase__ = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def _lowerCAmelCase ( A__ , A__ , A__ , A__ = False ):
lowercase__ = B''
lowercase__, lowercase__ = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' )
lowercase__ = 0
for raw in iterator:
acc += raw
if stream and len(A__ ) < chunk_len:
lowercase__ = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(A__ ) >= chunk_len:
# We are flushing the accumulator
lowercase__ = (_stride_left, stride_right)
lowercase__ = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
lowercase__ = False
yield item
lowercase__ = stride_left
lowercase__ = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(A__ ) > stride_left:
lowercase__ = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
lowercase__ = False
yield item
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = 2**24 # 16Mo
try:
with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process:
while True:
lowercase__ = ffmpeg_process.stdout.read(A__ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
| 708
|
import heapq
import sys
import numpy as np
a__ : Dict = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = []
lowercase__ = set()
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return len(self.elements) == 0
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(lowerCAmelCase)
else:
# update
# print("update", item)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
if item in self.set:
self.set.remove(lowerCAmelCase)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
return self.elements[0][1]
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
self.set.remove(lowerCAmelCase)
return (priority, item)
def _lowerCAmelCase ( A__ , A__ ):
# euclidean distance
lowercase__ = np.array(A__ )
lowercase__ = np.array(A__ )
return np.linalg.norm(a - b )
def _lowerCAmelCase ( A__ , A__ ):
# integer division by time variable
return consistent_heuristic(A__ , A__ ) // t
def _lowerCAmelCase ( A__ , A__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ )
return ans
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = np.chararray((n, n) )
for i in range(A__ ):
for j in range(A__ ):
lowercase__ = '*'
for i in range(A__ ):
for j in range(A__ ):
if (j, (n - 1) - i) in blocks:
lowercase__ = '#'
lowercase__ = '-'
lowercase__ = back_pointer[goal]
while x != start:
((lowercase__), (lowercase__)) = x
# print(x)
lowercase__ = '-'
lowercase__ = back_pointer[x]
lowercase__ = '-'
for i in range(A__ ):
for j in range(A__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowercase__ = back_pointer[goal]
while x != start:
print(A__ , end=' ' )
lowercase__ = back_pointer[x]
print(A__ )
sys.exit()
def _lowerCAmelCase ( A__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
for itera in range(A__ ):
open_list[itera].remove_element(A__ )
# print("s", s)
# print("j", j)
((lowercase__), (lowercase__)) = s
lowercase__ = (x - 1, y)
lowercase__ = (x + 1, y)
lowercase__ = (x, y + 1)
lowercase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A__ )
lowercase__ = -1
lowercase__ = float('inf' )
if valid(A__ ) and g_function[neighbours] > g_function[s] + 1:
lowercase__ = g_function[s] + 1
lowercase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) )
if neighbours not in close_list_inad:
for var in range(1 , A__ ):
if key(A__ , A__ , A__ , A__ ) <= Wa * key(
A__ , 0 , A__ , A__ ):
open_list[j].put(
A__ , key(A__ , A__ , A__ , A__ ) )
def _lowerCAmelCase ( ):
lowercase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a__ : Any = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a__ : Any = make_common_ground()
a__ : Union[str, Any] = blocks_blk
# hyper parameters
a__ : List[Any] = 1
a__ : List[str] = 1
a__ : Optional[int] = 20
a__ : Optional[Any] = 3 # one consistent and two other inconsistent
# start and end destination
a__ : Tuple = (0, 0)
a__ : str = (n - 1, n - 1)
a__ : Optional[Any] = 1
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {start: 0, goal: float('inf' )}
lowercase__ = {start: -1, goal: -1}
lowercase__ = []
lowercase__ = set()
for i in range(A__ ):
open_list.append(PriorityQueue() )
open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) )
lowercase__ = []
lowercase__ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__, lowercase__ = open_list[i].top_show()
visited.add(A__ )
expand_state(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_inad.append(A__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__ = open_list[0].top_show()
visited.add(A__ )
expand_state(
A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_anchor.append(A__ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A__ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 642
| 0
|
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'kwargs, expected' , [
({'num_shards': 0, 'max_num_jobs': 1}, []),
({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]),
({'num_shards': 10, 'max_num_jobs': 10}, [range(A__ , i + 1 ) for i in range(10 )]),
({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]),
({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = _distribute_shards(**A__ )
assert out == expected
@pytest.mark.parametrize(
'gen_kwargs, max_num_jobs, expected' , [
({'foo': 0}, 10, [{'foo': 0}]),
({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]),
({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]),
({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]),
({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]),
] , )
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = _split_gen_kwargs(A__ , A__ )
assert out == expected
@pytest.mark.parametrize(
'gen_kwargs, expected' , [
({'foo': 0}, 1),
({'shards': [0]}, 1),
({'shards': [0, 1, 2, 3]}, 4),
({'shards': [0, 1, 2, 3], 'foo': 0}, 4),
({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4),
({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError),
] , )
def _lowerCAmelCase ( A__ , A__ ):
if expected is RuntimeError:
with pytest.raises(A__ ):
_number_of_shards_in_gen_kwargs(A__ )
else:
lowercase__ = _number_of_shards_in_gen_kwargs(A__ )
assert out == expected
| 709
|
import math
import sys
def _lowerCAmelCase ( A__ ):
lowercase__ = ''
try:
with open(A__ , 'rb' ) as binary_file:
lowercase__ = binary_file.read()
for dat in data:
lowercase__ = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = {'0': '0', '1': '1'}
lowercase__, lowercase__ = '', ''
lowercase__ = len(A__ )
for i in range(len(A__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase__ = lexicon[curr_string]
result += last_match_id
lowercase__ = last_match_id + '0'
if math.loga(A__ ).is_integer():
lowercase__ = {}
for curr_key in list(A__ ):
lowercase__ = lexicon.pop(A__ )
lowercase__ = new_lex
lowercase__ = last_match_id + '1'
index += 1
lowercase__ = ''
return result
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = 8
try:
with open(A__ , 'wb' ) as opened_file:
lowercase__ = [
to_write[i : i + byte_length]
for i in range(0 , len(A__ ) , A__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowercase__ = data_bits[counter:]
lowercase__ = data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = read_file_binary(A__ )
lowercase__ = remove_prefix(A__ )
lowercase__ = decompress_data(A__ )
write_file_binary(A__ , A__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 642
| 0
|
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json"
),
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[int] = "xlm-prophetnet"
A : Tuple = ["past_key_values"]
A : List[str] = {
"num_attention_heads": "num_encoder_attention_heads",
}
def __init__( self : List[Any] , lowerCAmelCase : Optional[float] = 0.1 , lowerCAmelCase : Optional[Union[str, Callable]] = "gelu" , lowerCAmelCase : Optional[int] = 3_05_22 , lowerCAmelCase : Optional[int] = 10_24 , lowerCAmelCase : Optional[int] = 40_96 , lowerCAmelCase : Optional[int] = 12 , lowerCAmelCase : Optional[int] = 16 , lowerCAmelCase : Optional[int] = 40_96 , lowerCAmelCase : Optional[int] = 12 , lowerCAmelCase : Optional[int] = 16 , lowerCAmelCase : Optional[float] = 0.1 , lowerCAmelCase : Optional[float] = 0.1 , lowerCAmelCase : Optional[int] = 5_12 , lowerCAmelCase : Optional[float] = 0.02 , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = 0 , lowerCAmelCase : Optional[int] = 2 , lowerCAmelCase : Optional[int] = 32 , lowerCAmelCase : Optional[int] = 1_28 , lowerCAmelCase : Optional[bool] = False , lowerCAmelCase : Optional[float] = 0.0 , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = 0 , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : Optional[int] = 2 , **lowerCAmelCase : str , ) -> List[Any]:
"""simple docstring"""
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = encoder_ffn_dim
lowercase__ = num_encoder_layers
lowercase__ = num_encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = num_decoder_layers
lowercase__ = num_decoder_attention_heads
lowercase__ = max_position_embeddings
lowercase__ = init_std # Normal(0, this parameter)
lowercase__ = activation_function
# parameters for xlmprophetnet
lowercase__ = ngram
lowercase__ = num_buckets
lowercase__ = relative_max_distance
lowercase__ = disable_ngram_loss
lowercase__ = eps
# 3 Types of Dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = dropout
lowercase__ = use_cache
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , add_cross_attention=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
@property
def UpperCAmelCase ( self : List[str]) -> int:
"""simple docstring"""
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and'
' `num_decoder_layers`.')
| 710
|
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {"vocab_file": "vocab.txt"}
a__ : int = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a__ : Dict = {
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' ) as f:
lowercase__ = f.read().splitlines()
return [l.strip() for l in lines]
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = load_vocab_file(lowerCAmelCase)
lowercase__ = dict(enumerate(self.all_tokens))
lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)}
lowercase__ = unk_token
lowercase__ = cls_token
lowercase__ = pad_token
lowercase__ = mask_token
lowercase__ = eos_token
lowercase__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
return text.split()
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]:
"""simple docstring"""
return len(self._id_to_token)
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens)}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.cls_token_id]
lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!')
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.')
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase) + [1]
return mask
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt')
with open(lowerCAmelCase , 'w') as f:
f.write('\n'.join(self.all_tokens))
return (vocab_file,)
@property
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int:
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
| 642
| 0
|
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a__ : Optional[Any] = 16
a__ : Optional[int] = 32
def _lowerCAmelCase ( A__ , A__ = 16 ):
lowercase__ = AutoTokenizer.from_pretrained('bert-base-cased' )
lowercase__ = load_dataset('glue' , 'mrpc' )
def tokenize_function(A__ ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(A__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
lowercase__ = DataLoader(
tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a__ : Any = mocked_dataloaders # noqa: F811
def _lowerCAmelCase ( A__ , A__ ):
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , A__ ) == "1":
lowercase__ = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir )
else:
lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config['lr']
lowercase__ = int(config['num_epochs'] )
lowercase__ = int(config['seed'] )
lowercase__ = int(config['batch_size'] )
set_seed(A__ )
lowercase__, lowercase__ = get_dataloaders(A__ , A__ )
lowercase__ = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
lowercase__ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowercase__ = batch_size // MAX_GPU_BATCH_SIZE
lowercase__ = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=A__ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
lowercase__ = os.path.split(A__ )[-1].split('.' )[0]
accelerator.init_trackers(A__ , A__ )
# Now we train the model
for epoch in range(A__ ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
lowercase__ = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ = model(**A__ )
lowercase__ = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
lowercase__ = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**A__ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=A__ , references=A__ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , A__ )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'accuracy': eval_metric['accuracy'],
'f1': eval_metric['f1'],
'train_loss': total_loss.item() / len(A__ ),
'epoch': epoch,
} , step=A__ , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
parser.add_argument(
'--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , )
parser.add_argument(
'--project_dir' , type=A__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , )
lowercase__ = parser.parse_args()
lowercase__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 711
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> MetricInfo:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'),
}) , )
def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]:
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase)
}
| 642
| 0
|
# Imports
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int:
"""simple docstring"""
if red is not None:
lowercase__ = red
if green is not None:
lowercase__ = green
if blue is not None:
lowercase__ = blue
if red_edge is not None:
lowercase__ = red_edge
if nir is not None:
lowercase__ = nir
return True
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
lowercase__ = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!')
return False
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return (self.nir / self.green) - 1
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
return (self.red - self.blue) / self.red
def UpperCAmelCase ( self : Any) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2))
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
return self.nir - self.green
def UpperCAmelCase ( self : Tuple) -> List[Any]:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
return (max_value - min_value) / max_value
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 712
|
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = block_sizes
lowercase__ = num_decoder_layers
lowercase__ = d_model
lowercase__ = n_head
lowercase__ = d_head
lowercase__ = d_inner
lowercase__ = hidden_act
lowercase__ = hidden_dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = 2
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
lowercase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowercase__ = n_head
# Used in the tests to check the size of the first hidden state
lowercase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowercase__ = self.num_hidden_layers + 2
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str:
"""simple docstring"""
lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase)
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
A : Dict = (
{
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
"fill-mask": TFFunnelForMaskedLM,
"question-answering": TFFunnelForQuestionAnswering,
"text-classification": TFFunnelForSequenceClassification,
"token-classification": TFFunnelForTokenClassification,
"zero-shot": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Optional[int] = False
A : Optional[int] = False
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase)
@require_tf
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
A : List[str] = False
A : int = False
def UpperCAmelCase ( self : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
| 642
| 0
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : str = (DDIMParallelScheduler,)
A : Any = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = {
'num_train_timesteps': 10_00,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**lowerCAmelCase)
return config
def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCAmelCase)
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase)
for t in scheduler.timesteps:
lowercase__ = model(lowerCAmelCase , lowerCAmelCase)
lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample
return sample
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase)
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1)
lowercase__ = scheduler_class(**lowerCAmelCase)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1]))
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , )
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]):
self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase)
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = self.dummy_sample_deter + 0.1
lowercase__ = self.dummy_sample_deter - 0.1
lowercase__ = samplea.shape[0]
lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0)
lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase)
lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 11_47.79_04) < 1E-2
assert abs(result_mean.item() - 0.49_82) < 1E-3
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_72.00_67) < 1E-2
assert abs(result_mean.item() - 0.22_39_67) < 1E-3
def UpperCAmelCase ( self : int) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(prediction_type='v_prediction')
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 52.53_02) < 1E-2
assert abs(result_mean.item() - 0.06_84) < 1E-3
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.82_95) < 1E-2
assert abs(result_mean.item() - 0.19_51) < 1E-3
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.07_84) < 1E-2
assert abs(result_mean.item() - 0.19_41) < 1E-3
| 713
|
def _lowerCAmelCase ( A__ , A__ , A__ ):
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A__ , A__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
lowercase__ = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowercase__ = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
lowercase__ = TFCamembertModel.from_pretrained('jplu/tf-camembert-base')
lowercase__ = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowercase__ = model(lowerCAmelCase)['last_hidden_state']
lowercase__ = tf.TensorShape((1, 10, 7_68))
self.assertEqual(output.shape , lowerCAmelCase)
# compare the actual values for a slice.
lowercase__ = tf.convert_to_tensor(
[[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 714
|
from __future__ import annotations
def _lowerCAmelCase ( A__ , A__ ):
if b == 0:
return (1, 0)
((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b )
lowercase__ = a // b
return (y, x - k * y)
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
def _lowerCAmelCase ( A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
if b < 0:
lowercase__ = (b % n + n) % n
return b
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 642
| 0
|
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def _lowerCAmelCase ( A__ ):
lowercase__ = {}
lowercase__ = job['started_at']
lowercase__ = job['completed_at']
lowercase__ = date_parser.parse(A__ )
lowercase__ = date_parser.parse(A__ )
lowercase__ = round((end_datetime - start_datetime).total_seconds() / 60.0 )
lowercase__ = start
lowercase__ = end
lowercase__ = duration_in_min
return job_info
def _lowerCAmelCase ( A__ , A__=None ):
lowercase__ = None
if token is not None:
lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''}
lowercase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
lowercase__ = requests.get(A__ , headers=A__ ).json()
lowercase__ = {}
try:
job_time.update({job['name']: extract_time_from_single_job(A__ ) for job in result['jobs']} )
lowercase__ = math.ceil((result['total_count'] - 100) / 100 )
for i in range(A__ ):
lowercase__ = requests.get(url + F'''&page={i + 2}''' , headers=A__ ).json()
job_time.update({job['name']: extract_time_from_single_job(A__ ) for job in result['jobs']} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
a__ = parser.parse_args()
a__ = get_job_time(args.workflow_run_id)
a__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F'''{k}: {v["duration"]}''')
| 715
|
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[Any] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = "umt5"
A : List[str] = ["past_key_values"]
def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str:
"""simple docstring"""
super().__init__(
is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_kv
lowercase__ = d_ff
lowercase__ = num_layers
lowercase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase__ = num_heads
lowercase__ = relative_attention_num_buckets
lowercase__ = relative_attention_max_distance
lowercase__ = dropout_rate
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_factor
lowercase__ = feed_forward_proj
lowercase__ = use_cache
lowercase__ = self.feed_forward_proj.split('-')
lowercase__ = act_info[-1]
lowercase__ = act_info[0] == 'gated'
if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'')
if feed_forward_proj == "gated-gelu":
lowercase__ = 'gelu_new'
@property
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
return self.d_model
@property
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
return self.num_heads
@property
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return self.num_layers
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
lowercase__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
lowercase__ = 'past_encoder_sequence + sequence'
lowercase__ = {0: 'batch'}
lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs')
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return 13
@property
def UpperCAmelCase ( self : Optional[Any]) -> float:
"""simple docstring"""
return 5E-4
| 642
| 0
|
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = ["image_processor", "tokenizer"]
A : Optional[Any] = "Pix2StructImageProcessor"
A : Dict = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
lowercase__ = False
super().__init__(lowerCAmelCase , lowerCAmelCase)
def __call__( self : List[Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = 20_48 , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : Union[str, Any] , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('You have to specify either images or text.')
# Get only text
if images is None and not self.image_processor.is_vqa:
lowercase__ = self.tokenizer
lowercase__ = self.tokenizer(
text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
lowercase__ = self.image_processor(
lowerCAmelCase , return_tensors=lowerCAmelCase , max_patches=lowerCAmelCase , **lowerCAmelCase)
else:
# add pixel_values and bbox
lowercase__ = self.image_processor(
lowerCAmelCase , return_tensors=lowerCAmelCase , max_patches=lowerCAmelCase , header_text=lowerCAmelCase , **lowerCAmelCase)
if text is not None and not self.image_processor.is_vqa:
lowercase__ = self.tokenizer(
text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , )
if "attention_mask" in text_encoding:
lowercase__ = text_encoding.pop('attention_mask')
if "input_ids" in text_encoding:
lowercase__ = text_encoding.pop('input_ids')
else:
lowercase__ = None
if text_encoding is not None:
encoding_image_processor.update(lowerCAmelCase)
return encoding_image_processor
def UpperCAmelCase ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase)
@property
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
lowercase__ = self.tokenizer.model_input_names
lowercase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| 716
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : str = XGLMTokenizer
A : List[Any] = XGLMTokenizerFast
A : int = True
A : Optional[Any] = True
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = '<pad>'
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(len(lowerCAmelCase) , 10_08)
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08)
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return XGLMTokenizer.from_pretrained('facebook/xglm-564M')
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase , f.name)
lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase)
lowercase__ = pickle.dumps(lowerCAmelCase)
pickle.loads(lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = 'I was born in 92000, and this is falsé.'
lowercase__ = tokenizer.tokenize(lowerCAmelCase)
lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
lowercase__ = 'Hello World!'
lowercase__ = [2, 3_12_27, 44_47, 35]
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = {
'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
| 642
| 0
|
from __future__ import annotations
def _lowerCAmelCase ( A__ , A__ ):
if partitions <= 0:
raise ValueError('partitions must be a positive number!' )
if partitions > number_of_bytes:
raise ValueError('partitions can not > number_of_bytes!' )
lowercase__ = number_of_bytes // partitions
lowercase__ = []
for i in range(A__ ):
lowercase__ = i * bytes_per_partition + 1
lowercase__ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(F'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717
|
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
lowercase__ = data
lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0]
@staticmethod
def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64)
lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data))
return padded_data
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64)
]
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]:
"""simple docstring"""
lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64
for i in range(16 , 80):
lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1)
return w
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.padding()
lowercase__ = self.split_blocks()
for block in self.blocks:
lowercase__ = self.expand_block(lowerCAmelCase)
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h
for i in range(0 , 80):
if 0 <= i < 20:
lowercase__ = (b & c) | ((~b) & d)
lowercase__ = 0X5_A_8_2_7_9_9_9
elif 20 <= i < 40:
lowercase__ = b ^ c ^ d
lowercase__ = 0X6_E_D_9_E_B_A_1
elif 40 <= i < 60:
lowercase__ = (b & c) | (b & d) | (c & d)
lowercase__ = 0X8_F_1_B_B_C_D_C
elif 60 <= i < 80:
lowercase__ = b ^ c ^ d
lowercase__ = 0XC_A_6_2_C_1_D_6
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = (
self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F,
a,
self.rotate(lowerCAmelCase , 30),
c,
d,
)
lowercase__ = (
self.h[0] + a & 0XF_F_F_F_F_F_F_F,
self.h[1] + b & 0XF_F_F_F_F_F_F_F,
self.h[2] + c & 0XF_F_F_F_F_F_F_F,
self.h[3] + d & 0XF_F_F_F_F_F_F_F,
self.h[4] + e & 0XF_F_F_F_F_F_F_F,
)
return ("{:08x}" * 5).format(*self.h)
def _lowerCAmelCase ( ):
lowercase__ = B'Test String'
assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
lowercase__ = parser.parse_args()
lowercase__ = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase__ = f.read()
else:
lowercase__ = bytes(A__ , 'utf-8' )
print(SHAaHash(A__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 642
| 0
|
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
if height >= 1:
move_tower(height - 1 , A__ , A__ , A__ )
move_disk(A__ , A__ )
move_tower(height - 1 , A__ , A__ , A__ )
def _lowerCAmelCase ( A__ , A__ ):
print('moving disk from' , A__ , 'to' , A__ )
def _lowerCAmelCase ( ):
lowercase__ = int(input('Height of hanoi: ' ).strip() )
move_tower(A__ , 'A' , 'B' , 'C' )
if __name__ == "__main__":
main()
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a__ : List[Any] = logging.get_logger(__name__)
a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
a__ : List[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
a__ : int = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = ["input_ids", "attention_mask"]
A : Any = BartTokenizer
def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type'))
lowercase__ = add_prefix_space
lowercase__ = pre_tok_class(**lowerCAmelCase)
lowercase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase__ = 'post_processor'
lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
if tokenizer_component_instance:
lowercase__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase__ = tuple(state['sep'])
if "cls" in state:
lowercase__ = tuple(state['cls'])
lowercase__ = False
if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = add_prefix_space
lowercase__ = True
if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets:
lowercase__ = trim_offsets
lowercase__ = True
if changes_to_apply:
lowercase__ = getattr(lowerCAmelCase , state.pop('type'))
lowercase__ = component_class(**lowerCAmelCase)
setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
@property
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.')
return None
return str(self._mask_token)
@mask_token.setter
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value
lowercase__ = value
def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase)
return tuple(lowerCAmelCase)
def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple:
"""simple docstring"""
lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 642
| 0
|
from pathlib import Path
import fire
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = Path(A__ )
lowercase__ = Path(A__ )
dest_dir.mkdir(exist_ok=A__ )
for path in src_dir.iterdir():
lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n]
lowercase__ = dest_dir.joinpath(path.name )
print(A__ )
dest_path.open('w' ).write('\n'.join(A__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 719
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : str = (DDIMParallelScheduler,)
A : Any = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = {
'num_train_timesteps': 10_00,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**lowerCAmelCase)
return config
def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCAmelCase)
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase)
for t in scheduler.timesteps:
lowercase__ = model(lowerCAmelCase , lowerCAmelCase)
lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample
return sample
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase)
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1)
lowercase__ = scheduler_class(**lowerCAmelCase)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1]))
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , )
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]):
self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase)
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = self.dummy_sample_deter + 0.1
lowercase__ = self.dummy_sample_deter - 0.1
lowercase__ = samplea.shape[0]
lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0)
lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase)
lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 11_47.79_04) < 1E-2
assert abs(result_mean.item() - 0.49_82) < 1E-3
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_72.00_67) < 1E-2
assert abs(result_mean.item() - 0.22_39_67) < 1E-3
def UpperCAmelCase ( self : int) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(prediction_type='v_prediction')
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 52.53_02) < 1E-2
assert abs(result_mean.item() - 0.06_84) < 1E-3
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.82_95) < 1E-2
assert abs(result_mean.item() - 0.19_51) < 1E-3
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.07_84) < 1E-2
assert abs(result_mean.item() - 0.19_41) < 1E-3
| 642
| 0
|
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
a__ : Dict = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
a__ : Optional[Any] = get_tests_dir("fixtures/vocab.json")
a__ : List[Any] = get_tests_dir("fixtures")
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
A : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
lowercase__ = 0
def UpperCAmelCase ( self : List[str]) -> List[Any]:
"""simple docstring"""
lowercase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h')
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = WavaVecaConfig()
lowercase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h')
# save in new folder
model_config.save_pretrained(lowerCAmelCase)
processor.save_pretrained(lowerCAmelCase)
lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase))
copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , 'vocab.json'))
lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = WavaVecaFeatureExtractor()
lowercase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
lowercase__ = WavaVecaProcessor(lowerCAmelCase , lowerCAmelCase)
# save in new folder
processor.save_pretrained(lowerCAmelCase)
# drop `processor_class` in tokenizer
with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'r') as f:
lowercase__ = json.load(lowerCAmelCase)
config_dict.pop('processor_class')
with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'w') as f:
f.write(json.dumps(lowerCAmelCase))
lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = WavaVecaFeatureExtractor()
lowercase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
lowercase__ = WavaVecaProcessor(lowerCAmelCase , lowerCAmelCase)
# save in new folder
processor.save_pretrained(lowerCAmelCase)
# drop `processor_class` in feature extractor
with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'r') as f:
lowercase__ = json.load(lowerCAmelCase)
config_dict.pop('processor_class')
with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'w') as f:
f.write(json.dumps(lowerCAmelCase))
lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = WavaVecaConfig(processor_class='Wav2Vec2Processor')
model_config.save_pretrained(lowerCAmelCase)
# copy relevant files
copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , 'vocab.json'))
# create emtpy sample processor
with open(os.path.join(lowerCAmelCase , lowerCAmelCase) , 'w') as f:
f.write('{}')
lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase):
lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor')
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCAmelCase):
lowercase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase)
lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase)
self.assertTrue(processor.special_attribute_present)
self.assertEqual(processor.__class__.__name__ , 'NewProcessor')
lowercase__ = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present)
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor')
lowercase__ = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast')
# Test we can also load the slow version
lowercase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase)
lowercase__ = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present)
self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer')
else:
self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer')
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
try:
AutoConfig.register('custom' , lowerCAmelCase)
AutoFeatureExtractor.register(lowerCAmelCase , lowerCAmelCase)
AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase)
AutoProcessor.register(lowerCAmelCase , lowerCAmelCase)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCAmelCase):
AutoProcessor.register(lowerCAmelCase , lowerCAmelCase)
# Now that the config is registered, it can be used as any other config with the auto-API
lowercase__ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = os.path.join(lowerCAmelCase , 'vocab.txt')
with open(lowerCAmelCase , 'w' , encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens]))
lowercase__ = CustomTokenizer(lowerCAmelCase)
lowercase__ = CustomProcessor(lowerCAmelCase , lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(lowerCAmelCase)
lowercase__ = AutoProcessor.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : str = False
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Tuple = False
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Any = "AutoFeatureExtractor"
A : Any = "AutoTokenizer"
A : Union[str, Any] = False
try:
AutoConfig.register('custom' , lowerCAmelCase)
AutoFeatureExtractor.register(lowerCAmelCase , lowerCAmelCase)
AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase)
AutoProcessor.register(lowerCAmelCase , lowerCAmelCase)
# If remote code is not set, the default is to use local classes.
lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor')
self.assertEqual(processor.__class__.__name__ , 'NewProcessor')
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote code is disabled, we load the local ones.
lowercase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase)
self.assertEqual(processor.__class__.__name__ , 'NewProcessor')
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote is enabled, we load from the Hub.
lowercase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase)
self.assertEqual(processor.__class__.__name__ , 'NewProcessor')
self.assertTrue(processor.special_attribute_present)
self.assertTrue(processor.feature_extractor.special_attribute_present)
self.assertTrue(processor.tokenizer.special_attribute_present)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert')
self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast')
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
lowercase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext')
self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor')
@is_staging_test
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
A : List[str] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def UpperCAmelCase ( cls : Union[str, Any]) -> List[str]:
"""simple docstring"""
lowercase__ = TOKEN
HfFolder.save_token(lowerCAmelCase)
@classmethod
def UpperCAmelCase ( cls : Dict) -> List[str]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-processor')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-processor-org')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-processor')
except HTTPError:
pass
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
lowercase__ = WavaVecaProcessor.from_pretrained(lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(lowerCAmelCase , 'test-processor') , push_to_hub=lowerCAmelCase , use_auth_token=self._token)
lowercase__ = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''')
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase , getattr(new_processor.feature_extractor , lowerCAmelCase))
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab())
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = WavaVecaProcessor.from_pretrained(lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(lowerCAmelCase , 'test-processor-org') , push_to_hub=lowerCAmelCase , use_auth_token=self._token , organization='valid_org' , )
lowercase__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org')
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase , getattr(new_processor.feature_extractor , lowerCAmelCase))
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab())
def UpperCAmelCase ( self : List[Any]) -> Optional[Any]:
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
lowercase__ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = os.path.join(lowerCAmelCase , 'vocab.txt')
with open(lowerCAmelCase , 'w' , encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens]))
lowercase__ = CustomTokenizer(lowerCAmelCase)
lowercase__ = CustomProcessor(lowerCAmelCase , lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token)
lowercase__ = Repository(lowerCAmelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token)
processor.save_pretrained(lowerCAmelCase)
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor',
'AutoProcessor': 'custom_processing.CustomProcessor',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(lowerCAmelCase , 'tokenizer_config.json')) as f:
lowercase__ = json.load(lowerCAmelCase)
self.assertDictEqual(
tokenizer_config['auto_map'] , {
'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None],
'AutoProcessor': 'custom_processing.CustomProcessor',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_feature_extraction.py')))
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_tokenization.py')))
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_processing.py')))
repo.push_to_hub()
lowercase__ = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=lowerCAmelCase)
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor')
| 720
|
import cva
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict:
"""simple docstring"""
if k in (0.04, 0.06):
lowercase__ = k
lowercase__ = window_size
else:
raise ValueError('invalid k value')
def __str__( self : Tuple) -> str:
"""simple docstring"""
return str(self.k)
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]:
"""simple docstring"""
lowercase__ = cva.imread(lowerCAmelCase , 0)
lowercase__, lowercase__ = img.shape
lowercase__ = []
lowercase__ = img.copy()
lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB)
lowercase__, lowercase__ = np.gradient(lowerCAmelCase)
lowercase__ = dx**2
lowercase__ = dy**2
lowercase__ = dx * dy
lowercase__ = 0.04
lowercase__ = self.window_size // 2
for y in range(lowerCAmelCase , h - offset):
for x in range(lowerCAmelCase , w - offset):
lowercase__ = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = (wxx * wyy) - (wxy**2)
lowercase__ = wxx + wyy
lowercase__ = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r])
color_img.itemset((y, x, 0) , 0)
color_img.itemset((y, x, 1) , 0)
color_img.itemset((y, x, 2) , 2_55)
return color_img, corner_list
if __name__ == "__main__":
a__ : Dict = HarrisCorner(0.0_4, 3)
a__ , a__ : Dict = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[str] = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 721
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : List[Any] = {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : int = "speech_to_text"
A : Optional[Any] = ["past_key_values"]
A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = max_source_positions
lowercase__ = max_target_positions
lowercase__ = num_conv_layers
lowercase__ = list(lowerCAmelCase)
lowercase__ = conv_channels
lowercase__ = input_feat_per_channel
lowercase__ = input_channels
if len(self.conv_kernel_sizes) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
| 642
| 0
|
def _lowerCAmelCase ( A__ ):
if not isinstance(A__ , A__ ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
lowercase__ = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[int] = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a__ : List[Any] = logging.get_logger(__name__)
a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
a__ : List[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
a__ : int = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = ["input_ids", "attention_mask"]
A : Any = BartTokenizer
def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type'))
lowercase__ = add_prefix_space
lowercase__ = pre_tok_class(**lowerCAmelCase)
lowercase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase__ = 'post_processor'
lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
if tokenizer_component_instance:
lowercase__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase__ = tuple(state['sep'])
if "cls" in state:
lowercase__ = tuple(state['cls'])
lowercase__ = False
if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = add_prefix_space
lowercase__ = True
if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets:
lowercase__ = trim_offsets
lowercase__ = True
if changes_to_apply:
lowercase__ = getattr(lowerCAmelCase , state.pop('type'))
lowercase__ = component_class(**lowerCAmelCase)
setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
@property
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.')
return None
return str(self._mask_token)
@mask_token.setter
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value
lowercase__ = value
def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase)
return tuple(lowerCAmelCase)
def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple:
"""simple docstring"""
lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 701
|
# Imports
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int:
"""simple docstring"""
if red is not None:
lowercase__ = red
if green is not None:
lowercase__ = green
if blue is not None:
lowercase__ = blue
if red_edge is not None:
lowercase__ = red_edge
if nir is not None:
lowercase__ = nir
return True
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
lowercase__ = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!')
return False
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return (self.nir / self.green) - 1
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
return (self.red - self.blue) / self.red
def UpperCAmelCase ( self : Any) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2))
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
return self.nir - self.green
def UpperCAmelCase ( self : Tuple) -> List[Any]:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
return (max_value - min_value) / max_value
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 642
| 0
|
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 702
|
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = load_tool('text-classification')
self.tool.setup()
lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
| 642
| 0
|
import argparse
import struct
import unittest
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : bytes) -> None:
"""simple docstring"""
lowercase__ = data
# Initialize hash values
lowercase__ = [
0X6_A_0_9_E_6_6_7,
0XB_B_6_7_A_E_8_5,
0X3_C_6_E_F_3_7_2,
0XA_5_4_F_F_5_3_A,
0X5_1_0_E_5_2_7_F,
0X9_B_0_5_6_8_8_C,
0X1_F_8_3_D_9_A_B,
0X5_B_E_0_C_D_1_9,
]
# Initialize round constants
lowercase__ = [
0X4_2_8_A_2_F_9_8,
0X7_1_3_7_4_4_9_1,
0XB_5_C_0_F_B_C_F,
0XE_9_B_5_D_B_A_5,
0X3_9_5_6_C_2_5_B,
0X5_9_F_1_1_1_F_1,
0X9_2_3_F_8_2_A_4,
0XA_B_1_C_5_E_D_5,
0XD_8_0_7_A_A_9_8,
0X1_2_8_3_5_B_0_1,
0X2_4_3_1_8_5_B_E,
0X5_5_0_C_7_D_C_3,
0X7_2_B_E_5_D_7_4,
0X8_0_D_E_B_1_F_E,
0X9_B_D_C_0_6_A_7,
0XC_1_9_B_F_1_7_4,
0XE_4_9_B_6_9_C_1,
0XE_F_B_E_4_7_8_6,
0X0_F_C_1_9_D_C_6,
0X2_4_0_C_A_1_C_C,
0X2_D_E_9_2_C_6_F,
0X4_A_7_4_8_4_A_A,
0X5_C_B_0_A_9_D_C,
0X7_6_F_9_8_8_D_A,
0X9_8_3_E_5_1_5_2,
0XA_8_3_1_C_6_6_D,
0XB_0_0_3_2_7_C_8,
0XB_F_5_9_7_F_C_7,
0XC_6_E_0_0_B_F_3,
0XD_5_A_7_9_1_4_7,
0X0_6_C_A_6_3_5_1,
0X1_4_2_9_2_9_6_7,
0X2_7_B_7_0_A_8_5,
0X2_E_1_B_2_1_3_8,
0X4_D_2_C_6_D_F_C,
0X5_3_3_8_0_D_1_3,
0X6_5_0_A_7_3_5_4,
0X7_6_6_A_0_A_B_B,
0X8_1_C_2_C_9_2_E,
0X9_2_7_2_2_C_8_5,
0XA_2_B_F_E_8_A_1,
0XA_8_1_A_6_6_4_B,
0XC_2_4_B_8_B_7_0,
0XC_7_6_C_5_1_A_3,
0XD_1_9_2_E_8_1_9,
0XD_6_9_9_0_6_2_4,
0XF_4_0_E_3_5_8_5,
0X1_0_6_A_A_0_7_0,
0X1_9_A_4_C_1_1_6,
0X1_E_3_7_6_C_0_8,
0X2_7_4_8_7_7_4_C,
0X3_4_B_0_B_C_B_5,
0X3_9_1_C_0_C_B_3,
0X4_E_D_8_A_A_4_A,
0X5_B_9_C_C_A_4_F,
0X6_8_2_E_6_F_F_3,
0X7_4_8_F_8_2_E_E,
0X7_8_A_5_6_3_6_F,
0X8_4_C_8_7_8_1_4,
0X8_C_C_7_0_2_0_8,
0X9_0_B_E_F_F_F_A,
0XA_4_5_0_6_C_E_B,
0XB_E_F_9_A_3_F_7,
0XC_6_7_1_7_8_F_2,
]
lowercase__ = self.preprocessing(self.data)
self.final_hash()
@staticmethod
def UpperCAmelCase ( lowerCAmelCase : bytes) -> bytes:
"""simple docstring"""
lowercase__ = B'\x80' + (B'\x00' * (63 - (len(lowerCAmelCase) + 8) % 64))
lowercase__ = struct.pack('>Q' , (len(lowerCAmelCase) * 8))
return data + padding + big_endian_integer
def UpperCAmelCase ( self : Any) -> None:
"""simple docstring"""
lowercase__ = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data) , 64)
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase))
# add 48 0-ed integers
words += [0] * 48
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.hashes
for index in range(0 , 64):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowercase__ = (
self.ror(words[index - 15] , 7)
^ self.ror(words[index - 15] , 18)
^ (words[index - 15] >> 3)
)
lowercase__ = (
self.ror(words[index - 2] , 17)
^ self.ror(words[index - 2] , 19)
^ (words[index - 2] >> 10)
)
lowercase__ = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_0_0_0_0_0_0_0_0
# Compression
lowercase__ = self.ror(lowerCAmelCase , 6) ^ self.ror(lowerCAmelCase , 11) ^ self.ror(lowerCAmelCase , 25)
lowercase__ = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g)
lowercase__ = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0_0_0_0_0_0_0_0
lowercase__ = self.ror(lowerCAmelCase , 2) ^ self.ror(lowerCAmelCase , 13) ^ self.ror(lowerCAmelCase , 22)
lowercase__ = (a & b) ^ (a & c) ^ (b & c)
lowercase__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = (
g,
f,
e,
((d + tempa) % 0X1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0),
)
lowercase__ = [a, b, c, d, e, f, g, h]
# Modify final values
lowercase__ = [
((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes)
]
lowercase__ = ''.join([hex(lowerCAmelCase)[2:].zfill(8) for value in self.hashes])
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int) -> int:
"""simple docstring"""
return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Tuple) -> None:
"""simple docstring"""
import hashlib
lowercase__ = bytes('Test String' , 'utf-8')
self.assertEqual(SHAaaa(lowerCAmelCase).hash , hashlib.shaaaa(lowerCAmelCase).hexdigest())
def _lowerCAmelCase ( ):
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
lowercase__ = parser.parse_args()
lowercase__ = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase__ = f.read()
else:
lowercase__ = bytes(A__ , 'utf-8' )
print(SHAaaa(A__ ).hash )
if __name__ == "__main__":
main()
| 703
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = None
A : Optional[int] = None
@property
def UpperCAmelCase ( self : str) -> Union[str, Any]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(lowerCAmelCase , 'feature_size'))
self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate'))
self.assertTrue(hasattr(lowerCAmelCase , 'padding_value'))
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name])))
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_torch
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = self.feat_extract_tester.seq_length_diff
lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff
lowercase__ = self.feat_extract_tester.min_seq_length
lowercase__ = self.feat_extract_tester.batch_size
lowercase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest')
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1]))
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
lowercase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
self.assertTrue(len(input_a[0]) == pad_min_length)
self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff)
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0])))
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a))
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size)
# Check padding value is correct
lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff))
< 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1E-3)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
# truncate to smallest
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]))
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to smallest with np
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(input_a.shape[1] == len(speech_inputs[0]))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to middle
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1]))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1]))
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = 12
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , )
lowercase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowercase__ = len(speech_inputs[0])
if expected_length % pad_to_multiple_of != 0:
lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0]) == expected_length)
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2)
@require_tf
def UpperCAmelCase ( self : str) -> str:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2)
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = min(lowerCAmelCase)
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(
list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length])
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
| 642
| 0
|
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
lowercase__ = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small')
lowercase__ = AutoTokenizer.from_pretrained('google/mt5-small')
lowercase__ = tokenizer('Hello there' , return_tensors='np').input_ids
lowercase__ = tokenizer('Hi I am' , return_tensors='np').input_ids
lowercase__ = shift_tokens_right(lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id)
lowercase__ = model(lowerCAmelCase , decoder_input_ids=lowerCAmelCase).logits
lowercase__ = optax.softmax_cross_entropy(lowerCAmelCase , onehot(lowerCAmelCase , logits.shape[-1])).mean()
lowercase__ = -(labels.shape[-1] * loss.item())
lowercase__ = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
| 704
|
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowerCAmelCase ( A__ ):
lowercase__ = prime_factors(A__ )
if is_square_free(A__ ):
return -1 if len(A__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _lowerCAmelCase ( A__ ):
if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ):
return False
return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule )
def _lowerCAmelCase ( A__ , A__ = True ):
lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
lowercase__ = is_compiled_module(A__ )
if is_compiled:
lowercase__ = model
lowercase__ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(A__ , A__ ):
lowercase__ = model.module
if not keep_fpaa_wrapper:
lowercase__ = getattr(A__ , 'forward' )
lowercase__ = model.__dict__.pop('_original_forward' , A__ )
if original_forward is not None:
while hasattr(A__ , '__wrapped__' ):
lowercase__ = forward.__wrapped__
if forward == original_forward:
break
lowercase__ = forward
if getattr(A__ , '_converted_to_transformer_engine' , A__ ):
convert_model(A__ , to_transformer_engine=A__ )
if is_compiled:
lowercase__ = model
lowercase__ = compiled_model
return model
def _lowerCAmelCase ( ):
PartialState().wait_for_everyone()
def _lowerCAmelCase ( A__ , A__ ):
if PartialState().distributed_type == DistributedType.TPU:
xm.save(A__ , A__ )
elif PartialState().local_process_index == 0:
torch.save(A__ , A__ )
@contextmanager
def _lowerCAmelCase ( **A__ ):
for key, value in kwargs.items():
lowercase__ = str(A__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _lowerCAmelCase ( A__ ):
if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ):
lowercase__ = getattr(A__ , '__class__' , A__ )
if hasattr(A__ , '__qualname__' ):
return obj.__qualname__
if hasattr(A__ , '__name__' ):
return obj.__name__
return str(A__ )
def _lowerCAmelCase ( A__ , A__ ):
for key, value in source.items():
if isinstance(A__ , A__ ):
lowercase__ = destination.setdefault(A__ , {} )
merge_dicts(A__ , A__ )
else:
lowercase__ = value
return destination
def _lowerCAmelCase ( A__ = None ):
if port is None:
lowercase__ = 29_500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 705
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ : List[str] = logging.get_logger(__name__)
a__ : List[Any] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
A : List[str] = "focalnet"
def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = use_conv_embed
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = focal_levels
lowercase__ = focal_windows
lowercase__ = hidden_act
lowercase__ = mlp_ratio
lowercase__ = hidden_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = use_layerscale
lowercase__ = layerscale_value
lowercase__ = use_post_layernorm
lowercase__ = use_post_layernorm_in_modulation
lowercase__ = normalize_modulator
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = encoder_stride
lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)]
lowercase__, lowercase__ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 642
| 0
|
import functools
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = len(A__ )
lowercase__ = len(A__ )
@functools.cache
def min_distance(A__ , A__ ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
lowercase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A__ ) , 1 + min_distance(A__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Dict = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
a__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
a__ : Any = {"facebook/blenderbot_small-90M": 5_12}
def _lowerCAmelCase ( A__ ):
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(A__ )
return pairs
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase)
with open(lowerCAmelCase , encoding='utf-8') as vocab_handle:
lowercase__ = json.load(lowerCAmelCase)
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase , encoding='utf-8') as merges_handle:
lowercase__ = merges_handle.read().split('\n')[1:-1]
lowercase__ = [tuple(merge.split()) for merge in merges]
lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase))))
lowercase__ = {}
@property
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return len(self.encoder)
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase)
lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase)
lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase)
if "\n" in token:
lowercase__ = token.replace('\n' , ' __newln__')
lowercase__ = token.split(' ')
lowercase__ = []
for token in tokens:
if not len(lowerCAmelCase):
continue
lowercase__ = token.lower()
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>'])
lowercase__ = get_pairs(lowerCAmelCase)
if not pairs:
words.append(lowerCAmelCase)
continue
while True:
lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf')))
if bigram not in self.bpe_ranks:
break
lowercase__, lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(lowerCAmelCase):
try:
lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase)
new_word.extend(word[i:j])
lowercase__ = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = new_word
if len(lowerCAmelCase) == 1:
break
else:
lowercase__ = get_pairs(lowerCAmelCase)
lowercase__ = '@@ '.join(lowerCAmelCase)
lowercase__ = word[:-4]
lowercase__ = word
words.append(lowerCAmelCase)
return " ".join(lowerCAmelCase)
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase)
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' ')))
return split_tokens
def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int:
"""simple docstring"""
lowercase__ = token.lower()
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str:
"""simple docstring"""
lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip()
return out_string
def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(lowerCAmelCase , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n')
lowercase__ = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!')
lowercase__ = token_index
writer.write(' '.join(lowerCAmelCase) + '\n')
index += 1
return vocab_file, merge_file
| 642
| 0
|
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = 1.5
lowercase__ = int(factor * num_class_images )
lowercase__ = ClipClient(
url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=A__ , aesthetic_weight=0.1 )
os.makedirs(F'''{class_data_dir}/images''' , exist_ok=A__ )
if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images:
return
while True:
lowercase__ = client.query(text=A__ )
if len(A__ ) >= factor * num_class_images or num_images > 1E4:
break
else:
lowercase__ = int(factor * num_images )
lowercase__ = ClipClient(
url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=A__ , aesthetic_weight=0.1 , )
lowercase__ = 0
lowercase__ = 0
lowercase__ = tqdm(desc='downloading real regularization images' , total=A__ )
with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open(
F'''{class_data_dir}/images.txt''' , 'w' ) as fa:
while total < num_class_images:
lowercase__ = class_images[count]
count += 1
try:
lowercase__ = requests.get(images['url'] )
if img.status_code == 200:
lowercase__ = Image.open(BytesIO(img.content ) )
with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f:
f.write(img.content )
fa.write(images['caption'] + '\n' )
fa.write(images['url'] + '\n' )
fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser('' , add_help=A__ )
parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=A__ , type=A__ )
parser.add_argument('--class_data_dir' , help='path to save images' , required=A__ , type=A__ )
parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=A__ )
return parser.parse_args()
if __name__ == "__main__":
a__ : int = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 707
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCAmelCase__:
'''simple docstring'''
@staticmethod
def UpperCAmelCase ( *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> int:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@require_torch
def UpperCAmelCase ( self : Dict) -> Optional[Any]:
"""simple docstring"""
lowercase__ = pipeline(
model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , )
lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['a', 'b', 'c'])
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(lowerCAmelCase) , [
[{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}],
[{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}],
] , )
lowercase__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase) , [
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
] , )
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = pipeline(
model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf')
lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['a', 'b', 'c'])
self.assertEqual(
nested_simplify(lowerCAmelCase) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , )
lowercase__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase) , [
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
[
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
{'score': 0.3_33, 'label': ANY(lowerCAmelCase)},
],
] , )
@slow
@require_torch
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
lowercase__ = pipeline(
task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , )
# This is an image of 2 cats with remotes and no planes
lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote'])
self.assertEqual(
nested_simplify(lowerCAmelCase) , [
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
] , )
lowercase__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase) , [
[
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
],
]
* 5 , )
@slow
@require_tf
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
lowercase__ = pipeline(
task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf')
# This is an image of 2 cats with remotes and no planes
lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote'])
self.assertEqual(
nested_simplify(lowerCAmelCase) , [
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
] , )
lowercase__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase) , [
[
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
],
]
* 5 , )
| 708
|
import heapq
import sys
import numpy as np
a__ : Dict = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = []
lowercase__ = set()
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return len(self.elements) == 0
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(lowerCAmelCase)
else:
# update
# print("update", item)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
if item in self.set:
self.set.remove(lowerCAmelCase)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
return self.elements[0][1]
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
self.set.remove(lowerCAmelCase)
return (priority, item)
def _lowerCAmelCase ( A__ , A__ ):
# euclidean distance
lowercase__ = np.array(A__ )
lowercase__ = np.array(A__ )
return np.linalg.norm(a - b )
def _lowerCAmelCase ( A__ , A__ ):
# integer division by time variable
return consistent_heuristic(A__ , A__ ) // t
def _lowerCAmelCase ( A__ , A__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ )
return ans
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = np.chararray((n, n) )
for i in range(A__ ):
for j in range(A__ ):
lowercase__ = '*'
for i in range(A__ ):
for j in range(A__ ):
if (j, (n - 1) - i) in blocks:
lowercase__ = '#'
lowercase__ = '-'
lowercase__ = back_pointer[goal]
while x != start:
((lowercase__), (lowercase__)) = x
# print(x)
lowercase__ = '-'
lowercase__ = back_pointer[x]
lowercase__ = '-'
for i in range(A__ ):
for j in range(A__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowercase__ = back_pointer[goal]
while x != start:
print(A__ , end=' ' )
lowercase__ = back_pointer[x]
print(A__ )
sys.exit()
def _lowerCAmelCase ( A__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
for itera in range(A__ ):
open_list[itera].remove_element(A__ )
# print("s", s)
# print("j", j)
((lowercase__), (lowercase__)) = s
lowercase__ = (x - 1, y)
lowercase__ = (x + 1, y)
lowercase__ = (x, y + 1)
lowercase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A__ )
lowercase__ = -1
lowercase__ = float('inf' )
if valid(A__ ) and g_function[neighbours] > g_function[s] + 1:
lowercase__ = g_function[s] + 1
lowercase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) )
if neighbours not in close_list_inad:
for var in range(1 , A__ ):
if key(A__ , A__ , A__ , A__ ) <= Wa * key(
A__ , 0 , A__ , A__ ):
open_list[j].put(
A__ , key(A__ , A__ , A__ , A__ ) )
def _lowerCAmelCase ( ):
lowercase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a__ : Any = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a__ : Any = make_common_ground()
a__ : Union[str, Any] = blocks_blk
# hyper parameters
a__ : List[Any] = 1
a__ : List[str] = 1
a__ : Optional[int] = 20
a__ : Optional[Any] = 3 # one consistent and two other inconsistent
# start and end destination
a__ : Tuple = (0, 0)
a__ : str = (n - 1, n - 1)
a__ : Optional[Any] = 1
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {start: 0, goal: float('inf' )}
lowercase__ = {start: -1, goal: -1}
lowercase__ = []
lowercase__ = set()
for i in range(A__ ):
open_list.append(PriorityQueue() )
open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) )
lowercase__ = []
lowercase__ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__, lowercase__ = open_list[i].top_show()
visited.add(A__ )
expand_state(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_inad.append(A__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__ = open_list[0].top_show()
visited.add(A__ )
expand_state(
A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_anchor.append(A__ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A__ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 642
| 0
|
from __future__ import annotations
import math
def _lowerCAmelCase ( A__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
a__ : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def _lowerCAmelCase ( A__ ):
if not isinstance(A__ , A__ ):
raise ValueError('n must be an integer' )
if n <= 0:
raise ValueError('n must be >= 0' )
lowercase__ = []
for num in range(len(A__ ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A__ ) == n:
return list_nums
return []
def _lowerCAmelCase ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 709
|
import math
import sys
def _lowerCAmelCase ( A__ ):
lowercase__ = ''
try:
with open(A__ , 'rb' ) as binary_file:
lowercase__ = binary_file.read()
for dat in data:
lowercase__ = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = {'0': '0', '1': '1'}
lowercase__, lowercase__ = '', ''
lowercase__ = len(A__ )
for i in range(len(A__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase__ = lexicon[curr_string]
result += last_match_id
lowercase__ = last_match_id + '0'
if math.loga(A__ ).is_integer():
lowercase__ = {}
for curr_key in list(A__ ):
lowercase__ = lexicon.pop(A__ )
lowercase__ = new_lex
lowercase__ = last_match_id + '1'
index += 1
lowercase__ = ''
return result
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = 8
try:
with open(A__ , 'wb' ) as opened_file:
lowercase__ = [
to_write[i : i + byte_length]
for i in range(0 , len(A__ ) , A__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowercase__ = data_bits[counter:]
lowercase__ = data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = read_file_binary(A__ )
lowercase__ = remove_prefix(A__ )
lowercase__ = decompress_data(A__ )
write_file_binary(A__ , A__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 642
| 0
|
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
a__ : int = True
from torch.cuda.amp import autocast
a__ : str = logging.getLogger(__name__)
def _lowerCAmelCase ( A__=None , A__=None ):
return field(default_factory=lambda: default , metadata=A__ )
@dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
A : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
A : Optional[bool] = field(
default=lowerCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
A : Optional[float] = field(
default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} )
A : Optional[float] = field(
default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} )
A : Optional[float] = field(
default=0.1 , metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
} , )
A : Optional[float] = field(
default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , )
A : Optional[float] = field(
default=0.05 , metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
} , )
A : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} )
@dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
A : Optional[str] = field(
default="train+validation" , metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} , )
A : bool = field(
default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
A : Optional[int] = field(
default=lowerCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , )
A : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
A : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
} , )
A : List[str] = list_field(
default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , )
@dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : WavaVecaProcessor
A : Union[bool, str] = True
A : Optional[int] = None
A : Optional[int] = None
A : Optional[int] = None
A : Optional[int] = None
def __call__( self : Any , lowerCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
"""simple docstring"""
lowercase__ = [{'input_values': feature['input_values']} for feature in features]
lowercase__ = [{'input_ids': feature['labels']} for feature in features]
lowercase__ = self.processor.pad(
lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
lowercase__ = self.processor.pad(
labels=lowerCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , )
# replace padding with -100 to ignore loss correctly
lowercase__ = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -1_00)
lowercase__ = labels
return batch
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : nn.Module , lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""simple docstring"""
model.train()
lowercase__ = self._prepare_inputs(lowerCAmelCase)
if self.use_amp:
with autocast():
lowercase__ = self.compute_loss(lowerCAmelCase , lowerCAmelCase)
else:
lowercase__ = self.compute_loss(lowerCAmelCase , lowerCAmelCase)
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
lowercase__ = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
lowercase__ = loss.sum() / (inputs['labels'] >= 0).sum()
else:
raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''')
if self.args.gradient_accumulation_steps > 1:
lowercase__ = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(lowerCAmelCase).backward()
elif self.use_apex:
with amp.scale_loss(lowerCAmelCase , self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(lowerCAmelCase)
else:
loss.backward()
return loss.detach()
def _lowerCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__, lowercase__, lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__, lowercase__, lowercase__ = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
lowercase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , A__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
lowercase__ = datasets.load_dataset(
'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name )
lowercase__ = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' )
# Create and save tokenizer
lowercase__ = F'''[{''.join(data_args.chars_to_ignore )}]'''
def remove_special_characters(A__ ):
lowercase__ = re.sub(A__ , '' , batch['sentence'] ).lower() + ' '
return batch
lowercase__ = train_dataset.map(A__ , remove_columns=['sentence'] )
lowercase__ = eval_dataset.map(A__ , remove_columns=['sentence'] )
def extract_all_chars(A__ ):
lowercase__ = ' '.join(batch['text'] )
lowercase__ = list(set(A__ ) )
return {"vocab": [vocab], "all_text": [all_text]}
lowercase__ = train_dataset.map(
A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , )
lowercase__ = train_dataset.map(
A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , )
lowercase__ = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) )
lowercase__ = {v: k for k, v in enumerate(A__ )}
lowercase__ = vocab_dict[' ']
del vocab_dict[" "]
lowercase__ = len(A__ )
lowercase__ = len(A__ )
with open('vocab.json' , 'w' ) as vocab_file:
json.dump(A__ , A__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ = WavaVecaCTCTokenizer(
'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , )
lowercase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ )
lowercase__ = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ )
lowercase__ = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
lowercase__ = min(len(A__ ) , data_args.max_train_samples )
lowercase__ = train_dataset.select(range(A__ ) )
if data_args.max_val_samples is not None:
lowercase__ = eval_dataset.select(range(data_args.max_val_samples ) )
lowercase__ = torchaudio.transforms.Resample(48_000 , 16_000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(A__ ):
lowercase__, lowercase__ = torchaudio.load(batch['path'] )
lowercase__ = resampler(A__ ).squeeze().numpy()
lowercase__ = 16_000
lowercase__ = batch['text']
return batch
lowercase__ = train_dataset.map(
A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
lowercase__ = eval_dataset.map(
A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(A__ ):
# check that all files have the correct sampling rate
assert (
len(set(batch['sampling_rate'] ) ) == 1
), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.'''
lowercase__ = processor(
audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] )
batch.update(A__ )
return batch
lowercase__ = train_dataset.map(
A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , )
lowercase__ = eval_dataset.map(
A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , )
# Metric
lowercase__ = datasets.load_metric('wer' )
def compute_metrics(A__ ):
lowercase__ = pred.predictions
lowercase__ = np.argmax(A__ , axis=-1 )
lowercase__ = processor.tokenizer.pad_token_id
lowercase__ = processor.batch_decode(A__ )
# we do not want to group tokens when computing the metrics
lowercase__ = processor.batch_decode(pred.label_ids , group_tokens=A__ )
lowercase__ = wer_metric.compute(predictions=A__ , references=A__ )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
lowercase__ = DataCollatorCTCWithPadding(processor=A__ , padding=A__ )
# Initialize our Trainer
lowercase__ = CTCTrainer(
model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
lowercase__ = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
lowercase__ = model_args.model_name_or_path
else:
lowercase__ = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
lowercase__ = trainer.train(resume_from_checkpoint=A__ )
trainer.save_model()
lowercase__ = train_result.metrics
lowercase__ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ )
)
lowercase__ = min(A__ , len(A__ ) )
trainer.log_metrics('train' , A__ )
trainer.save_metrics('train' , A__ )
trainer.save_state()
# Evaluation
lowercase__ = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
lowercase__ = trainer.evaluate()
lowercase__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ )
lowercase__ = min(A__ , len(A__ ) )
trainer.log_metrics('eval' , A__ )
trainer.save_metrics('eval' , A__ )
return results
if __name__ == "__main__":
main()
| 710
|
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {"vocab_file": "vocab.txt"}
a__ : int = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a__ : Dict = {
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' ) as f:
lowercase__ = f.read().splitlines()
return [l.strip() for l in lines]
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = load_vocab_file(lowerCAmelCase)
lowercase__ = dict(enumerate(self.all_tokens))
lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)}
lowercase__ = unk_token
lowercase__ = cls_token
lowercase__ = pad_token
lowercase__ = mask_token
lowercase__ = eos_token
lowercase__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
return text.split()
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]:
"""simple docstring"""
return len(self._id_to_token)
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens)}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.cls_token_id]
lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!')
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.')
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase) + [1]
return mask
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt')
with open(lowerCAmelCase , 'w') as f:
f.write('\n'.join(self.all_tokens))
return (vocab_file,)
@property
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int:
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
| 642
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ : Union[str, Any] = {
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = ["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = ["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 711
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> MetricInfo:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'),
}) , )
def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]:
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase)
}
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a__ : int = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
a__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 712
|
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = block_sizes
lowercase__ = num_decoder_layers
lowercase__ = d_model
lowercase__ = n_head
lowercase__ = d_head
lowercase__ = d_inner
lowercase__ = hidden_act
lowercase__ = hidden_dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = 2
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
lowercase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowercase__ = n_head
# Used in the tests to check the size of the first hidden state
lowercase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowercase__ = self.num_hidden_layers + 2
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str:
"""simple docstring"""
lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase)
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
A : Dict = (
{
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
"fill-mask": TFFunnelForMaskedLM,
"question-answering": TFFunnelForQuestionAnswering,
"text-classification": TFFunnelForSequenceClassification,
"token-classification": TFFunnelForTokenClassification,
"zero-shot": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Optional[int] = False
A : Optional[int] = False
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase)
@require_tf
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
A : List[str] = False
A : int = False
def UpperCAmelCase ( self : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
| 642
| 0
|
def _lowerCAmelCase ( A__ ):
lowercase__ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowercase__ = set()
return any(
node not in visited and depth_first_search(A__ , A__ , A__ , A__ )
for node in graph )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
visited.add(A__ )
rec_stk.add(A__ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(A__ , A__ , A__ , A__ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(A__ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 713
|
def _lowerCAmelCase ( A__ , A__ , A__ ):
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A__ , A__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
lowercase__ = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowercase__ = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
from __future__ import annotations
def _lowerCAmelCase ( A__ ):
lowercase__ = [True] * limit
lowercase__ = False
lowercase__ = False
lowercase__ = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
lowercase__ = i * 2
while index < limit:
lowercase__ = False
lowercase__ = index + i
lowercase__ = [2]
for i in range(3 , A__ , 2 ):
if is_prime[i]:
primes.append(A__ )
return primes
def _lowerCAmelCase ( A__ = 1_000_000 ):
lowercase__ = prime_sieve(A__ )
lowercase__ = 0
lowercase__ = 0
for i in range(len(A__ ) ):
for j in range(i + length , len(A__ ) ):
lowercase__ = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
lowercase__ = j - i
lowercase__ = sol
return largest
if __name__ == "__main__":
print(F'''{solution() = }''')
| 714
|
from __future__ import annotations
def _lowerCAmelCase ( A__ , A__ ):
if b == 0:
return (1, 0)
((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b )
lowercase__ = a // b
return (y, x - k * y)
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
def _lowerCAmelCase ( A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
if b < 0:
lowercase__ = (b % n + n) % n
return b
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 642
| 0
|
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def _lowerCAmelCase ( A__="" ):
lowercase__ = tempfile.mkdtemp()
return os.path.join(A__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Tuple) -> List[str]:
"""simple docstring"""
lowercase__ = torch.rand(12 , dtype=torch.floataa) - 0.5
lowercase__ = AgentAudio(lowerCAmelCase)
lowercase__ = str(agent_type.to_string())
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4))
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(lowerCAmelCase))
# Ensure that the file contains the same value as the original tensor
lowercase__, lowercase__ = sf.read(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , torch.tensor(lowerCAmelCase) , atol=1E-4))
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
lowercase__ = torch.rand(12 , dtype=torch.floataa) - 0.5
lowercase__ = get_new_path(suffix='.wav')
sf.write(lowerCAmelCase , lowerCAmelCase , 1_60_00)
lowercase__ = AgentAudio(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4))
self.assertEqual(agent_type.to_string() , lowerCAmelCase)
@require_vision
@require_torch
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = torch.randint(0 , 2_56 , (64, 64, 3))
lowercase__ = AgentImage(lowerCAmelCase)
lowercase__ = str(agent_type.to_string())
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCAmelCase , agent_type._tensor , atol=1E-4))
self.assertIsInstance(agent_type.to_raw() , Image.Image)
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCAmelCase))
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
lowercase__ = Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png'
lowercase__ = Image.open(lowerCAmelCase)
lowercase__ = AgentImage(lowerCAmelCase)
self.assertTrue(path.samefile(agent_type.to_string()))
self.assertTrue(image == agent_type.to_raw())
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCAmelCase))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
lowercase__ = Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png'
lowercase__ = Image.open(lowerCAmelCase)
lowercase__ = AgentImage(lowerCAmelCase)
self.assertFalse(path.samefile(agent_type.to_string()))
self.assertTrue(image == agent_type.to_raw())
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCAmelCase))
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Dict) -> Optional[Any]:
"""simple docstring"""
lowercase__ = 'Hey!'
lowercase__ = AgentText(lowerCAmelCase)
self.assertEqual(lowerCAmelCase , agent_type.to_string())
self.assertEqual(lowerCAmelCase , agent_type.to_raw())
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
| 715
|
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[Any] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = "umt5"
A : List[str] = ["past_key_values"]
def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str:
"""simple docstring"""
super().__init__(
is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_kv
lowercase__ = d_ff
lowercase__ = num_layers
lowercase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase__ = num_heads
lowercase__ = relative_attention_num_buckets
lowercase__ = relative_attention_max_distance
lowercase__ = dropout_rate
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_factor
lowercase__ = feed_forward_proj
lowercase__ = use_cache
lowercase__ = self.feed_forward_proj.split('-')
lowercase__ = act_info[-1]
lowercase__ = act_info[0] == 'gated'
if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'')
if feed_forward_proj == "gated-gelu":
lowercase__ = 'gelu_new'
@property
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
return self.d_model
@property
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
return self.num_heads
@property
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return self.num_layers
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
lowercase__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
lowercase__ = 'past_encoder_sequence + sequence'
lowercase__ = {0: 'batch'}
lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs')
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return 13
@property
def UpperCAmelCase ( self : Optional[Any]) -> float:
"""simple docstring"""
return 5E-4
| 642
| 0
|
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class UpperCAmelCase__:
'''simple docstring'''
@property
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
return self.get_dummy_input()
@property
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''')
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Any=True , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : str=False , ) -> Any:
"""simple docstring"""
lowercase__ = 4
lowercase__ = 32
lowercase__ = (32, 32)
lowercase__ = torch.manual_seed(0)
lowercase__ = torch.device(lowerCAmelCase)
lowercase__ = (batch_size, num_channels) + sizes
lowercase__ = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase)
lowercase__ = {'hidden_states': hidden_states}
if include_temb:
lowercase__ = 1_28
lowercase__ = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase , device=lowerCAmelCase)
if include_res_hidden_states_tuple:
lowercase__ = torch.manual_seed(1)
lowercase__ = (randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase),)
if include_encoder_hidden_states:
lowercase__ = floats_tensor((batch_size, 32, 32)).to(lowerCAmelCase)
if include_skip_sample:
lowercase__ = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase , device=lowerCAmelCase)
return dummy_input
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 1_28,
}
if self.block_type == "up":
lowercase__ = 32
if self.block_type == "mid":
init_dict.pop('out_channels')
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
lowercase__, lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.block_class(**lowerCAmelCase)
unet_block.to(lowerCAmelCase)
unet_block.eval()
with torch.no_grad():
lowercase__ = unet_block(**lowerCAmelCase)
if isinstance(lowerCAmelCase , lowerCAmelCase):
lowercase__ = output[0]
self.assertEqual(output.shape , self.output_shape)
lowercase__ = output[0, -1, -3:, -3:]
lowercase__ = torch.tensor(lowerCAmelCase).to(lowerCAmelCase)
assert torch_all_close(output_slice.flatten() , lowerCAmelCase , atol=5E-3)
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps')
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__, lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.block_class(**lowerCAmelCase)
model.to(lowerCAmelCase)
model.train()
lowercase__ = model(**lowerCAmelCase)
if isinstance(lowerCAmelCase , lowerCAmelCase):
lowercase__ = output[0]
lowercase__ = torch.device(lowerCAmelCase)
lowercase__ = randn_tensor(output.shape , device=lowerCAmelCase)
lowercase__ = torch.nn.functional.mse_loss(lowerCAmelCase , lowerCAmelCase)
loss.backward()
| 716
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : str = XGLMTokenizer
A : List[Any] = XGLMTokenizerFast
A : int = True
A : Optional[Any] = True
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = '<pad>'
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(len(lowerCAmelCase) , 10_08)
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08)
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return XGLMTokenizer.from_pretrained('facebook/xglm-564M')
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase , f.name)
lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase)
lowercase__ = pickle.dumps(lowerCAmelCase)
pickle.loads(lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = 'I was born in 92000, and this is falsé.'
lowercase__ = tokenizer.tokenize(lowerCAmelCase)
lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
lowercase__ = 'Hello World!'
lowercase__ = [2, 3_12_27, 44_47, 35]
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = {
'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
| 642
| 0
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {
"google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json",
"google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json",
"google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json",
"google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[Any] = "mobilenet_v2"
def __init__( self : Dict , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : Optional[Any]=1.0 , lowerCAmelCase : Optional[int]=8 , lowerCAmelCase : Dict=8 , lowerCAmelCase : int=6 , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : int=True , lowerCAmelCase : int=True , lowerCAmelCase : int="relu6" , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=0.8 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : str=0.0_01 , lowerCAmelCase : List[Any]=2_55 , **lowerCAmelCase : List[str] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.')
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = depth_multiplier
lowercase__ = depth_divisible_by
lowercase__ = min_depth
lowercase__ = expand_ratio
lowercase__ = output_stride
lowercase__ = first_layer_is_expansion
lowercase__ = finegrained_output
lowercase__ = hidden_act
lowercase__ = tf_padding
lowercase__ = classifier_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = semantic_loss_ignore_index
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = version.parse("1.11" )
@property
def UpperCAmelCase ( self : Tuple) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict([('pixel_values', {0: 'batch'})])
@property
def UpperCAmelCase ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})])
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})])
@property
def UpperCAmelCase ( self : Any) -> float:
"""simple docstring"""
return 1E-4
| 717
|
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
lowercase__ = data
lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0]
@staticmethod
def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64)
lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data))
return padded_data
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64)
]
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]:
"""simple docstring"""
lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64
for i in range(16 , 80):
lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1)
return w
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.padding()
lowercase__ = self.split_blocks()
for block in self.blocks:
lowercase__ = self.expand_block(lowerCAmelCase)
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h
for i in range(0 , 80):
if 0 <= i < 20:
lowercase__ = (b & c) | ((~b) & d)
lowercase__ = 0X5_A_8_2_7_9_9_9
elif 20 <= i < 40:
lowercase__ = b ^ c ^ d
lowercase__ = 0X6_E_D_9_E_B_A_1
elif 40 <= i < 60:
lowercase__ = (b & c) | (b & d) | (c & d)
lowercase__ = 0X8_F_1_B_B_C_D_C
elif 60 <= i < 80:
lowercase__ = b ^ c ^ d
lowercase__ = 0XC_A_6_2_C_1_D_6
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = (
self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F,
a,
self.rotate(lowerCAmelCase , 30),
c,
d,
)
lowercase__ = (
self.h[0] + a & 0XF_F_F_F_F_F_F_F,
self.h[1] + b & 0XF_F_F_F_F_F_F_F,
self.h[2] + c & 0XF_F_F_F_F_F_F_F,
self.h[3] + d & 0XF_F_F_F_F_F_F_F,
self.h[4] + e & 0XF_F_F_F_F_F_F_F,
)
return ("{:08x}" * 5).format(*self.h)
def _lowerCAmelCase ( ):
lowercase__ = B'Test String'
assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
lowercase__ = parser.parse_args()
lowercase__ = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase__ = f.read()
else:
lowercase__ = bytes(A__ , 'utf-8' )
print(SHAaHash(A__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 642
| 0
|
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a__ : List[Any] = logging.get_logger(__name__)
a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
a__ : List[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
a__ : int = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = ["input_ids", "attention_mask"]
A : Any = BartTokenizer
def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type'))
lowercase__ = add_prefix_space
lowercase__ = pre_tok_class(**lowerCAmelCase)
lowercase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase__ = 'post_processor'
lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
if tokenizer_component_instance:
lowercase__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase__ = tuple(state['sep'])
if "cls" in state:
lowercase__ = tuple(state['cls'])
lowercase__ = False
if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = add_prefix_space
lowercase__ = True
if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets:
lowercase__ = trim_offsets
lowercase__ = True
if changes_to_apply:
lowercase__ = getattr(lowerCAmelCase , state.pop('type'))
lowercase__ = component_class(**lowerCAmelCase)
setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
@property
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.')
return None
return str(self._mask_token)
@mask_token.setter
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value
lowercase__ = value
def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase)
return tuple(lowerCAmelCase)
def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple:
"""simple docstring"""
lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 642
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ : List[str] = logging.get_logger(__name__)
a__ : List[Any] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ):
A : List[str] = "focalnet"
def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = use_conv_embed
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = focal_levels
lowercase__ = focal_windows
lowercase__ = hidden_act
lowercase__ = mlp_ratio
lowercase__ = hidden_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = use_layerscale
lowercase__ = layerscale_value
lowercase__ = use_post_layernorm
lowercase__ = use_post_layernorm_in_modulation
lowercase__ = normalize_modulator
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = encoder_stride
lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)]
lowercase__, lowercase__ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 719
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : str = (DDIMParallelScheduler,)
A : Any = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = {
'num_train_timesteps': 10_00,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**lowerCAmelCase)
return config
def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCAmelCase)
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase)
for t in scheduler.timesteps:
lowercase__ = model(lowerCAmelCase , lowerCAmelCase)
lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample
return sample
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase)
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1)
lowercase__ = scheduler_class(**lowerCAmelCase)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1]))
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , )
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]):
self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase)
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = self.dummy_sample_deter + 0.1
lowercase__ = self.dummy_sample_deter - 0.1
lowercase__ = samplea.shape[0]
lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0)
lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase)
lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 11_47.79_04) < 1E-2
assert abs(result_mean.item() - 0.49_82) < 1E-3
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_72.00_67) < 1E-2
assert abs(result_mean.item() - 0.22_39_67) < 1E-3
def UpperCAmelCase ( self : int) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(prediction_type='v_prediction')
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 52.53_02) < 1E-2
assert abs(result_mean.item() - 0.06_84) < 1E-3
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.82_95) < 1E-2
assert abs(result_mean.item() - 0.19_51) < 1E-3
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.07_84) < 1E-2
assert abs(result_mean.item() - 0.19_41) < 1E-3
| 642
| 0
|
def _lowerCAmelCase ( A__ , A__ ):
while second != 0:
lowercase__ = first & second
first ^= second
lowercase__ = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ : int = int(input("Enter the first number: ").strip())
a__ : List[str] = int(input("Enter the second number: ").strip())
print(F'''{add(first, second) = }''')
| 720
|
import cva
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict:
"""simple docstring"""
if k in (0.04, 0.06):
lowercase__ = k
lowercase__ = window_size
else:
raise ValueError('invalid k value')
def __str__( self : Tuple) -> str:
"""simple docstring"""
return str(self.k)
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]:
"""simple docstring"""
lowercase__ = cva.imread(lowerCAmelCase , 0)
lowercase__, lowercase__ = img.shape
lowercase__ = []
lowercase__ = img.copy()
lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB)
lowercase__, lowercase__ = np.gradient(lowerCAmelCase)
lowercase__ = dx**2
lowercase__ = dy**2
lowercase__ = dx * dy
lowercase__ = 0.04
lowercase__ = self.window_size // 2
for y in range(lowerCAmelCase , h - offset):
for x in range(lowerCAmelCase , w - offset):
lowercase__ = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = (wxx * wyy) - (wxy**2)
lowercase__ = wxx + wyy
lowercase__ = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r])
color_img.itemset((y, x, 0) , 0)
color_img.itemset((y, x, 1) , 0)
color_img.itemset((y, x, 2) , 2_55)
return color_img, corner_list
if __name__ == "__main__":
a__ : Dict = HarrisCorner(0.0_4, 3)
a__ , a__ : Dict = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 642
| 0
|
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCAmelCase ( A__ , A__ , A__ ):
# Initialise PyTorch model
lowercase__ = RemBertConfig.from_json_file(A__ )
print('Building PyTorch model from configuration: {}'.format(str(A__ ) ) )
lowercase__ = RemBertModel(A__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(A__ , A__ , A__ )
# Save pytorch-model
print('Save PyTorch model to {}'.format(A__ ) )
torch.save(model.state_dict() , A__ )
if __name__ == "__main__":
a__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--rembert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained RemBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a__ : Tuple = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 721
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : List[Any] = {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : int = "speech_to_text"
A : Optional[Any] = ["past_key_values"]
A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = max_source_positions
lowercase__ = max_target_positions
lowercase__ = num_conv_layers
lowercase__ = list(lowerCAmelCase)
lowercase__ = conv_channels
lowercase__ = input_feat_per_channel
lowercase__ = input_channels
if len(self.conv_kernel_sizes) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
| 642
| 0
|
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Dict = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
a__ : int = 5_00_03
a__ : Dict = 5_00_02
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Any = PLBartTokenizer
A : str = None
A : str = False
def UpperCAmelCase ( self : Union[str, Any]) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PLBartTokenizer(lowerCAmelCase , language_codes='base' , keep_accents=lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
lowercase__ = PLBartTokenizer(lowerCAmelCase , language_codes='base' , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
lowercase__ = tokenizer.vocab_size
lowercase__ = [tokenizer.convert_ids_to_tokens(lowerCAmelCase) for x in range(end - 4 , lowerCAmelCase)]
self.assertListEqual(lowerCAmelCase , ['__java__', '__python__', '__en_XX__', '<mask>'])
lowercase__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'
lowercase__ = tokenizer(lowerCAmelCase).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) , lowerCAmelCase , )
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
lowercase__ = PLBartTokenizer(lowerCAmelCase , language_codes='multi' , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
lowercase__ = tokenizer.vocab_size
lowercase__ = [tokenizer.convert_ids_to_tokens(lowerCAmelCase) for x in range(end - 7 , lowerCAmelCase)]
self.assertListEqual(
lowerCAmelCase , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'])
lowercase__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'
lowercase__ = tokenizer(lowerCAmelCase).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) , lowerCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
A : List[Any] = "uclanlp/plbart-python-en_XX"
A : List[Any] = [
"def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])",
"def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])",
]
A : Any = [
"Returns the maximum value of a b c.",
"Sums the values of a b c.",
]
A : str = [
134,
5452,
33460,
33441,
33463,
33465,
33463,
33449,
988,
20,
33456,
19,
33456,
771,
39,
4258,
889,
3318,
33441,
33463,
33465,
33463,
33449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def UpperCAmelCase ( cls : Any) -> str:
"""simple docstring"""
lowercase__ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX')
lowercase__ = 1
return cls
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_00_01)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_00_02)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_00_03)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
self.assertIn(lowerCAmelCase , self.tokenizer.all_special_ids)
lowercase__ = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
lowercase__ = self.tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase)
lowercase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase)
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase)
lowercase__ = 10
lowercase__ = self.tokenizer(lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase).input_ids[0]
self.assertEqual(ids[-2] , 2)
self.assertEqual(ids[-1] , lowerCAmelCase)
self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Optional[Any]:
"""simple docstring"""
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__']) , [5_00_04, 5_00_01])
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = tempfile.mkdtemp()
lowercase__ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase)
lowercase__ = PLBartTokenizer.from_pretrained(lowerCAmelCase)
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , return_tensors='pt')
lowercase__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id)
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE])
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase)
self.assertEqual(batch.decoder_input_ids[1][-1] , 2)
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE])
@require_torch
def UpperCAmelCase ( self : Dict) -> str:
"""simple docstring"""
lowercase__ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=len(self.expected_src_tokens) , return_tensors='pt' , )
lowercase__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
self.assertEqual((2, 26) , batch.input_ids.shape)
self.assertEqual((2, 26) , batch.attention_mask.shape)
lowercase__ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase)
self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [])
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE])
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = self.tokenizer(self.src_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=3 , return_tensors='pt')
lowercase__ = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=10 , return_tensors='pt')
lowercase__ = targets['input_ids']
lowercase__ = shift_tokens_right(lowerCAmelCase , self.tokenizer.pad_token_id)
self.assertEqual(batch.input_ids.shape[1] , 3)
self.assertEqual(batch.decoder_input_ids.shape[1] , 10)
@require_torch
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java')
self.assertEqual(
nested_simplify(lowerCAmelCase) , {
# A, test, EOS, en_XX
'input_ids': [[1_50, 2_42, 2, 5_00_03]],
'attention_mask': [[1, 1, 1, 1]],
# java
'forced_bos_token_id': 5_00_01,
} , )
| 700
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[int] = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
a__ : Optional[int] = logging.getLogger(__name__)
torch.set_grad_enabled(False)
a__ : Tuple = "cuda" if torch.cuda.is_available() else "cpu"
def _lowerCAmelCase ( A__ , A__=100 , A__=" " ):
lowercase__ = text.split(A__ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )]
def _lowerCAmelCase ( A__ ):
lowercase__, lowercase__ = [], []
for title, text in zip(documents['title'] , documents['text'] ):
if text is not None:
for passage in split_text(A__ ):
titles.append(title if title is not None else '' )
texts.append(A__ )
return {"title": titles, "text": texts}
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = ctx_tokenizer(
documents['title'] , documents['text'] , truncation=A__ , padding='longest' , return_tensors='pt' )['input_ids']
lowercase__ = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def _lowerCAmelCase ( A__ , A__ , A__ , ):
######################################
logger.info('Step 1 - Create the dataset' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ = load_dataset(
'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc )
# And compute the embeddings
lowercase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ )
lowercase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
lowercase__ = Features(
{'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space
lowercase__ = dataset.map(
partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , )
# And finally save your dataset
lowercase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' )
dataset.save_to_disk(A__ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('Step 2 - Index the dataset' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('embeddings' , custom_index=A__ )
# And save the index
lowercase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' )
dataset.get_index('embeddings' ).save(A__ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : str = field(
default=str(Path(lowerCamelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
A : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
A : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
A : Optional[str] = field(
default=str(Path(lowerCamelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
A : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
A : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
a__ : Optional[int] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
a__ : Optional[int] = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
a__ : int = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 701
|
# Imports
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int:
"""simple docstring"""
if red is not None:
lowercase__ = red
if green is not None:
lowercase__ = green
if blue is not None:
lowercase__ = blue
if red_edge is not None:
lowercase__ = red_edge
if nir is not None:
lowercase__ = nir
return True
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
lowercase__ = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!')
return False
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return (self.nir / self.green) - 1
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
return (self.red - self.blue) / self.red
def UpperCAmelCase ( self : Any) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2))
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
return self.nir - self.green
def UpperCAmelCase ( self : Tuple) -> List[Any]:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
return (max_value - min_value) / max_value
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 642
| 0
|
'''simple docstring'''
import csv
import tweepy
# Twitter API credentials
a__ : Optional[int] = ""
a__ : Union[str, Any] = ""
a__ : str = ""
a__ : Optional[Any] = ""
def _lowerCAmelCase ( A__ ):
# authorize twitter, initialize tweepy
lowercase__ = tweepy.OAuthHandler(A__ , A__ )
auth.set_access_token(A__ , A__ )
lowercase__ = tweepy.API(A__ )
# initialize a list to hold all the tweepy Tweets
lowercase__ = []
# make initial request for most recent tweets (200 is the maximum allowed count)
lowercase__ = api.user_timeline(screen_name=A__ , count=200 )
# save most recent tweets
alltweets.extend(A__ )
# save the id of the oldest tweet less one
lowercase__ = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(A__ ) > 0:
print(F'''getting tweets before {oldest}''' )
# all subsequent requests use the max_id param to prevent duplicates
lowercase__ = api.user_timeline(
screen_name=A__ , count=200 , max_id=A__ )
# save most recent tweets
alltweets.extend(A__ )
# update the id of the oldest tweet less one
lowercase__ = alltweets[-1].id - 1
print(F'''...{len(A__ )} tweets downloaded so far''' )
# transform the tweepy tweets into a 2D array that will populate the csv
lowercase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F'''new_{screen_name}_tweets.csv''' , 'w' ) as f:
lowercase__ = csv.writer(A__ )
writer.writerow(['id', 'created_at', 'text'] )
writer.writerows(A__ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("FirePing32")
| 702
|
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = load_tool('text-classification')
self.tool.setup()
lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
| 642
| 0
|
def _lowerCAmelCase ( A__ ):
lowercase__ = hex_num.strip()
if not hex_num:
raise ValueError('No value was passed to the function' )
lowercase__ = hex_num[0] == '-'
if is_negative:
lowercase__ = hex_num[1:]
try:
lowercase__ = int(A__ , 16 )
except ValueError:
raise ValueError('Invalid value was passed to the function' )
lowercase__ = ''
while int_num > 0:
lowercase__ = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('-' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = None
A : Optional[int] = None
@property
def UpperCAmelCase ( self : str) -> Union[str, Any]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(lowerCAmelCase , 'feature_size'))
self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate'))
self.assertTrue(hasattr(lowerCAmelCase , 'padding_value'))
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name])))
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_torch
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = self.feat_extract_tester.seq_length_diff
lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff
lowercase__ = self.feat_extract_tester.min_seq_length
lowercase__ = self.feat_extract_tester.batch_size
lowercase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest')
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1]))
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
lowercase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
self.assertTrue(len(input_a[0]) == pad_min_length)
self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff)
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0])))
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a))
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size)
# Check padding value is correct
lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff))
< 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1E-3)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
# truncate to smallest
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]))
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to smallest with np
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(input_a.shape[1] == len(speech_inputs[0]))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to middle
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1]))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1]))
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = 12
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , )
lowercase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowercase__ = len(speech_inputs[0])
if expected_length % pad_to_multiple_of != 0:
lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0]) == expected_length)
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2)
@require_tf
def UpperCAmelCase ( self : str) -> str:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2)
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = min(lowerCAmelCase)
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(
list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length])
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
| 642
| 0
|
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Dict = ProphetNetTokenizer
A : Dict = False
def UpperCAmelCase ( self : Tuple) -> List[Any]:
"""simple docstring"""
super().setUp()
lowercase__ = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = 'UNwant\u00E9d,running'
lowercase__ = 'unwanted, running'
return input_text, output_text
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = self.tokenizer_class(self.vocab_file)
lowercase__ = tokenizer.tokenize('UNwant\u00E9d,running')
self.assertListEqual(lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [9, 6, 7, 12, 10, 11])
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
lowercase__ = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz'])
def UpperCAmelCase ( self : Dict) -> str:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello'])
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo'])
def UpperCAmelCase ( self : str) -> Optional[Any]:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello'])
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello'])
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'])
def UpperCAmelCase ( self : Any) -> Dict:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'])
def UpperCAmelCase ( self : List[Any]) -> Any:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'])
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=['[UNK]'])
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'])
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
lowercase__ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
lowercase__ = {}
for i, token in enumerate(lowerCAmelCase):
lowercase__ = i
lowercase__ = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token='[UNK]')
self.assertListEqual(tokenizer.tokenize('') , [])
self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing'])
self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing'])
@require_torch
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased')
lowercase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
lowercase__ = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
lowercase__ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors='pt')
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
lowercase__ = list(batch.input_ids.numpy()[0])
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
self.assertEqual((2, 9) , batch.input_ids.shape)
self.assertEqual((2, 9) , batch.attention_mask.shape)
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
self.assertTrue(_is_whitespace(' '))
self.assertTrue(_is_whitespace('\t'))
self.assertTrue(_is_whitespace('\r'))
self.assertTrue(_is_whitespace('\n'))
self.assertTrue(_is_whitespace('\u00A0'))
self.assertFalse(_is_whitespace('A'))
self.assertFalse(_is_whitespace('-'))
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
self.assertTrue(_is_control('\u0005'))
self.assertFalse(_is_control('A'))
self.assertFalse(_is_control(' '))
self.assertFalse(_is_control('\t'))
self.assertFalse(_is_control('\r'))
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
self.assertTrue(_is_punctuation('-'))
self.assertTrue(_is_punctuation('$'))
self.assertTrue(_is_punctuation('`'))
self.assertTrue(_is_punctuation('.'))
self.assertFalse(_is_punctuation('A'))
self.assertFalse(_is_punctuation(' '))
@slow
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
lowercase__ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased')
lowercase__ = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase)
lowercase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase)
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase)
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase)
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 704
|
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowerCAmelCase ( A__ ):
lowercase__ = prime_factors(A__ )
if is_square_free(A__ ):
return -1 if len(A__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
def _lowerCAmelCase ( A__ , A__ , A__ ):
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A__ , A__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
lowercase__ = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowercase__ = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ : List[str] = logging.get_logger(__name__)
a__ : List[Any] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
A : List[str] = "focalnet"
def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = use_conv_embed
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = focal_levels
lowercase__ = focal_windows
lowercase__ = hidden_act
lowercase__ = mlp_ratio
lowercase__ = hidden_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = use_layerscale
lowercase__ = layerscale_value
lowercase__ = use_post_layernorm
lowercase__ = use_post_layernorm_in_modulation
lowercase__ = normalize_modulator
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = encoder_stride
lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)]
lowercase__, lowercase__ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 642
| 0
|
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : List[str] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Tuple=0) -> Any:
"""simple docstring"""
lowercase__ = np.random.RandomState(lowerCAmelCase)
lowercase__ = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = pipe(**lowerCAmelCase).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowercase__ = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
lowercase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase)
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = pipe(**lowerCAmelCase).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowercase__ = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = pipe(**lowerCAmelCase).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowercase__ = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCAmelCase ( self : List[Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
lowercase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = pipe(**lowerCAmelCase).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowercase__ = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
lowercase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = pipe(**lowerCAmelCase).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowercase__ = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCAmelCase ( self : List[str]) -> int:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = pipe(**lowerCAmelCase).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowercase__ = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCAmelCase ( self : List[Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = 3 * [inputs['prompt']]
# forward
lowercase__ = pipe(**lowerCAmelCase)
lowercase__ = output.images[0, -3:, -3:, -1]
lowercase__ = self.get_dummy_inputs()
lowercase__ = 3 * [inputs.pop('prompt')]
lowercase__ = pipe.tokenizer(
lowerCAmelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = text_inputs['input_ids']
lowercase__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]
lowercase__ = prompt_embeds
# forward
lowercase__ = pipe(**lowerCAmelCase)
lowercase__ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = self.get_dummy_inputs()
lowercase__ = 3 * ['this is a negative prompt']
lowercase__ = negative_prompt
lowercase__ = 3 * [inputs['prompt']]
# forward
lowercase__ = pipe(**lowerCAmelCase)
lowercase__ = output.images[0, -3:, -3:, -1]
lowercase__ = self.get_dummy_inputs()
lowercase__ = 3 * [inputs.pop('prompt')]
lowercase__ = []
for p in [prompt, negative_prompt]:
lowercase__ = pipe.tokenizer(
lowerCAmelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = text_inputs['input_ids']
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0])
lowercase__, lowercase__ = embeds
# forward
lowercase__ = pipe(**lowerCAmelCase)
lowercase__ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4
@nightly
@require_onnxruntime
@require_torch_gpu
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@property
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase ( self : Union[str, Any]) -> List[str]:
"""simple docstring"""
lowercase__ = ort.SessionOptions()
lowercase__ = False
return options
def UpperCAmelCase ( self : Tuple) -> Optional[Any]:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = 'A painting of a squirrel eating a burger'
np.random.seed(0)
lowercase__ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np')
lowercase__ = output.images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase__ = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = DDIMScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx')
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = 'open neural network exchange'
lowercase__ = np.random.RandomState(0)
lowercase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase , output_type='np')
lowercase__ = output.images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase__ = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def UpperCAmelCase ( self : Any) -> Optional[int]:
"""simple docstring"""
lowercase__ = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx')
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = 'open neural network exchange'
lowercase__ = np.random.RandomState(0)
lowercase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase , output_type='np')
lowercase__ = output.images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase__ = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def UpperCAmelCase ( self : Tuple) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = 0
def test_callback_fn(lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : np.ndarray) -> None:
lowercase__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
lowercase__ = latents[0, -3:, -3:, -1]
lowercase__ = np.array(
[-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
lowercase__ = latents[0, -3:, -3:, -1]
lowercase__ = np.array(
[-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3
lowercase__ = False
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = 'Andromeda galaxy in a bottle'
lowercase__ = np.random.RandomState(0)
pipe(
prompt=lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def UpperCAmelCase ( self : str) -> Any:
"""simple docstring"""
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(lowerCAmelCase , lowerCAmelCase)
assert pipe.safety_checker is None
lowercase__ = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase)
lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase__ = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
| 706
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Dict = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
a__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
a__ : Any = {"facebook/blenderbot_small-90M": 5_12}
def _lowerCAmelCase ( A__ ):
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(A__ )
return pairs
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase)
with open(lowerCAmelCase , encoding='utf-8') as vocab_handle:
lowercase__ = json.load(lowerCAmelCase)
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase , encoding='utf-8') as merges_handle:
lowercase__ = merges_handle.read().split('\n')[1:-1]
lowercase__ = [tuple(merge.split()) for merge in merges]
lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase))))
lowercase__ = {}
@property
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return len(self.encoder)
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase)
lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase)
lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase)
if "\n" in token:
lowercase__ = token.replace('\n' , ' __newln__')
lowercase__ = token.split(' ')
lowercase__ = []
for token in tokens:
if not len(lowerCAmelCase):
continue
lowercase__ = token.lower()
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>'])
lowercase__ = get_pairs(lowerCAmelCase)
if not pairs:
words.append(lowerCAmelCase)
continue
while True:
lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf')))
if bigram not in self.bpe_ranks:
break
lowercase__, lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(lowerCAmelCase):
try:
lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase)
new_word.extend(word[i:j])
lowercase__ = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = new_word
if len(lowerCAmelCase) == 1:
break
else:
lowercase__ = get_pairs(lowerCAmelCase)
lowercase__ = '@@ '.join(lowerCAmelCase)
lowercase__ = word[:-4]
lowercase__ = word
words.append(lowerCAmelCase)
return " ".join(lowerCAmelCase)
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase)
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' ')))
return split_tokens
def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int:
"""simple docstring"""
lowercase__ = token.lower()
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str:
"""simple docstring"""
lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip()
return out_string
def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(lowerCAmelCase , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n')
lowercase__ = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!')
lowercase__ = token_index
writer.write(' '.join(lowerCAmelCase) + '\n')
index += 1
return vocab_file, merge_file
| 642
| 0
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = None
A : Optional[int] = None
@property
def UpperCAmelCase ( self : str) -> Union[str, Any]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(lowerCAmelCase , 'feature_size'))
self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate'))
self.assertTrue(hasattr(lowerCAmelCase , 'padding_value'))
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name])))
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_torch
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = self.feat_extract_tester.seq_length_diff
lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff
lowercase__ = self.feat_extract_tester.min_seq_length
lowercase__ = self.feat_extract_tester.batch_size
lowercase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest')
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1]))
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
lowercase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
self.assertTrue(len(input_a[0]) == pad_min_length)
self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff)
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0])))
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a))
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size)
# Check padding value is correct
lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff))
< 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1E-3)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
# truncate to smallest
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]))
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to smallest with np
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(input_a.shape[1] == len(speech_inputs[0]))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to middle
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1]))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1]))
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = 12
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , )
lowercase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowercase__ = len(speech_inputs[0])
if expected_length % pad_to_multiple_of != 0:
lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0]) == expected_length)
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2)
@require_tf
def UpperCAmelCase ( self : str) -> str:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2)
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = min(lowerCAmelCase)
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(
list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length])
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
| 707
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
a__ : str = input("Enter image url: ").strip()
print(F'''Downloading image from {url} ...''')
a__ : Tuple = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
a__ : str = soup.find("meta", {"property": "og:image"})["content"]
a__ : int = requests.get(image_url).content
a__ : Dict = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg'''
with open(file_name, "wb") as fp:
fp.write(image_data)
print(F'''Done. Image saved to disk as {file_name}.''')
| 708
|
import heapq
import sys
import numpy as np
a__ : Dict = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = []
lowercase__ = set()
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return len(self.elements) == 0
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(lowerCAmelCase)
else:
# update
# print("update", item)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
if item in self.set:
self.set.remove(lowerCAmelCase)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
return self.elements[0][1]
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
self.set.remove(lowerCAmelCase)
return (priority, item)
def _lowerCAmelCase ( A__ , A__ ):
# euclidean distance
lowercase__ = np.array(A__ )
lowercase__ = np.array(A__ )
return np.linalg.norm(a - b )
def _lowerCAmelCase ( A__ , A__ ):
# integer division by time variable
return consistent_heuristic(A__ , A__ ) // t
def _lowerCAmelCase ( A__ , A__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ )
return ans
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = np.chararray((n, n) )
for i in range(A__ ):
for j in range(A__ ):
lowercase__ = '*'
for i in range(A__ ):
for j in range(A__ ):
if (j, (n - 1) - i) in blocks:
lowercase__ = '#'
lowercase__ = '-'
lowercase__ = back_pointer[goal]
while x != start:
((lowercase__), (lowercase__)) = x
# print(x)
lowercase__ = '-'
lowercase__ = back_pointer[x]
lowercase__ = '-'
for i in range(A__ ):
for j in range(A__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowercase__ = back_pointer[goal]
while x != start:
print(A__ , end=' ' )
lowercase__ = back_pointer[x]
print(A__ )
sys.exit()
def _lowerCAmelCase ( A__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
for itera in range(A__ ):
open_list[itera].remove_element(A__ )
# print("s", s)
# print("j", j)
((lowercase__), (lowercase__)) = s
lowercase__ = (x - 1, y)
lowercase__ = (x + 1, y)
lowercase__ = (x, y + 1)
lowercase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A__ )
lowercase__ = -1
lowercase__ = float('inf' )
if valid(A__ ) and g_function[neighbours] > g_function[s] + 1:
lowercase__ = g_function[s] + 1
lowercase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) )
if neighbours not in close_list_inad:
for var in range(1 , A__ ):
if key(A__ , A__ , A__ , A__ ) <= Wa * key(
A__ , 0 , A__ , A__ ):
open_list[j].put(
A__ , key(A__ , A__ , A__ , A__ ) )
def _lowerCAmelCase ( ):
lowercase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a__ : Any = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a__ : Any = make_common_ground()
a__ : Union[str, Any] = blocks_blk
# hyper parameters
a__ : List[Any] = 1
a__ : List[str] = 1
a__ : Optional[int] = 20
a__ : Optional[Any] = 3 # one consistent and two other inconsistent
# start and end destination
a__ : Tuple = (0, 0)
a__ : str = (n - 1, n - 1)
a__ : Optional[Any] = 1
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {start: 0, goal: float('inf' )}
lowercase__ = {start: -1, goal: -1}
lowercase__ = []
lowercase__ = set()
for i in range(A__ ):
open_list.append(PriorityQueue() )
open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) )
lowercase__ = []
lowercase__ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__, lowercase__ = open_list[i].top_show()
visited.add(A__ )
expand_state(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_inad.append(A__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__ = open_list[0].top_show()
visited.add(A__ )
expand_state(
A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_anchor.append(A__ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A__ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 642
| 0
|
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
a__ : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ):
output_path.parent.mkdir(parents=A__ , exist_ok=A__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , )
else:
export(
A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , )
@torch.no_grad()
def _lowerCAmelCase ( A__ , A__ , A__ , A__ = False ):
lowercase__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
lowercase__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
lowercase__ = 'cpu'
lowercase__ = Path(A__ )
# VAE DECODER
lowercase__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
lowercase__ = vae_decoder.config.latent_channels
# forward only through the decoder part
lowercase__ = vae_decoder.decode
onnx_export(
A__ , model_args=(
torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=A__ , )
del vae_decoder
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
a__ : Any = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 709
|
import math
import sys
def _lowerCAmelCase ( A__ ):
lowercase__ = ''
try:
with open(A__ , 'rb' ) as binary_file:
lowercase__ = binary_file.read()
for dat in data:
lowercase__ = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = {'0': '0', '1': '1'}
lowercase__, lowercase__ = '', ''
lowercase__ = len(A__ )
for i in range(len(A__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase__ = lexicon[curr_string]
result += last_match_id
lowercase__ = last_match_id + '0'
if math.loga(A__ ).is_integer():
lowercase__ = {}
for curr_key in list(A__ ):
lowercase__ = lexicon.pop(A__ )
lowercase__ = new_lex
lowercase__ = last_match_id + '1'
index += 1
lowercase__ = ''
return result
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = 8
try:
with open(A__ , 'wb' ) as opened_file:
lowercase__ = [
to_write[i : i + byte_length]
for i in range(0 , len(A__ ) , A__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowercase__ = data_bits[counter:]
lowercase__ = data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = read_file_binary(A__ )
lowercase__ = remove_prefix(A__ )
lowercase__ = decompress_data(A__ )
write_file_binary(A__ , A__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 642
| 0
|
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCAmelCase ( A__ , A__=1 ):
if n_shave_prefix_segments >= 0:
return ".".join(path.split('.' )[n_shave_prefix_segments:] )
else:
return ".".join(path.split('.' )[:n_shave_prefix_segments] )
def _lowerCAmelCase ( A__ , A__=0 ):
lowercase__ = []
for old_item in old_list:
lowercase__ = old_item.replace('in_layers.0' , 'norm1' )
lowercase__ = new_item.replace('in_layers.2' , 'conv1' )
lowercase__ = new_item.replace('out_layers.0' , 'norm2' )
lowercase__ = new_item.replace('out_layers.3' , 'conv2' )
lowercase__ = new_item.replace('emb_layers.1' , 'time_emb_proj' )
lowercase__ = new_item.replace('skip_connection' , 'conv_shortcut' )
lowercase__ = shave_segments(A__ , n_shave_prefix_segments=A__ )
mapping.append({'old': old_item, 'new': new_item} )
return mapping
def _lowerCAmelCase ( A__ , A__=0 ):
lowercase__ = []
for old_item in old_list:
lowercase__ = old_item
lowercase__ = new_item.replace('norm.weight' , 'group_norm.weight' )
lowercase__ = new_item.replace('norm.bias' , 'group_norm.bias' )
lowercase__ = new_item.replace('proj_out.weight' , 'proj_attn.weight' )
lowercase__ = new_item.replace('proj_out.bias' , 'proj_attn.bias' )
lowercase__ = shave_segments(A__ , n_shave_prefix_segments=A__ )
mapping.append({'old': old_item, 'new': new_item} )
return mapping
def _lowerCAmelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None ):
assert isinstance(A__ , A__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
lowercase__ = old_checkpoint[path]
lowercase__ = old_tensor.shape[0] // 3
lowercase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
lowercase__ = old_tensor.shape[0] // config['num_head_channels'] // 3
lowercase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
lowercase__, lowercase__, lowercase__ = old_tensor.split(channels // num_heads , dim=1 )
lowercase__ = query.reshape(A__ )
lowercase__ = key.reshape(A__ )
lowercase__ = value.reshape(A__ )
for path in paths:
lowercase__ = path['new']
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
lowercase__ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' )
lowercase__ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' )
lowercase__ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' )
if additional_replacements is not None:
for replacement in additional_replacements:
lowercase__ = new_path.replace(replacement['old'] , replacement['new'] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
lowercase__ = old_checkpoint[path['old']][:, :, 0]
else:
lowercase__ = old_checkpoint[path['old']]
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = {}
lowercase__ = checkpoint['time_embed.0.weight']
lowercase__ = checkpoint['time_embed.0.bias']
lowercase__ = checkpoint['time_embed.2.weight']
lowercase__ = checkpoint['time_embed.2.bias']
lowercase__ = checkpoint['input_blocks.0.0.weight']
lowercase__ = checkpoint['input_blocks.0.0.bias']
lowercase__ = checkpoint['out.0.weight']
lowercase__ = checkpoint['out.0.bias']
lowercase__ = checkpoint['out.2.weight']
lowercase__ = checkpoint['out.2.bias']
# Retrieves the keys for the input blocks only
lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} )
lowercase__ = {
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(A__ )
}
# Retrieves the keys for the middle blocks only
lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} )
lowercase__ = {
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(A__ )
}
# Retrieves the keys for the output blocks only
lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} )
lowercase__ = {
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(A__ )
}
for i in range(1 , A__ ):
lowercase__ = (i - 1) // (config['num_res_blocks'] + 1)
lowercase__ = (i - 1) % (config['num_res_blocks'] + 1)
lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
lowercase__ = checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
lowercase__ = checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
lowercase__ = renew_resnet_paths(A__ )
lowercase__ = {'old': F'''input_blocks.{i}.0''', 'new': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
lowercase__ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'}
assign_to_checkpoint(
A__ , A__ , A__ , additional_replacements=[meta_path, resnet_op] , config=A__ )
if len(A__ ):
lowercase__ = renew_attention_paths(A__ )
lowercase__ = {
'old': F'''input_blocks.{i}.1''',
'new': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
lowercase__ = {
F'''input_blocks.{i}.1.qkv.bias''': {
'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=A__ , config=A__ , )
lowercase__ = middle_blocks[0]
lowercase__ = middle_blocks[1]
lowercase__ = middle_blocks[2]
lowercase__ = renew_resnet_paths(A__ )
assign_to_checkpoint(A__ , A__ , A__ , config=A__ )
lowercase__ = renew_resnet_paths(A__ )
assign_to_checkpoint(A__ , A__ , A__ , config=A__ )
lowercase__ = renew_attention_paths(A__ )
lowercase__ = {
'middle_block.1.qkv.bias': {
'key': 'mid_block.attentions.0.key.bias',
'query': 'mid_block.attentions.0.query.bias',
'value': 'mid_block.attentions.0.value.bias',
},
'middle_block.1.qkv.weight': {
'key': 'mid_block.attentions.0.key.weight',
'query': 'mid_block.attentions.0.query.weight',
'value': 'mid_block.attentions.0.value.weight',
},
}
assign_to_checkpoint(
A__ , A__ , A__ , attention_paths_to_split=A__ , config=A__ )
for i in range(A__ ):
lowercase__ = i // (config['num_res_blocks'] + 1)
lowercase__ = i % (config['num_res_blocks'] + 1)
lowercase__ = [shave_segments(A__ , 2 ) for name in output_blocks[i]]
lowercase__ = {}
for layer in output_block_layers:
lowercase__, lowercase__ = layer.split('.' )[0], shave_segments(A__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(A__ )
else:
lowercase__ = [layer_name]
if len(A__ ) > 1:
lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
lowercase__ = renew_resnet_paths(A__ )
lowercase__ = renew_resnet_paths(A__ )
lowercase__ = {'old': F'''output_blocks.{i}.0''', 'new': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
lowercase__ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] )
lowercase__ = checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
lowercase__ = checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(A__ ) == 2:
lowercase__ = []
if len(A__ ):
lowercase__ = renew_attention_paths(A__ )
lowercase__ = {
'old': F'''output_blocks.{i}.1''',
'new': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
lowercase__ = {
F'''output_blocks.{i}.1.qkv.bias''': {
'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=A__ , )
else:
lowercase__ = renew_resnet_paths(A__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
lowercase__ = '.'.join(['output_blocks', str(A__ ), path['old']] )
lowercase__ = '.'.join(['up_blocks', str(A__ ), 'resnets', str(A__ ), path['new']] )
lowercase__ = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
a__ : Any = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
a__ : List[str] = parser.parse_args()
a__ : Union[str, Any] = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
a__ : Optional[Any] = json.loads(f.read())
a__ : List[str] = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
a__ : Union[str, Any] = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
a__ : Any = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
a__ : Optional[int] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1]))
a__ : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 710
|
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {"vocab_file": "vocab.txt"}
a__ : int = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a__ : Dict = {
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' ) as f:
lowercase__ = f.read().splitlines()
return [l.strip() for l in lines]
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = load_vocab_file(lowerCAmelCase)
lowercase__ = dict(enumerate(self.all_tokens))
lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)}
lowercase__ = unk_token
lowercase__ = cls_token
lowercase__ = pad_token
lowercase__ = mask_token
lowercase__ = eos_token
lowercase__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
return text.split()
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]:
"""simple docstring"""
return len(self._id_to_token)
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens)}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.cls_token_id]
lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!')
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.')
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase) + [1]
return mask
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt')
with open(lowerCAmelCase , 'w') as f:
f.write('\n'.join(self.all_tokens))
return (vocab_file,)
@property
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int:
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
| 642
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : List[Any] = {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : int = "speech_to_text"
A : Optional[Any] = ["past_key_values"]
A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = max_source_positions
lowercase__ = max_target_positions
lowercase__ = num_conv_layers
lowercase__ = list(lowerCAmelCase)
lowercase__ = conv_channels
lowercase__ = input_feat_per_channel
lowercase__ = input_channels
if len(self.conv_kernel_sizes) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
| 711
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> MetricInfo:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'),
}) , )
def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]:
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase)
}
| 642
| 0
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : str = XGLMTokenizer
A : List[Any] = XGLMTokenizerFast
A : int = True
A : Optional[Any] = True
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = '<pad>'
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(len(lowerCAmelCase) , 10_08)
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08)
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return XGLMTokenizer.from_pretrained('facebook/xglm-564M')
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase , f.name)
lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase)
lowercase__ = pickle.dumps(lowerCAmelCase)
pickle.loads(lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = 'I was born in 92000, and this is falsé.'
lowercase__ = tokenizer.tokenize(lowerCAmelCase)
lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
lowercase__ = 'Hello World!'
lowercase__ = [2, 3_12_27, 44_47, 35]
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = {
'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
| 712
|
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = block_sizes
lowercase__ = num_decoder_layers
lowercase__ = d_model
lowercase__ = n_head
lowercase__ = d_head
lowercase__ = d_inner
lowercase__ = hidden_act
lowercase__ = hidden_dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = 2
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
lowercase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowercase__ = n_head
# Used in the tests to check the size of the first hidden state
lowercase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowercase__ = self.num_hidden_layers + 2
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str:
"""simple docstring"""
lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase)
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
A : Dict = (
{
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
"fill-mask": TFFunnelForMaskedLM,
"question-answering": TFFunnelForQuestionAnswering,
"text-classification": TFFunnelForSequenceClassification,
"token-classification": TFFunnelForTokenClassification,
"zero-shot": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Optional[int] = False
A : Optional[int] = False
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase)
@require_tf
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
A : List[str] = False
A : int = False
def UpperCAmelCase ( self : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
| 642
| 0
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Tuple = "microsoft/speecht5_tts"
A : Dict = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Dict = SpeechTaProcessor
A : Dict = SpeechTaForTextToSpeech
A : Union[str, Any] = SpeechTaHifiGan
A : Dict = ["text"]
A : int = ["audio"]
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
if self.post_processor is None:
lowercase__ = 'microsoft/speecht5_hifigan'
super().setup()
def UpperCAmelCase ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=None) -> int:
"""simple docstring"""
lowercase__ = self.pre_processor(text=lowerCAmelCase , return_tensors='pt' , truncation=lowerCAmelCase)
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('Datasets needs to be installed if not passing speaker embeddings.')
lowercase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation')
lowercase__ = torch.tensor(embeddings_dataset[73_05]['xvector']).unsqueeze(0)
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
with torch.no_grad():
return self.model.generate_speech(**lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
with torch.no_grad():
return self.post_processor(lowerCAmelCase).cpu().detach()
| 713
|
def _lowerCAmelCase ( A__ , A__ , A__ ):
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A__ , A__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
lowercase__ = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowercase__ = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def _lowerCAmelCase ( A__ ):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class UpperCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : nn.Module , lowerCAmelCase : int) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ = module
lowercase__ = nn.Sequential(
nn.Linear(module.in_features , lowerCAmelCase , bias=lowerCAmelCase) , nn.Linear(lowerCAmelCase , module.out_features , bias=lowerCAmelCase) , )
lowercase__ = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def UpperCAmelCase ( self : str , lowerCAmelCase : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> List[str]:
"""simple docstring"""
return self.module(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) + self.adapter(lowerCAmelCase)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
A : Optional[int] = "bigscience/bloom-1b7"
# Constant values
A : List[str] = 2.109_6595_5269_2574
A : Any = "Hello my name is"
A : List[str] = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
A : List[Any] = 10
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained(self.model_name)
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto')
lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto')
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = self.model_abit.config
self.assertTrue(hasattr(lowerCAmelCase , 'quantization_config'))
lowercase__ = config.to_dict()
lowercase__ = config.to_diff_dict()
lowercase__ = config.to_json_string()
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
lowercase__ = self.model_fpaa.get_memory_footprint()
lowercase__ = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
lowercase__ = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCAmelCase , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt')
lowercase__ = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase) , self.EXPECTED_OUTPUTS)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
lowercase__ = BitsAndBytesConfig()
lowercase__ = True
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase , device_map='auto')
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt')
lowercase__ = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase) , self.EXPECTED_OUTPUTS)
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
lowercase__ = BitsAndBytesConfig()
with self.assertRaises(lowerCAmelCase):
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase , load_in_abit=lowerCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase):
# Tries with `str`
self.model_abit.to('cpu')
with self.assertRaises(lowerCAmelCase):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(lowerCAmelCase):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0'))
with self.assertRaises(lowerCAmelCase):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCAmelCase):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt')
lowercase__ = self.model_fpaa.to(torch.floataa)
lowercase__ = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
# Check this does not throw an error
lowercase__ = self.model_fpaa.to('cpu')
# Check this does not throw an error
lowercase__ = self.model_fpaa.half()
# Check this does not throw an error
lowercase__ = self.model_fpaa.float()
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=lowerCAmelCase , device_map='auto')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCAmelCase ( cls : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = 't5-small'
lowercase__ = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
lowercase__ = AutoTokenizer.from_pretrained(cls.model_name)
lowercase__ = 'Translate in German: Hello, my dog is cute'
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Union[str, Any]) -> Any:
"""simple docstring"""
from transformers import TaForConditionalGeneration
lowercase__ = TaForConditionalGeneration._keep_in_fpaa_modules
lowercase__ = None
# test with `t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto')
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0)
lowercase__ = model.generate(**lowerCAmelCase)
# test with `flan-t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map='auto')
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0)
lowercase__ = model.generate(**lowerCAmelCase)
lowercase__ = modules
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0)
lowercase__ = model.generate(**lowerCAmelCase)
# test with `flan-t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map='auto')
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt').to(0)
lowercase__ = model.generate(**lowerCAmelCase)
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
super().setUp()
# model_name
lowercase__ = 'bigscience/bloom-560m'
lowercase__ = 't5-small'
# Different types of model
lowercase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto')
# Sequence classification model
lowercase__ = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase , device_map='auto')
# CausalLM model
lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto')
# Seq2seq model
lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCAmelCase , device_map='auto')
def UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
lowercase__ = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowercase__ = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
super().setUp()
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase , device_map='balanced')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
lowercase__ = self.tokenizer(self.input_text , return_tensors='pt')
# Second real batch
lowercase__ = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase) , self.EXPECTED_OUTPUTS)
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
lowercase__ = 'facebook/opt-350m'
super().setUp()
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'):
return
# Step 1: freeze all parameters
lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
lowercase__ = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowercase__ = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCAmelCase)):
lowercase__ = LoRALayer(module.q_proj , rank=16)
lowercase__ = LoRALayer(module.k_proj , rank=16)
lowercase__ = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
lowercase__ = self.tokenizer('Test batch ' , return_tensors='pt').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowercase__ = model.forward(**lowerCAmelCase)
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCAmelCase , lowerCAmelCase):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(lowerCAmelCase , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = "gpt2-xl"
A : Any = 3.3191_8548_5415_2187
| 714
|
from __future__ import annotations
def _lowerCAmelCase ( A__ , A__ ):
if b == 0:
return (1, 0)
((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b )
lowercase__ = a // b
return (y, x - k * y)
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
def _lowerCAmelCase ( A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
if b < 0:
lowercase__ = (b % n + n) % n
return b
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 642
| 0
|
import heapq
import sys
import numpy as np
a__ = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = []
lowercase__ = set()
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return len(self.elements) == 0
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(lowerCAmelCase)
else:
# update
# print("update", item)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
if item in self.set:
self.set.remove(lowerCAmelCase)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
return self.elements[0][1]
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
self.set.remove(lowerCAmelCase)
return (priority, item)
def _lowerCAmelCase ( A__ , A__ ):
# euclidean distance
lowercase__ = np.array(A__ )
lowercase__ = np.array(A__ )
return np.linalg.norm(a - b )
def _lowerCAmelCase ( A__ , A__ ):
# integer division by time variable
return consistent_heuristic(A__ , A__ ) // t
def _lowerCAmelCase ( A__ , A__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ )
return ans
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = np.chararray((n, n) )
for i in range(A__ ):
for j in range(A__ ):
lowercase__ = '*'
for i in range(A__ ):
for j in range(A__ ):
if (j, (n - 1) - i) in blocks:
lowercase__ = '#'
lowercase__ = '-'
lowercase__ = back_pointer[goal]
while x != start:
((lowercase__), (lowercase__)) = x
# print(x)
lowercase__ = '-'
lowercase__ = back_pointer[x]
lowercase__ = '-'
for i in range(A__ ):
for j in range(A__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowercase__ = back_pointer[goal]
while x != start:
print(A__ , end=' ' )
lowercase__ = back_pointer[x]
print(A__ )
sys.exit()
def _lowerCAmelCase ( A__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
for itera in range(A__ ):
open_list[itera].remove_element(A__ )
# print("s", s)
# print("j", j)
((lowercase__), (lowercase__)) = s
lowercase__ = (x - 1, y)
lowercase__ = (x + 1, y)
lowercase__ = (x, y + 1)
lowercase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A__ )
lowercase__ = -1
lowercase__ = float('inf' )
if valid(A__ ) and g_function[neighbours] > g_function[s] + 1:
lowercase__ = g_function[s] + 1
lowercase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) )
if neighbours not in close_list_inad:
for var in range(1 , A__ ):
if key(A__ , A__ , A__ , A__ ) <= Wa * key(
A__ , 0 , A__ , A__ ):
open_list[j].put(
A__ , key(A__ , A__ , A__ , A__ ) )
def _lowerCAmelCase ( ):
lowercase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a__ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a__ = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a__ = make_common_ground()
a__ = blocks_blk
# hyper parameters
a__ = 1
a__ = 1
a__ = 20
a__ = 3 # one consistent and two other inconsistent
# start and end destination
a__ = (0, 0)
a__ = (n - 1, n - 1)
a__ = 1
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {start: 0, goal: float('inf' )}
lowercase__ = {start: -1, goal: -1}
lowercase__ = []
lowercase__ = set()
for i in range(A__ ):
open_list.append(PriorityQueue() )
open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) )
lowercase__ = []
lowercase__ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__, lowercase__ = open_list[i].top_show()
visited.add(A__ )
expand_state(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_inad.append(A__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__ = open_list[0].top_show()
visited.add(A__ )
expand_state(
A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_anchor.append(A__ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A__ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 715
|
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[Any] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = "umt5"
A : List[str] = ["past_key_values"]
def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str:
"""simple docstring"""
super().__init__(
is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_kv
lowercase__ = d_ff
lowercase__ = num_layers
lowercase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase__ = num_heads
lowercase__ = relative_attention_num_buckets
lowercase__ = relative_attention_max_distance
lowercase__ = dropout_rate
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_factor
lowercase__ = feed_forward_proj
lowercase__ = use_cache
lowercase__ = self.feed_forward_proj.split('-')
lowercase__ = act_info[-1]
lowercase__ = act_info[0] == 'gated'
if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'')
if feed_forward_proj == "gated-gelu":
lowercase__ = 'gelu_new'
@property
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
return self.d_model
@property
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
return self.num_heads
@property
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return self.num_layers
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
lowercase__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
lowercase__ = 'past_encoder_sequence + sequence'
lowercase__ = {0: 'batch'}
lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs')
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return 13
@property
def UpperCAmelCase ( self : Optional[Any]) -> float:
"""simple docstring"""
return 5E-4
| 642
| 0
|
def _lowerCAmelCase ( A__ ):
if isinstance(A__ , A__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(A__ , A__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
lowercase__ = False
if num < 0:
lowercase__ = True
lowercase__ = -num
lowercase__ = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(A__ ) for e in binary )
return "0b" + "".join(str(A__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 716
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : str = XGLMTokenizer
A : List[Any] = XGLMTokenizerFast
A : int = True
A : Optional[Any] = True
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = '<pad>'
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(len(lowerCAmelCase) , 10_08)
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08)
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return XGLMTokenizer.from_pretrained('facebook/xglm-564M')
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase , f.name)
lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase)
lowercase__ = pickle.dumps(lowerCAmelCase)
pickle.loads(lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = 'I was born in 92000, and this is falsé.'
lowercase__ = tokenizer.tokenize(lowerCAmelCase)
lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
lowercase__ = 'Hello World!'
lowercase__ = [2, 3_12_27, 44_47, 35]
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = {
'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
| 642
| 0
|
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : Any , lowerCAmelCase : Dict=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=False , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : str=5 , lowerCAmelCase : str=4 , lowerCAmelCase : Tuple=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Dict=5_12 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Dict=4 , lowerCAmelCase : List[Any]=None , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=lowerCAmelCase , )
def UpperCAmelCase ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = OpenLlamaModel(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = True
lowercase__ = OpenLlamaModel(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , )
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , )
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , ) -> List[str]:
"""simple docstring"""
lowercase__ = OpenLlamaForCausalLM(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , ) -> Dict:
"""simple docstring"""
lowercase__ = True
lowercase__ = True
lowercase__ = OpenLlamaForCausalLM(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
# first forward pass
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , )
lowercase__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size)
lowercase__ = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1)
lowercase__ = torch.cat([input_mask, next_mask] , dim=-1)
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['hidden_states'][0]
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['hidden_states'][0]
# select random slice
lowercase__ = ids_tensor((1,) , output_from_past.shape[-1]).item()
lowercase__ = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3))
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Dict = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
A : int = (OpenLlamaForCausalLM,) if is_torch_available() else ()
A : List[str] = (
{
"feature-extraction": OpenLlamaModel,
"text-classification": OpenLlamaForSequenceClassification,
"text-generation": OpenLlamaForCausalLM,
"zero-shot": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
A : str = False
A : Tuple = False
def UpperCAmelCase ( self : List[Any]) -> Any:
"""simple docstring"""
lowercase__ = OpenLlamaModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37)
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase__ = type
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = 3
lowercase__ = input_dict['input_ids']
lowercase__ = input_ids.ne(1).to(lowerCAmelCase)
lowercase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
lowercase__ = OpenLlamaForSequenceClassification(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = 3
lowercase__ = 'single_label_classification'
lowercase__ = input_dict['input_ids']
lowercase__ = input_ids.ne(1).to(lowerCAmelCase)
lowercase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
lowercase__ = OpenLlamaForSequenceClassification(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = 3
lowercase__ = 'multi_label_classification'
lowercase__ = input_dict['input_ids']
lowercase__ = input_ids.ne(1).to(lowerCAmelCase)
lowercase__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
lowercase__ = OpenLlamaForSequenceClassification(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test')
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)])
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = ids_tensor([1, 10] , config.vocab_size)
lowercase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
lowercase__ = OpenLlamaModel(lowerCAmelCase)
original_model.to(lowerCAmelCase)
original_model.eval()
lowercase__ = original_model(lowerCAmelCase).last_hidden_state
lowercase__ = original_model(lowerCAmelCase).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
lowercase__ = {'type': scaling_type, 'factor': 10.0}
lowercase__ = OpenLlamaModel(lowerCAmelCase)
scaled_model.to(lowerCAmelCase)
scaled_model.eval()
lowercase__ = scaled_model(lowerCAmelCase).last_hidden_state
lowercase__ = scaled_model(lowerCAmelCase).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
else:
self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
| 717
|
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
lowercase__ = data
lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0]
@staticmethod
def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64)
lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data))
return padded_data
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64)
]
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]:
"""simple docstring"""
lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64
for i in range(16 , 80):
lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1)
return w
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.padding()
lowercase__ = self.split_blocks()
for block in self.blocks:
lowercase__ = self.expand_block(lowerCAmelCase)
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h
for i in range(0 , 80):
if 0 <= i < 20:
lowercase__ = (b & c) | ((~b) & d)
lowercase__ = 0X5_A_8_2_7_9_9_9
elif 20 <= i < 40:
lowercase__ = b ^ c ^ d
lowercase__ = 0X6_E_D_9_E_B_A_1
elif 40 <= i < 60:
lowercase__ = (b & c) | (b & d) | (c & d)
lowercase__ = 0X8_F_1_B_B_C_D_C
elif 60 <= i < 80:
lowercase__ = b ^ c ^ d
lowercase__ = 0XC_A_6_2_C_1_D_6
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = (
self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F,
a,
self.rotate(lowerCAmelCase , 30),
c,
d,
)
lowercase__ = (
self.h[0] + a & 0XF_F_F_F_F_F_F_F,
self.h[1] + b & 0XF_F_F_F_F_F_F_F,
self.h[2] + c & 0XF_F_F_F_F_F_F_F,
self.h[3] + d & 0XF_F_F_F_F_F_F_F,
self.h[4] + e & 0XF_F_F_F_F_F_F_F,
)
return ("{:08x}" * 5).format(*self.h)
def _lowerCAmelCase ( ):
lowercase__ = B'Test String'
assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
lowercase__ = parser.parse_args()
lowercase__ = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase__ = f.read()
else:
lowercase__ = bytes(A__ , 'utf-8' )
print(SHAaHash(A__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 642
| 0
|
from math import ceil
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = list(range(0 , A__ ) )
lowercase__ = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
lowercase__ = []
for i in device_map_blocks:
if device_map_blocks.count(A__ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(A__ )
# Missing blocks
lowercase__ = [i for i in blocks if i not in device_map_blocks]
lowercase__ = [i for i in device_map_blocks if i not in blocks]
if len(A__ ) != 0:
raise ValueError(
'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'
' These attention blocks were specified more than once: ' + str(A__ ) )
if len(A__ ) != 0:
raise ValueError(
'There are attention blocks for this model that are not specified in the device_map. Add these attention '
'blocks to a device on the device_map: ' + str(A__ ) )
if len(A__ ) != 0:
raise ValueError(
'The device_map contains more attention blocks than this model has. Remove these from the device_map:'
+ str(A__ ) )
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = list(range(A__ ) )
lowercase__ = int(ceil(n_layers / len(A__ ) ) )
lowercase__ = [layers[i : i + n_blocks] for i in range(0 , A__ , A__ )]
return dict(zip(A__ , A__ ) )
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a__ : List[Any] = logging.get_logger(__name__)
a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
a__ : List[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
a__ : int = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = ["input_ids", "attention_mask"]
A : Any = BartTokenizer
def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type'))
lowercase__ = add_prefix_space
lowercase__ = pre_tok_class(**lowerCAmelCase)
lowercase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase__ = 'post_processor'
lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
if tokenizer_component_instance:
lowercase__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase__ = tuple(state['sep'])
if "cls" in state:
lowercase__ = tuple(state['cls'])
lowercase__ = False
if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = add_prefix_space
lowercase__ = True
if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets:
lowercase__ = trim_offsets
lowercase__ = True
if changes_to_apply:
lowercase__ = getattr(lowerCAmelCase , state.pop('type'))
lowercase__ = component_class(**lowerCAmelCase)
setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
@property
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.')
return None
return str(self._mask_token)
@mask_token.setter
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value
lowercase__ = value
def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase)
return tuple(lowerCAmelCase)
def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple:
"""simple docstring"""
lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 642
| 0
|
from __future__ import annotations
a__ : str = tuple[int, int, int]
a__ : int = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
a__ : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# -------------------------- default selection --------------------------
# rotors --------------------------
a__ : List[str] = "EGZWVONAHDCLFQMSIPJBYUKXTR"
a__ : List[str] = "FOBHMDKEXQNRAULPGSJVTYICZW"
a__ : Optional[int] = "ZJXESIUQLHAVRMDOYGTNFWPBKC"
# reflector --------------------------
a__ : int = {
"A": "N",
"N": "A",
"B": "O",
"O": "B",
"C": "P",
"P": "C",
"D": "Q",
"Q": "D",
"E": "R",
"R": "E",
"F": "S",
"S": "F",
"G": "T",
"T": "G",
"H": "U",
"U": "H",
"I": "V",
"V": "I",
"J": "W",
"W": "J",
"K": "X",
"X": "K",
"L": "Y",
"Y": "L",
"M": "Z",
"Z": "M",
}
# -------------------------- extra rotors --------------------------
a__ : Any = "RMDJXFUWGISLHVTCQNKYPBEZOA"
a__ : Tuple = "SGLCPQWZHKXAREONTFBVIYJUDM"
a__ : List[Any] = "HVSICLTYKQUBXDWAJZOMFGPREN"
a__ : int = "RZWQHFMVDBKICJLNTUXAGYPSOE"
a__ : int = "LFKIJODBEGAMQPXVUHYSTCZRWN"
a__ : str = "KOAEGVDHXPQZMLFTYWJNBRCIUS"
def _lowerCAmelCase ( A__ , A__ , A__ ):
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(A__ ) )) < 3:
lowercase__ = F'''Please use 3 unique rotors (not {unique_rotsel})'''
raise Exception(A__ )
# Checks if rotor positions are valid
lowercase__, lowercase__, lowercase__ = rotpos
if not 0 < rotorposa <= len(A__ ):
lowercase__ = F'''First rotor position is not within range of 1..26 ({rotorposa}'''
raise ValueError(A__ )
if not 0 < rotorposa <= len(A__ ):
lowercase__ = F'''Second rotor position is not within range of 1..26 ({rotorposa})'''
raise ValueError(A__ )
if not 0 < rotorposa <= len(A__ ):
lowercase__ = F'''Third rotor position is not within range of 1..26 ({rotorposa})'''
raise ValueError(A__ )
# Validates string and returns dict
lowercase__ = _plugboard(A__ )
return rotpos, rotsel, pbdict
def _lowerCAmelCase ( A__ ):
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(A__ , A__ ):
lowercase__ = F'''Plugboard setting isn\'t type string ({type(A__ )})'''
raise TypeError(A__ )
elif len(A__ ) % 2 != 0:
lowercase__ = F'''Odd number of symbols ({len(A__ )})'''
raise Exception(A__ )
elif pbstring == "":
return {}
pbstring.replace(' ' , '' )
# Checks if all characters are unique
lowercase__ = set()
for i in pbstring:
if i not in abc:
lowercase__ = F'''\'{i}\' not in list of symbols'''
raise Exception(A__ )
elif i in tmppbl:
lowercase__ = F'''Duplicate symbol ({i})'''
raise Exception(A__ )
else:
tmppbl.add(A__ )
del tmppbl
# Created the dictionary
lowercase__ = {}
for j in range(0 , len(A__ ) - 1 , 2 ):
lowercase__ = pbstring[j + 1]
lowercase__ = pbstring[j]
return pb
def _lowerCAmelCase ( A__ , A__ , A__ = (rotora, rotora, rotora) , A__ = "" , ):
lowercase__ = text.upper()
lowercase__, lowercase__, lowercase__ = _validator(
A__ , A__ , plugb.upper() )
lowercase__, lowercase__, lowercase__ = rotor_position
lowercase__, lowercase__, lowercase__ = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
lowercase__ = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
lowercase__ = plugboard[symbol]
# rotor ra --------------------------
lowercase__ = abc.index(A__ ) + rotorposa
lowercase__ = rotora[index % len(A__ )]
# rotor rb --------------------------
lowercase__ = abc.index(A__ ) + rotorposa
lowercase__ = rotora[index % len(A__ )]
# rotor rc --------------------------
lowercase__ = abc.index(A__ ) + rotorposa
lowercase__ = rotora[index % len(A__ )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
lowercase__ = reflector[symbol]
# 2nd rotors
lowercase__ = abc[rotora.index(A__ ) - rotorposa]
lowercase__ = abc[rotora.index(A__ ) - rotorposa]
lowercase__ = abc[rotora.index(A__ ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
lowercase__ = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(A__ ):
lowercase__ = 0
rotorposa += 1
if rotorposa >= len(A__ ):
lowercase__ = 0
rotorposa += 1
if rotorposa >= len(A__ ):
lowercase__ = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(A__ )
return "".join(A__ )
if __name__ == "__main__":
a__ : List[Any] = "This is my Python script that emulates the Enigma machine from WWII."
a__ : Any = (1, 1, 1)
a__ : Union[str, Any] = "pictures"
a__ : str = (rotora, rotora, rotora)
a__ : List[str] = enigma(message, rotor_pos, rotor_sel, pb)
print("Encrypted message:", en)
print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
| 719
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : str = (DDIMParallelScheduler,)
A : Any = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = {
'num_train_timesteps': 10_00,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**lowerCAmelCase)
return config
def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCAmelCase)
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase)
for t in scheduler.timesteps:
lowercase__ = model(lowerCAmelCase , lowerCAmelCase)
lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample
return sample
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase)
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1)
lowercase__ = scheduler_class(**lowerCAmelCase)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1]))
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , )
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]):
self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase)
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = self.dummy_sample_deter + 0.1
lowercase__ = self.dummy_sample_deter - 0.1
lowercase__ = samplea.shape[0]
lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0)
lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase)
lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 11_47.79_04) < 1E-2
assert abs(result_mean.item() - 0.49_82) < 1E-3
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_72.00_67) < 1E-2
assert abs(result_mean.item() - 0.22_39_67) < 1E-3
def UpperCAmelCase ( self : int) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(prediction_type='v_prediction')
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 52.53_02) < 1E-2
assert abs(result_mean.item() - 0.06_84) < 1E-3
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.82_95) < 1E-2
assert abs(result_mean.item() - 0.19_51) < 1E-3
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.07_84) < 1E-2
assert abs(result_mean.item() - 0.19_41) < 1E-3
| 642
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Any = logging.get_logger(__name__)
a__ : List[Any] = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : int = "fnet"
def __init__( self : Optional[int] , lowerCAmelCase : Optional[int]=3_20_00 , lowerCAmelCase : Optional[int]=7_68 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[Any]=30_72 , lowerCAmelCase : List[str]="gelu_new" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=5_12 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=1E-1_2 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Tuple=3 , lowerCAmelCase : Any=1 , lowerCAmelCase : Tuple=2 , **lowerCAmelCase : List[str] , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
lowercase__ = use_tpu_fourier_optimizations
lowercase__ = tpu_short_seq_length
| 720
|
import cva
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict:
"""simple docstring"""
if k in (0.04, 0.06):
lowercase__ = k
lowercase__ = window_size
else:
raise ValueError('invalid k value')
def __str__( self : Tuple) -> str:
"""simple docstring"""
return str(self.k)
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]:
"""simple docstring"""
lowercase__ = cva.imread(lowerCAmelCase , 0)
lowercase__, lowercase__ = img.shape
lowercase__ = []
lowercase__ = img.copy()
lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB)
lowercase__, lowercase__ = np.gradient(lowerCAmelCase)
lowercase__ = dx**2
lowercase__ = dy**2
lowercase__ = dx * dy
lowercase__ = 0.04
lowercase__ = self.window_size // 2
for y in range(lowerCAmelCase , h - offset):
for x in range(lowerCAmelCase , w - offset):
lowercase__ = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = (wxx * wyy) - (wxy**2)
lowercase__ = wxx + wyy
lowercase__ = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r])
color_img.itemset((y, x, 0) , 0)
color_img.itemset((y, x, 1) , 0)
color_img.itemset((y, x, 2) , 2_55)
return color_img, corner_list
if __name__ == "__main__":
a__ : Dict = HarrisCorner(0.0_4, 3)
a__ , a__ : Dict = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 642
| 0
|
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def _lowerCAmelCase ( ):
lowercase__ = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
lowercase__ = Dataset.from_dict(A__ )
return dataset
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
lowercase__ = get_dataset()
lowercase__ = make_duplicate_clusters(lowerCAmelCase , 0.85)
self.assertEqual(len(duplicate_clusters[0]) , 2)
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
lowercase__ = get_dataset()
lowercase__, lowercase__ = deduplicate_dataset(lowerCAmelCase)
self.assertEqual(len(lowerCAmelCase) , 2)
print(lowerCAmelCase)
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2)
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowerCAmelCase)
| 721
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : List[Any] = {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : int = "speech_to_text"
A : Optional[Any] = ["past_key_values"]
A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = max_source_positions
lowercase__ = max_target_positions
lowercase__ = num_conv_layers
lowercase__ = list(lowerCAmelCase)
lowercase__ = conv_channels
lowercase__ = input_feat_per_channel
lowercase__ = input_channels
if len(self.conv_kernel_sizes) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Tuple = {
"configuration_table_transformer": [
"TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TableTransformerConfig",
"TableTransformerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[int] = [
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TableTransformerForObjectDetection",
"TableTransformerModel",
"TableTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[int] = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
from abc import ABC, abstractmethod
from typing import List, Optional
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
self.test()
def UpperCAmelCase ( self : Union[str, Any]) -> Any:
"""simple docstring"""
lowercase__ = 0
lowercase__ = False
while not completed:
if counter == 1:
self.reset()
lowercase__ = self.advance()
if not self.does_advance(lowerCAmelCase):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.')
lowercase__, lowercase__, lowercase__ = self.update(lowerCAmelCase)
counter += 1
if counter > 1_00_00:
raise Exception('update() does not fulfill the constraint.')
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.')
@abstractmethod
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def UpperCAmelCase ( self : int , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def UpperCAmelCase ( self : str) -> Any:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[Any]=False) -> int:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : List[int]) -> Union[str, Any]:
"""simple docstring"""
super(lowerCAmelCase , self).__init__()
if not isinstance(lowerCAmelCase , lowerCAmelCase) or len(lowerCAmelCase) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''')
if any((not isinstance(lowerCAmelCase , lowerCAmelCase) or token_id < 0) for token_id in token_ids):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''')
lowercase__ = token_ids
lowercase__ = len(self.token_ids)
lowercase__ = -1 # the index of the currently fulfilled step
lowercase__ = False
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int) -> int:
"""simple docstring"""
if not isinstance(lowerCAmelCase , lowerCAmelCase):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase)}''')
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
if not isinstance(lowerCAmelCase , lowerCAmelCase):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase)}''')
lowercase__ = False
lowercase__ = False
lowercase__ = False
if self.does_advance(lowerCAmelCase):
self.fulfilled_idx += 1
lowercase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
lowercase__ = True
lowercase__ = completed
else:
# failed to make progress.
lowercase__ = True
self.reset()
return stepped, completed, reset
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = False
lowercase__ = 0
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[str]=False) -> Any:
"""simple docstring"""
lowercase__ = PhrasalConstraint(self.token_ids)
if stateful:
lowercase__ = self.seqlen
lowercase__ = self.fulfilled_idx
lowercase__ = self.completed
return new_constraint
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : List[List[int]] , lowerCAmelCase : Any=True) -> Tuple:
"""simple docstring"""
lowercase__ = max([len(lowerCAmelCase) for one in nested_token_ids])
lowercase__ = {}
for token_ids in nested_token_ids:
lowercase__ = root
for tidx, token_id in enumerate(lowerCAmelCase):
if token_id not in level:
lowercase__ = {}
lowercase__ = level[token_id]
if no_subsets and self.has_subsets(lowerCAmelCase , lowerCAmelCase):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
f''' {nested_token_ids}.''')
lowercase__ = root
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
lowercase__ = self.trie
for current_token in current_seq:
lowercase__ = start[current_token]
lowercase__ = list(start.keys())
return next_tokens
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> int:
"""simple docstring"""
lowercase__ = self.next_tokens(lowerCAmelCase)
return len(lowerCAmelCase) == 0
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
lowercase__ = list(root.values())
if len(lowerCAmelCase) == 0:
return 1
else:
return sum([self.count_leaves(lowerCAmelCase) for nn in next_nodes])
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
lowercase__ = self.count_leaves(lowerCAmelCase)
return len(lowerCAmelCase) != leaf_count
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : List[List[int]]) -> int:
"""simple docstring"""
super(lowerCAmelCase , self).__init__()
if not isinstance(lowerCAmelCase , lowerCAmelCase) or len(lowerCAmelCase) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''')
if any(not isinstance(lowerCAmelCase , lowerCAmelCase) for token_ids in nested_token_ids):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''')
if any(
any((not isinstance(lowerCAmelCase , lowerCAmelCase) or token_id < 0) for token_id in token_ids)
for token_ids in nested_token_ids):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''')
lowercase__ = DisjunctiveTrie(lowerCAmelCase)
lowercase__ = nested_token_ids
lowercase__ = self.trie.max_height
lowercase__ = []
lowercase__ = False
def UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.trie.next_tokens(self.current_seq)
if len(lowerCAmelCase) == 0:
return None
else:
return token_list
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> List[Any]:
"""simple docstring"""
if not isinstance(lowerCAmelCase , lowerCAmelCase):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase)}''')
lowercase__ = self.trie.next_tokens(self.current_seq)
return token_id in next_tokens
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : int) -> int:
"""simple docstring"""
if not isinstance(lowerCAmelCase , lowerCAmelCase):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase)}''')
lowercase__ = False
lowercase__ = False
lowercase__ = False
if self.does_advance(lowerCAmelCase):
self.current_seq.append(lowerCAmelCase)
lowercase__ = True
else:
lowercase__ = True
self.reset()
lowercase__ = self.trie.reached_leaf(self.current_seq)
lowercase__ = completed
return stepped, completed, reset
def UpperCAmelCase ( self : str) -> Optional[Any]:
"""simple docstring"""
lowercase__ = False
lowercase__ = []
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq)
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Union[str, Any]=False) -> str:
"""simple docstring"""
lowercase__ = DisjunctiveConstraint(self.token_ids)
if stateful:
lowercase__ = self.seqlen
lowercase__ = self.current_seq
lowercase__ = self.completed
return new_constraint
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : List[Constraint]) -> Tuple:
"""simple docstring"""
lowercase__ = constraints
# max # of steps required to fulfill a given constraint
lowercase__ = max([c.seqlen for c in constraints])
lowercase__ = len(lowerCAmelCase)
lowercase__ = False
self.init_state()
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = []
lowercase__ = None
lowercase__ = [constraint.copy(stateful=lowerCAmelCase) for constraint in self.constraints]
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
lowercase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints) * self.max_seqlen) + add
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
lowercase__ = constraint.advance()
if isinstance(lowerCAmelCase , lowerCAmelCase):
token_list.append(lowerCAmelCase)
elif isinstance(lowerCAmelCase , lowerCAmelCase):
token_list.extend(lowerCAmelCase)
else:
lowercase__ = self.inprogress_constraint.advance()
if isinstance(lowerCAmelCase , lowerCAmelCase):
token_list.append(lowerCAmelCase)
elif isinstance(lowerCAmelCase , lowerCAmelCase):
token_list.extend(lowerCAmelCase)
if len(lowerCAmelCase) == 0:
return None
else:
return token_list
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[List[int]]) -> int:
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
lowercase__, lowercase__ = self.add(lowerCAmelCase)
# the entire list of constraints are fulfilled
if self.completed:
break
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int) -> Dict:
"""simple docstring"""
if not isinstance(lowerCAmelCase , lowerCAmelCase):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''')
lowercase__, lowercase__ = False, False
if self.completed:
lowercase__ = True
lowercase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
lowercase__, lowercase__, lowercase__ = self.inprogress_constraint.update(lowerCAmelCase)
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase))
lowercase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint)
lowercase__ = None
if len(self.pending_constraints) == 0:
# we're done!
lowercase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints):
if pending_constraint.does_advance(lowerCAmelCase):
lowercase__, lowercase__, lowercase__ = pending_constraint.update(lowerCAmelCase)
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.')
if complete:
self.complete_constraints.append(lowerCAmelCase)
lowercase__ = None
if not complete and stepped:
lowercase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
lowercase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
lowercase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=True) -> List[str]:
"""simple docstring"""
lowercase__ = ConstraintListState(self.constraints) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
lowercase__ = [
constraint.copy(stateful=lowerCAmelCase) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
lowercase__ = self.inprogress_constraint.copy(stateful=lowerCAmelCase)
lowercase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 701
|
# Imports
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int:
"""simple docstring"""
if red is not None:
lowercase__ = red
if green is not None:
lowercase__ = green
if blue is not None:
lowercase__ = blue
if red_edge is not None:
lowercase__ = red_edge
if nir is not None:
lowercase__ = nir
return True
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
lowercase__ = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!')
return False
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return (self.nir / self.green) - 1
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
return (self.red - self.blue) / self.red
def UpperCAmelCase ( self : Any) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2))
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
return self.nir - self.green
def UpperCAmelCase ( self : Tuple) -> List[Any]:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
return (max_value - min_value) / max_value
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 642
| 0
|
'''simple docstring'''
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Any = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
"constant": get_constant_schedule,
"constant_w_warmup": get_constant_schedule_with_warmup,
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=None , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
if config is None:
assert isinstance(self.model , lowerCAmelCase), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f''' {self.model.__class__}'''
)
lowercase__ = self.model.config
else:
lowercase__ = config
lowercase__ = data_args
lowercase__ = self.config.tgt_vocab_size if isinstance(self.config , lowerCAmelCase) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'''
' padding..')
if self.args.label_smoothing == 0:
lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
lowercase__ = label_smoothed_nll_loss
def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> Any:
"""simple docstring"""
if self.optimizer is None:
lowercase__ = ['bias', 'LayerNorm.weight']
lowercase__ = [
{
'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay,
},
{
'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0,
},
]
lowercase__ = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
lowercase__ = Adafactor
lowercase__ = {'scale_parameter': False, 'relative_step': False}
else:
lowercase__ = AdamW
lowercase__ = {
'betas': (self.args.adam_betaa, self.args.adam_betaa),
'eps': self.args.adam_epsilon,
}
lowercase__ = self.args.learning_rate
if self.sharded_ddp:
lowercase__ = OSS(
params=lowerCAmelCase , optim=lowerCAmelCase , **lowerCAmelCase , )
else:
lowercase__ = optimizer_cls(lowerCAmelCase , **lowerCAmelCase)
if self.lr_scheduler is None:
lowercase__ = self._get_lr_scheduler(lowerCAmelCase)
else: # ignoring --lr_scheduler
logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.')
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any]) -> Dict:
"""simple docstring"""
lowercase__ = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
lowercase__ = schedule_func(self.optimizer)
elif self.args.lr_scheduler == "constant_w_warmup":
lowercase__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps)
else:
lowercase__ = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCAmelCase)
return scheduler
def UpperCAmelCase ( self : List[Any]) -> Optional[torch.utils.data.Sampler]:
"""simple docstring"""
if isinstance(self.train_dataset , torch.utils.data.IterableDataset):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset)
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset)
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset)
)
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
lowercase__ = model(**lowerCAmelCase , use_cache=lowerCAmelCase)[0]
lowercase__ = self.loss_fn(logits.view(-1 , logits.shape[-1]) , labels.view(-1))
else:
# compute usual loss via models
lowercase__, lowercase__ = model(**lowerCAmelCase , labels=lowerCAmelCase , use_cache=lowerCAmelCase)[:2]
else:
# compute label smoothed loss
lowercase__ = model(**lowerCAmelCase , use_cache=lowerCAmelCase)[0]
lowercase__ = torch.nn.functional.log_softmax(lowerCAmelCase , dim=-1)
lowercase__, lowercase__ = self.loss_fn(lowerCAmelCase , lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id)
return loss, logits
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
lowercase__ = inputs.pop('labels')
lowercase__, lowercase__ = self._compute_loss(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
return loss
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : nn.Module , lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , lowerCAmelCase : bool , lowerCAmelCase : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""simple docstring"""
lowercase__ = self._prepare_inputs(lowerCAmelCase)
lowercase__ = {
'max_length': self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
lowercase__ = self.model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **lowerCAmelCase , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
lowercase__ = self._pad_tensors_to_max_len(lowerCAmelCase , gen_kwargs['max_length'])
lowercase__ = inputs.pop('labels')
with torch.no_grad():
# compute loss on predict data
lowercase__, lowercase__ = self._compute_loss(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
lowercase__ = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
lowercase__ = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
lowercase__ = self._pad_tensors_to_max_len(lowerCAmelCase , gen_kwargs['max_length'])
return (loss, logits, labels)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be'
f''' padded to `max_length`={max_length}''')
lowercase__ = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device)
lowercase__ = tensor
return padded_tensor
| 702
|
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = load_tool('text-classification')
self.tool.setup()
lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
| 642
| 0
|
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
a__ : int = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
a__ : List[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ):
for attribute in key.split('.' ):
lowercase__ = getattr(A__ , A__ )
if weight_type is not None:
lowercase__ = getattr(A__ , A__ ).shape
else:
lowercase__ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowercase__ = value
elif weight_type == "weight_g":
lowercase__ = value
elif weight_type == "weight_v":
lowercase__ = value
elif weight_type == "bias":
lowercase__ = value
else:
lowercase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = []
lowercase__ = fairseq_model.state_dict()
lowercase__ = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
lowercase__ = None
for name, value in fairseq_dict.items():
lowercase__ = False
if "conv_layers" in name:
load_conv_layer(
A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , )
lowercase__ = True
elif name.split('.' )[0] == "proj":
lowercase__ = fairseq_model.proj
lowercase__ = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
lowercase__ = True
if "*" in mapped_key:
lowercase__ = name.split(A__ )[0].split('.' )[-2]
lowercase__ = mapped_key.replace('*' , A__ )
if "weight_g" in name:
lowercase__ = 'weight_g'
elif "weight_v" in name:
lowercase__ = 'weight_v'
elif "bias" in name:
lowercase__ = 'bias'
elif "weight" in name:
lowercase__ = 'weight'
else:
lowercase__ = None
set_recursively(A__ , A__ , A__ , A__ , A__ )
continue
if not is_used:
unused_weights.append(A__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
return proj_weight
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ):
lowercase__ = full_name.split('conv_layers.' )[-1]
lowercase__ = name.split('.' )
lowercase__ = int(items[0] )
lowercase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowercase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowercase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowercase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowercase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(A__ )
def _lowerCAmelCase ( A__ ):
lowercase__, lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(A__ , A__ , bias=A__ )
lowercase__ = emb.weight.data
return lin_layer
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' , encoding='utf-8' ) as f:
lowercase__ = f.readlines()
lowercase__ = [line.split(' ' )[0] for line in lines]
lowercase__ = len(A__ )
lowercase__ = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(A__ , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
lowercase__ = WavaVecaConfig.from_pretrained(A__ )
lowercase__ = SpeechaTextaConfig.from_pretrained(
A__ , vocab_size=A__ , decoder_layers=A__ , do_stable_layer_norm=A__ )
lowercase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , )
lowercase__, lowercase__, lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
lowercase__ = model[0].eval()
# set weights for wav2vec2 encoder
lowercase__ = WavaVecaModel(A__ )
lowercase__ = recursively_load_weights_wavaveca(model.encoder , A__ )
lowercase__ = SpeechaTextaForCausalLM(A__ )
lowercase__, lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A__ )
# set output linear layer
unexpected_keys.remove('embed_out' )
lowercase__ = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' )
logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' )
lowercase__ = SpeechEncoderDecoderModel(encoder=A__ , decoder=A__ )
lowercase__ = False
# add projection layer
lowercase__ = nn.Parameter(projection_layer.weight )
lowercase__ = nn.Parameter(projection_layer.bias )
lowercase__ = create_vocab_dict(A__ )
with open(os.path.join(A__ , 'vocab.json' ) , 'w' ) as fp:
json.dump(A__ , A__ )
lowercase__ = SpeechaTextaTokenizer(os.path.join(A__ , 'vocab.json' ) )
tokenizer.save_pretrained(A__ )
lowercase__ = hf_wavavec.config.to_dict()
lowercase__ = tokenizer.pad_token_id
lowercase__ = tokenizer.bos_token_id
lowercase__ = tokenizer.eos_token_id
lowercase__ = 'speech_to_text_2'
lowercase__ = 'wav2vec2'
lowercase__ = SpeechEncoderDecoderConfig.from_dict(A__ )
hf_wavavec.save_pretrained(A__ )
feature_extractor.save_pretrained(A__ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument(
"--encoder_config_path",
default="facebook/wav2vec2-large-lv60",
type=str,
help="Path to hf encoder wav2vec2 checkpoint config",
)
parser.add_argument(
"--decoder_config_path",
default="facebook/s2t-small-mustc-en-fr-st",
type=str,
help="Path to hf decoder s2t checkpoint config",
)
parser.add_argument("--vocab_size", default=1_02_24, type=int, help="Vocab size of decoder")
parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers")
a__ : Tuple = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 703
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = None
A : Optional[int] = None
@property
def UpperCAmelCase ( self : str) -> Union[str, Any]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(lowerCAmelCase , 'feature_size'))
self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate'))
self.assertTrue(hasattr(lowerCAmelCase , 'padding_value'))
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name])))
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_torch
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = self.feat_extract_tester.seq_length_diff
lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff
lowercase__ = self.feat_extract_tester.min_seq_length
lowercase__ = self.feat_extract_tester.batch_size
lowercase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest')
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1]))
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
lowercase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
self.assertTrue(len(input_a[0]) == pad_min_length)
self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff)
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0])))
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a))
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size)
# Check padding value is correct
lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff))
< 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1E-3)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
# truncate to smallest
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]))
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to smallest with np
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(input_a.shape[1] == len(speech_inputs[0]))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to middle
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1]))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1]))
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = 12
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , )
lowercase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowercase__ = len(speech_inputs[0])
if expected_length % pad_to_multiple_of != 0:
lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0]) == expected_length)
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2)
@require_tf
def UpperCAmelCase ( self : str) -> str:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2)
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = min(lowerCAmelCase)
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(
list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length])
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
| 642
| 0
|
from __future__ import annotations
def _lowerCAmelCase ( A__ , A__ ):
if b == 0:
return (1, 0)
((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b )
lowercase__ = a // b
return (y, x - k * y)
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
def _lowerCAmelCase ( A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
if b < 0:
lowercase__ = (b % n + n) % n
return b
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 704
|
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowerCAmelCase ( A__ ):
lowercase__ = prime_factors(A__ )
if is_square_free(A__ ):
return -1 if len(A__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] )
def _lowerCAmelCase ( A__ , A__ , A__ ):
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , A__ )
lowercase__ = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
lowercase__ = dataset_size < in_memory_max_size
else:
lowercase__ = False
lowercase__ = is_small_dataset(A__ )
assert result == expected
| 705
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ : List[str] = logging.get_logger(__name__)
a__ : List[Any] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
A : List[str] = "focalnet"
def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = use_conv_embed
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = focal_levels
lowercase__ = focal_windows
lowercase__ = hidden_act
lowercase__ = mlp_ratio
lowercase__ = hidden_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = use_layerscale
lowercase__ = layerscale_value
lowercase__ = use_post_layernorm
lowercase__ = use_post_layernorm_in_modulation
lowercase__ = normalize_modulator
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = encoder_stride
lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)]
lowercase__, lowercase__ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 642
| 0
|
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def _lowerCAmelCase ( A__ = "laptop" ):
lowercase__ = F'''https://www.amazon.in/laptop/s?k={product}'''
lowercase__ = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36',
'Accept-Language': 'en-US, en;q=0.5',
}
lowercase__ = BeautifulSoup(requests.get(A__ , headers=A__ ).text )
# Initialize a Pandas dataframe with the column titles
lowercase__ = DataFrame(
columns=[
'Product Title',
'Product Link',
'Current Price of the product',
'Product Rating',
'MRP of the product',
'Discount',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ):
try:
lowercase__ = item.ha.text
lowercase__ = 'https://www.amazon.in/' + item.ha.a['href']
lowercase__ = item.find('span' , attrs={'class': 'a-offscreen'} ).text
try:
lowercase__ = item.find('span' , attrs={'class': 'a-icon-alt'} ).text
except AttributeError:
lowercase__ = 'Not available'
try:
lowercase__ = (
'₹'
+ item.find(
'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1]
)
except AttributeError:
lowercase__ = ''
try:
lowercase__ = float(
(
(
float(product_mrp.strip('₹' ).replace(',' , '' ) )
- float(product_price.strip('₹' ).replace(',' , '' ) )
)
/ float(product_mrp.strip('₹' ).replace(',' , '' ) )
)
* 100 )
except ValueError:
lowercase__ = float('nan' )
except AttributeError:
pass
lowercase__ = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
lowercase__ = ' '
lowercase__ = ' '
data_frame.index += 1
return data_frame
if __name__ == "__main__":
a__ : Any = "headphones"
get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
| 706
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Dict = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
a__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
a__ : Any = {"facebook/blenderbot_small-90M": 5_12}
def _lowerCAmelCase ( A__ ):
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(A__ )
return pairs
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase)
with open(lowerCAmelCase , encoding='utf-8') as vocab_handle:
lowercase__ = json.load(lowerCAmelCase)
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase , encoding='utf-8') as merges_handle:
lowercase__ = merges_handle.read().split('\n')[1:-1]
lowercase__ = [tuple(merge.split()) for merge in merges]
lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase))))
lowercase__ = {}
@property
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return len(self.encoder)
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase)
lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase)
lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase)
if "\n" in token:
lowercase__ = token.replace('\n' , ' __newln__')
lowercase__ = token.split(' ')
lowercase__ = []
for token in tokens:
if not len(lowerCAmelCase):
continue
lowercase__ = token.lower()
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>'])
lowercase__ = get_pairs(lowerCAmelCase)
if not pairs:
words.append(lowerCAmelCase)
continue
while True:
lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf')))
if bigram not in self.bpe_ranks:
break
lowercase__, lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(lowerCAmelCase):
try:
lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase)
new_word.extend(word[i:j])
lowercase__ = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = new_word
if len(lowerCAmelCase) == 1:
break
else:
lowercase__ = get_pairs(lowerCAmelCase)
lowercase__ = '@@ '.join(lowerCAmelCase)
lowercase__ = word[:-4]
lowercase__ = word
words.append(lowerCAmelCase)
return " ".join(lowerCAmelCase)
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase)
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' ')))
return split_tokens
def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int:
"""simple docstring"""
lowercase__ = token.lower()
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str:
"""simple docstring"""
lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip()
return out_string
def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(lowerCAmelCase , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n')
lowercase__ = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!')
lowercase__ = token_index
writer.write(' '.join(lowerCAmelCase) + '\n')
index += 1
return vocab_file, merge_file
| 642
| 0
|
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
a__ : Dict = datasets.logging.get_logger(__name__)
a__ : Tuple = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n"
a__ : Any = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n"
a__ : Any = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n"
def _lowerCAmelCase ( A__ , A__ , A__=False , A__=False , A__=True , A__=False , A__="dummy_doc" ):
lowercase__ = {doc: key_lines}
lowercase__ = {doc: sys_lines}
lowercase__ = {}
lowercase__ = 0
lowercase__ = 0
lowercase__ = 0
lowercase__ = 0
lowercase__ = 0
lowercase__ = 0
lowercase__, lowercase__ = reader.get_doc_mentions(A__ , key_doc_lines[doc] , A__ )
key_singletons_num += singletons_num
if NP_only or min_span:
lowercase__ = reader.set_annotated_parse_trees(A__ , key_doc_lines[doc] , A__ , A__ )
lowercase__, lowercase__ = reader.get_doc_mentions(A__ , sys_doc_lines[doc] , A__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowercase__ = reader.set_annotated_parse_trees(A__ , key_doc_lines[doc] , A__ , A__ )
if remove_nested:
lowercase__, lowercase__ = reader.remove_nested_coref_mentions(A__ , A__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowercase__, lowercase__ = reader.remove_nested_coref_mentions(A__ , A__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowercase__ = reader.get_mention_assignments(A__ , A__ )
lowercase__ = reader.get_mention_assignments(A__ , A__ )
lowercase__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'Number of removed nested coreferring mentions in the key '
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
'Number of resulting singleton clusters in the key '
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
'files, respectively' )
return doc_coref_infos
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ):
lowercase__ = get_coref_infos(A__ , A__ , A__ , A__ , A__ , A__ )
lowercase__ = {}
lowercase__ = 0
lowercase__ = 0
for name, metric in metrics:
lowercase__, lowercase__, lowercase__ = evaluator.evaluate_documents(A__ , A__ , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
lowercase__ = (conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({'conll_score': conll} )
return output_scores
def _lowerCAmelCase ( A__ ):
lowercase__ = False
for line in key_lines:
if not line.startswith('#' ):
if len(line.split() ) > 6:
lowercase__ = line.split()[5]
if not parse_col == "-":
lowercase__ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string')),
'references': datasets.Sequence(datasets.Value('string')),
}) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[
'https://github.com/ns-moosavi/coval',
'https://www.aclweb.org/anthology/P16-1060',
'http://www.conll.cemantix.org/2012/data.html',
] , )
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : int=False) -> Optional[int]:
"""simple docstring"""
lowercase__ = [
('mentions', evaluator.mentions),
('muc', evaluator.muc),
('bcub', evaluator.b_cubed),
('ceafe', evaluator.ceafe),
('lea', evaluator.lea),
]
if min_span:
lowercase__ = util.check_gold_parse_annotation(lowerCAmelCase)
if not has_gold_parse:
raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.')
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowercase__ = evaluate(
key_lines=lowerCAmelCase , sys_lines=lowerCAmelCase , metrics=lowerCAmelCase , NP_only=lowerCAmelCase , remove_nested=lowerCAmelCase , keep_singletons=lowerCAmelCase , min_span=lowerCAmelCase , )
return score
| 707
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
from __future__ import annotations
import os
from collections.abc import Mapping
a__ : Union[str, Any] = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : set[int] , lowerCAmelCase : Mapping[EdgeT, int]) -> None:
"""simple docstring"""
lowercase__ = vertices
lowercase__ = {
(min(lowerCAmelCase), max(lowerCAmelCase)): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : EdgeT , lowerCAmelCase : int) -> None:
"""simple docstring"""
self.vertices.add(edge[0])
self.vertices.add(edge[1])
lowercase__ = weight
def UpperCAmelCase ( self : int) -> Graph:
"""simple docstring"""
lowercase__ = Graph({min(self.vertices)} , {})
lowercase__ = 42
lowercase__ = 42
lowercase__ = 42
lowercase__ = 42
while len(subgraph.vertices) < len(self.vertices):
lowercase__ = max(self.edges.values()) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowercase__ = edge
lowercase__ = weight
subgraph.add_edge(lowerCAmelCase , lowerCAmelCase)
return subgraph
def _lowerCAmelCase ( A__ = "p107_network.txt" ):
lowercase__ = os.path.abspath(os.path.dirname(A__ ) )
lowercase__ = os.path.join(A__ , A__ )
lowercase__ = {}
lowercase__ = 42
lowercase__ = 42
lowercase__ = 42
with open(A__ ) as f:
lowercase__ = f.read().strip().split('\n' )
lowercase__ = [line.split(',' ) for line in data]
for edgea in range(1 , len(A__ ) ):
for edgea in range(A__ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowercase__ = int(adjaceny_matrix[edgea][edgea] )
lowercase__ = Graph(set(range(len(A__ ) ) ) , A__ )
lowercase__ = graph.prims_algorithm()
lowercase__ = sum(graph.edges.values() )
lowercase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F'''{solution() = }''')
| 708
|
import heapq
import sys
import numpy as np
a__ : Dict = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = []
lowercase__ = set()
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return len(self.elements) == 0
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(lowerCAmelCase)
else:
# update
# print("update", item)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
if item in self.set:
self.set.remove(lowerCAmelCase)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
return self.elements[0][1]
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
self.set.remove(lowerCAmelCase)
return (priority, item)
def _lowerCAmelCase ( A__ , A__ ):
# euclidean distance
lowercase__ = np.array(A__ )
lowercase__ = np.array(A__ )
return np.linalg.norm(a - b )
def _lowerCAmelCase ( A__ , A__ ):
# integer division by time variable
return consistent_heuristic(A__ , A__ ) // t
def _lowerCAmelCase ( A__ , A__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ )
return ans
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = np.chararray((n, n) )
for i in range(A__ ):
for j in range(A__ ):
lowercase__ = '*'
for i in range(A__ ):
for j in range(A__ ):
if (j, (n - 1) - i) in blocks:
lowercase__ = '#'
lowercase__ = '-'
lowercase__ = back_pointer[goal]
while x != start:
((lowercase__), (lowercase__)) = x
# print(x)
lowercase__ = '-'
lowercase__ = back_pointer[x]
lowercase__ = '-'
for i in range(A__ ):
for j in range(A__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowercase__ = back_pointer[goal]
while x != start:
print(A__ , end=' ' )
lowercase__ = back_pointer[x]
print(A__ )
sys.exit()
def _lowerCAmelCase ( A__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
for itera in range(A__ ):
open_list[itera].remove_element(A__ )
# print("s", s)
# print("j", j)
((lowercase__), (lowercase__)) = s
lowercase__ = (x - 1, y)
lowercase__ = (x + 1, y)
lowercase__ = (x, y + 1)
lowercase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A__ )
lowercase__ = -1
lowercase__ = float('inf' )
if valid(A__ ) and g_function[neighbours] > g_function[s] + 1:
lowercase__ = g_function[s] + 1
lowercase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) )
if neighbours not in close_list_inad:
for var in range(1 , A__ ):
if key(A__ , A__ , A__ , A__ ) <= Wa * key(
A__ , 0 , A__ , A__ ):
open_list[j].put(
A__ , key(A__ , A__ , A__ , A__ ) )
def _lowerCAmelCase ( ):
lowercase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a__ : Any = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a__ : Any = make_common_ground()
a__ : Union[str, Any] = blocks_blk
# hyper parameters
a__ : List[Any] = 1
a__ : List[str] = 1
a__ : Optional[int] = 20
a__ : Optional[Any] = 3 # one consistent and two other inconsistent
# start and end destination
a__ : Tuple = (0, 0)
a__ : str = (n - 1, n - 1)
a__ : Optional[Any] = 1
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {start: 0, goal: float('inf' )}
lowercase__ = {start: -1, goal: -1}
lowercase__ = []
lowercase__ = set()
for i in range(A__ ):
open_list.append(PriorityQueue() )
open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) )
lowercase__ = []
lowercase__ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__, lowercase__ = open_list[i].top_show()
visited.add(A__ )
expand_state(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_inad.append(A__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__ = open_list[0].top_show()
visited.add(A__ )
expand_state(
A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_anchor.append(A__ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A__ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 642
| 0
|
import requests
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = {'Content-Type': 'application/json'}
lowercase__ = requests.post(A__ , json={'text': message_body} , headers=A__ )
if response.status_code != 200:
lowercase__ = (
'Request to slack returned an error '
F'''{response.status_code}, the response is:\n{response.text}'''
)
raise ValueError(A__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 709
|
import math
import sys
def _lowerCAmelCase ( A__ ):
lowercase__ = ''
try:
with open(A__ , 'rb' ) as binary_file:
lowercase__ = binary_file.read()
for dat in data:
lowercase__ = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = {'0': '0', '1': '1'}
lowercase__, lowercase__ = '', ''
lowercase__ = len(A__ )
for i in range(len(A__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase__ = lexicon[curr_string]
result += last_match_id
lowercase__ = last_match_id + '0'
if math.loga(A__ ).is_integer():
lowercase__ = {}
for curr_key in list(A__ ):
lowercase__ = lexicon.pop(A__ )
lowercase__ = new_lex
lowercase__ = last_match_id + '1'
index += 1
lowercase__ = ''
return result
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = 8
try:
with open(A__ , 'wb' ) as opened_file:
lowercase__ = [
to_write[i : i + byte_length]
for i in range(0 , len(A__ ) , A__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowercase__ = data_bits[counter:]
lowercase__ = data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = read_file_binary(A__ )
lowercase__ = remove_prefix(A__ )
lowercase__ = decompress_data(A__ )
write_file_binary(A__ , A__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 642
| 0
|
def _lowerCAmelCase ( ):
for n in range(1 , 1_000_000 ):
yield n * (n + 1) // 2
def _lowerCAmelCase ( A__ ):
lowercase__ = 1
lowercase__ = 2
while i * i <= n:
lowercase__ = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def _lowerCAmelCase ( ):
return next(i for i in triangle_number_generator() if count_divisors(A__ ) > 500 )
if __name__ == "__main__":
print(solution())
| 710
|
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {"vocab_file": "vocab.txt"}
a__ : int = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a__ : Dict = {
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' ) as f:
lowercase__ = f.read().splitlines()
return [l.strip() for l in lines]
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = load_vocab_file(lowerCAmelCase)
lowercase__ = dict(enumerate(self.all_tokens))
lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)}
lowercase__ = unk_token
lowercase__ = cls_token
lowercase__ = pad_token
lowercase__ = mask_token
lowercase__ = eos_token
lowercase__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
return text.split()
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]:
"""simple docstring"""
return len(self._id_to_token)
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens)}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.cls_token_id]
lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!')
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.')
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase) + [1]
return mask
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt')
with open(lowerCAmelCase , 'w') as f:
f.write('\n'.join(self.all_tokens))
return (vocab_file,)
@property
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int:
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
| 642
| 0
|
'''simple docstring'''
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = PhobertTokenizer
A : List[Any] = False
def UpperCAmelCase ( self : str) -> Any:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@']
lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase))))
lowercase__ = ['#version: 0.2', 'l à</w>']
lowercase__ = {'unk_token': '<unk>'}
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
for token in vocab_tokens:
fp.write(f'''{token} {vocab_tokens[token]}\n''')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(lowerCAmelCase))
def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
kwargs.update(self.special_tokens_map)
return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase)
def UpperCAmelCase ( self : str , lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = 'Tôi là VinAI Research'
lowercase__ = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>'
return input_text, output_text
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
lowercase__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map)
lowercase__ = 'Tôi là VinAI Research'
lowercase__ = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split()
lowercase__ = tokenizer.tokenize(lowerCAmelCase)
print(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = tokens + [tokenizer.unk_token]
lowercase__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , lowerCAmelCase)
| 711
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> MetricInfo:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'),
}) , )
def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]:
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase)
}
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 712
|
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = block_sizes
lowercase__ = num_decoder_layers
lowercase__ = d_model
lowercase__ = n_head
lowercase__ = d_head
lowercase__ = d_inner
lowercase__ = hidden_act
lowercase__ = hidden_dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = 2
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
lowercase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowercase__ = n_head
# Used in the tests to check the size of the first hidden state
lowercase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowercase__ = self.num_hidden_layers + 2
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str:
"""simple docstring"""
lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase)
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
A : Dict = (
{
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
"fill-mask": TFFunnelForMaskedLM,
"question-answering": TFFunnelForQuestionAnswering,
"text-classification": TFFunnelForSequenceClassification,
"token-classification": TFFunnelForTokenClassification,
"zero-shot": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Optional[int] = False
A : Optional[int] = False
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase)
@require_tf
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
A : List[str] = False
A : int = False
def UpperCAmelCase ( self : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
| 642
| 0
|
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _lowerCAmelCase ( A__ ):
lowercase__ = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def _lowerCAmelCase ( A__ ):
lowercase__, lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(A__ , A__ , bias=A__ )
lowercase__ = emb.weight.data
return lin_layer
def _lowerCAmelCase ( A__ , A__=None ):
lowercase__ = {}
for old_key in state_dict.keys():
lowercase__ = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowercase__ = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowercase__ = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' )
if "gate" in key:
lowercase__ = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' )
if "fc2" and "experts" not in key:
lowercase__ = key.replace('.fc2.' , '.ffn.fc2.' )
if "fc1" and "experts" not in key:
lowercase__ = key.replace('.fc1.' , '.ffn.fc1.' )
if ".encoder_attn." in key:
lowercase__ = key.replace('.encoder_attn.' , '.cross_attention.' )
if "encoder_attn_layer_norm" in key:
lowercase__ = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' )
if "final_layer_norm" in key:
lowercase__ = key.replace('final_layer_norm' , 'ff_layer_norm' )
lowercase__ = state_dict[old_key]
return new_dict
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ = WEIGHTS_NAME ):
lowercase__ = []
lowercase__ = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
lowercase__ = switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(A__ ):
lowercase__ = torch.load(A__ )['model']
remove_ignore_keys_(A__ )
lowercase__ = rename_fairseq_keys(A__ , A__ )
lowercase__ = os.path.join(
A__ , weights_name.replace('.bin' , F'''-{len(A__ )+1:05d}-of-???.bin''' ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
lowercase__ = os.path.join(A__ , weights_name.replace('.bin' , F'''-{len(A__ )+1:05d}-of-???.bin''' ) )
lowercase__ = torch.load(switch_checkpoint_path + '-shared.pt' )['model']
remove_ignore_keys_(A__ )
lowercase__ = rename_fairseq_keys(A__ , A__ )
lowercase__ = shared_weights['decoder.embed_tokens.weight']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
lowercase__ = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
lowercase__ = {}
for idx, shard in enumerate(A__ ):
lowercase__ = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(A__ ):05d}.bin''' )
lowercase__ = os.path.join(A__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
lowercase__ = shard_file
# Add the metadata
lowercase__ = {'total_size': total_size}
lowercase__ = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(A__ , A__ ) , 'w' , encoding='utf-8' ) as f:
lowercase__ = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n'
f.write(A__ )
return metadata, index
if __name__ == "__main__":
a__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
a__ : Optional[Any] = parser.parse_args()
a__ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a__ : Tuple = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a__ : Optional[int] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| 713
|
def _lowerCAmelCase ( A__ , A__ , A__ ):
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A__ , A__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
lowercase__ = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowercase__ = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionSAGPipeline
A : str = TEXT_TO_IMAGE_PARAMS
A : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
A : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
A : Any = False
def UpperCAmelCase ( self : Tuple) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0)
lowercase__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
lowercase__ = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , )
torch.manual_seed(0)
lowercase__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0)
lowercase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
lowercase__ = CLIPTextModel(lowerCAmelCase)
lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
lowercase__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Dict=0) -> Optional[int]:
"""simple docstring"""
if str(lowerCAmelCase).startswith('mps'):
lowercase__ = torch.manual_seed(lowerCAmelCase)
else:
lowercase__ = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase)
lowercase__ = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3)
@slow
@require_torch_gpu
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4')
lowercase__ = sag_pipe.to(lowerCAmelCase)
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = '.'
lowercase__ = torch.manual_seed(0)
lowercase__ = sag_pipe(
[prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np')
lowercase__ = output.images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase__ = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
lowercase__ = sag_pipe.to(lowerCAmelCase)
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = '.'
lowercase__ = torch.manual_seed(0)
lowercase__ = sag_pipe(
[prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np')
lowercase__ = output.images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase__ = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
lowercase__ = sag_pipe.to(lowerCAmelCase)
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase)
lowercase__ = '.'
lowercase__ = torch.manual_seed(0)
lowercase__ = sag_pipe(
[prompt] , width=7_68 , height=5_12 , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
lowercase__ = output.images
assert image.shape == (1, 5_12, 7_68, 3)
| 714
|
from __future__ import annotations
def _lowerCAmelCase ( A__ , A__ ):
if b == 0:
return (1, 0)
((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b )
lowercase__ = a // b
return (y, x - k * y)
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
def _lowerCAmelCase ( A__ , A__ ):
((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ )
if b < 0:
lowercase__ = (b % n + n) % n
return b
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
lowercase__ = na * na
lowercase__ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 642
| 0
|
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase__( tf.keras.optimizers.schedules.LearningRateSchedule ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : float , lowerCAmelCase : Callable , lowerCAmelCase : int , lowerCAmelCase : float = 1.0 , lowerCAmelCase : str = None , ) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ = initial_learning_rate
lowercase__ = warmup_steps
lowercase__ = power
lowercase__ = decay_schedule_fn
lowercase__ = name
def __call__( self : Optional[int] , lowerCAmelCase : str) -> Any:
"""simple docstring"""
with tf.name_scope(self.name or 'WarmUp') as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowercase__ = tf.cast(lowerCAmelCase , tf.floataa)
lowercase__ = tf.cast(self.warmup_steps , tf.floataa)
lowercase__ = global_step_float / warmup_steps_float
lowercase__ = self.initial_learning_rate * tf.math.pow(lowerCAmelCase , self.power)
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase , )
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _lowerCAmelCase ( A__ , A__ , A__ , A__ = 0.0 , A__ = 0.9 , A__ = 0.9_99 , A__ = 1E-8 , A__ = None , A__ = None , A__ = 0.0 , A__ = 1.0 , A__ = None , ):
lowercase__ = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=A__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A__ , )
if num_warmup_steps:
lowercase__ = WarmUp(
initial_learning_rate=A__ , decay_schedule_fn=A__ , warmup_steps=A__ , )
if weight_decay_rate > 0.0:
lowercase__ = AdamWeightDecay(
learning_rate=A__ , weight_decay_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=A__ , )
else:
lowercase__ = tf.keras.optimizers.Adam(
learning_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 , lowerCAmelCase : float = 0.9 , lowerCAmelCase : float = 0.9_99 , lowerCAmelCase : float = 1E-7 , lowerCAmelCase : bool = False , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "AdamWeightDecay" , **lowerCAmelCase : Dict , ) -> List[str]:
"""simple docstring"""
super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase)
lowercase__ = weight_decay_rate
lowercase__ = include_in_weight_decay
lowercase__ = exclude_from_weight_decay
@classmethod
def UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
lowercase__ = {'WarmUp': WarmUp}
return super(lowerCAmelCase , cls).from_config(lowerCAmelCase , custom_objects=lowerCAmelCase)
def UpperCAmelCase ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Any) -> Any:
"""simple docstring"""
super(lowerCAmelCase , self)._prepare_local(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
lowercase__ = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate')
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self._do_use_weight_decay(var.name)
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
lowercase__, lowercase__ = list(zip(*lowerCAmelCase))
return super(lowerCAmelCase , self).apply_gradients(zip(lowerCAmelCase , lowerCAmelCase) , name=lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowercase__ = apply_state or {}
lowercase__ = apply_state.get((var_device, var_dtype))
if coefficients is None:
lowercase__ = self._fallback_apply_state(lowerCAmelCase , lowerCAmelCase)
lowercase__ = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None) -> str:
"""simple docstring"""
lowercase__, lowercase__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase)
lowercase__ = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
with tf.control_dependencies([decay]):
return super(lowerCAmelCase , self)._resource_apply_dense(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]=None) -> List[Any]:
"""simple docstring"""
lowercase__, lowercase__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase)
lowercase__ = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
with tf.control_dependencies([decay]):
return super(lowerCAmelCase , self)._resource_apply_sparse(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate})
return config
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]) -> Optional[int]:
"""simple docstring"""
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(lowerCAmelCase , lowerCAmelCase) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(lowerCAmelCase , lowerCAmelCase) is not None:
return False
return True
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : List[Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = []
lowercase__ = None
@property
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
if self._accum_steps is None:
lowercase__ = tf.Variable(
tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients')
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : str , lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
if not self._gradients:
lowercase__ = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(lowerCAmelCase) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
])
if len(lowerCAmelCase) != len(self._gradients):
raise ValueError(f'''Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase)}''')
for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(lowerCAmelCase)
self._accum_steps.assign_add(1)
def UpperCAmelCase ( self : List[str]) -> List[Any]:
"""simple docstring"""
if not self._gradients:
return
self._accum_steps.assign(0)
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(lowerCAmelCase))
| 715
|
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[Any] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = "umt5"
A : List[str] = ["past_key_values"]
def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str:
"""simple docstring"""
super().__init__(
is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_kv
lowercase__ = d_ff
lowercase__ = num_layers
lowercase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase__ = num_heads
lowercase__ = relative_attention_num_buckets
lowercase__ = relative_attention_max_distance
lowercase__ = dropout_rate
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_factor
lowercase__ = feed_forward_proj
lowercase__ = use_cache
lowercase__ = self.feed_forward_proj.split('-')
lowercase__ = act_info[-1]
lowercase__ = act_info[0] == 'gated'
if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'')
if feed_forward_proj == "gated-gelu":
lowercase__ = 'gelu_new'
@property
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
return self.d_model
@property
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
return self.num_heads
@property
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return self.num_layers
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
lowercase__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
lowercase__ = 'past_encoder_sequence + sequence'
lowercase__ = {0: 'batch'}
lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
lowercase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs')
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return 13
@property
def UpperCAmelCase ( self : Optional[Any]) -> float:
"""simple docstring"""
return 5E-4
| 642
| 0
|
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class UpperCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self : Any) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ = nn.Linear(3 , 4)
lowercase__ = nn.BatchNormad(4)
lowercase__ = nn.Linear(4 , 5)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase)))
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[int] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
return (args[0] + 1,) + args[1:], kwargs
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
return output + 1
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
lowercase__ = ModelForTest()
lowercase__ = ModelHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
self.assertEqual(test_model._hf_hook , lowerCAmelCase)
self.assertTrue(hasattr(lowerCAmelCase , '_old_forward'))
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , 'forward')
self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['x'])
remove_hook_from_module(lowerCAmelCase)
self.assertFalse(hasattr(lowerCAmelCase , '_hf_hook'))
self.assertFalse(hasattr(lowerCAmelCase , '_old_forward'))
def UpperCAmelCase ( self : Tuple) -> Optional[int]:
"""simple docstring"""
lowercase__ = ModelForTest()
lowercase__ = ModelHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
add_hook_to_module(lowerCAmelCase , lowerCAmelCase , append=lowerCAmelCase)
self.assertEqual(isinstance(test_model._hf_hook , lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(len(test_model._hf_hook.hooks) , 2)
self.assertTrue(hasattr(lowerCAmelCase , '_old_forward'))
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , 'forward')
self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['x'])
remove_hook_from_module(lowerCAmelCase)
self.assertFalse(hasattr(lowerCAmelCase , '_hf_hook'))
self.assertFalse(hasattr(lowerCAmelCase , '_old_forward'))
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = ModelForTest()
lowercase__ = torch.randn(2 , 3)
lowercase__ = test_model(x + 1)
lowercase__ = test_model(x + 2)
lowercase__ = PreForwardHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
# Attaching a hook to a model when it already has one replaces, does not chain
lowercase__ = PreForwardHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
# You need to use the sequential hook to chain two or more hooks
lowercase__ = SequentialHook(PreForwardHook() , PreForwardHook())
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = ModelForTest()
lowercase__ = torch.randn(2 , 3)
lowercase__ = test_model(lowerCAmelCase)
lowercase__ = PostForwardHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1E-5))
# Attaching a hook to a model when it already has one replaces, does not chain
lowercase__ = PostForwardHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1E-5))
# You need to use the sequential hook to chain two or more hooks
lowercase__ = SequentialHook(PostForwardHook() , PostForwardHook())
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
assert torch.allclose(lowerCAmelCase , output + 2 , atol=1E-5)
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = ModelForTest()
lowercase__ = torch.randn(2 , 3)
lowercase__ = test_model(lowerCAmelCase)
lowercase__ = PostForwardHook()
add_hook_to_module(lowerCAmelCase , lowerCAmelCase)
lowercase__ = test_model(lowerCAmelCase)
self.assertTrue(torch.allclose(lowerCAmelCase , output + 1))
self.assertTrue(outputa.requires_grad)
lowercase__ = True
lowercase__ = test_model(lowerCAmelCase)
self.assertFalse(outputa.requires_grad)
@require_multi_gpu
def UpperCAmelCase ( self : List[str]) -> int:
"""simple docstring"""
lowercase__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0))
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0))
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1))
self.assertEqual(model.lineara.weight.device , torch.device(0))
self.assertEqual(model.batchnorm.weight.device , torch.device(0))
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0))
self.assertEqual(model.lineara.weight.device , torch.device(1))
# We can still make a forward pass. The input does not need to be on any particular device
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , torch.device(1))
# We can add a general hook to put back output on same device as input.
add_hook_to_module(lowerCAmelCase , AlignDevicesHook(io_same_device=lowerCAmelCase))
lowercase__ = torch.randn(2 , 3).to(0)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , torch.device(0))
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# This will move each submodule on different devices
lowercase__ = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase))
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase))
add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase))
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.weight.device , torch.device('meta'))
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
# Buffers are not included in the offload by default, so are on the execution device
lowercase__ = torch.device(hook_kwargs['execution_device'])
self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase)
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , lowerCAmelCase)
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara)
remove_hook_from_module(model.batchnorm)
remove_hook_from_module(model.lineara)
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# Now test with buffers included in the offload
lowercase__ = {
'execution_device': 0 if torch.cuda.is_available() else 'cpu',
'offload': True,
'offload_buffers': True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase))
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase))
add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase))
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.weight.device , torch.device('meta'))
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta'))
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , lowerCAmelCase)
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara)
remove_hook_from_module(model.batchnorm)
remove_hook_from_module(model.lineara)
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
lowercase__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# This will move each submodule on different devices
lowercase__ = 0 if torch.cuda.is_available() else 'cpu'
attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase)
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.weight.device , torch.device('meta'))
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
# Buffers are not included in the offload by default, so are on the execution device
lowercase__ = torch.device(lowerCAmelCase)
self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase)
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , lowerCAmelCase)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowerCAmelCase)
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# Now test with buffers included in the offload
attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , offload_buffers=lowerCAmelCase)
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.weight.device , torch.device('meta'))
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta'))
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , lowerCAmelCase)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowerCAmelCase)
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
def UpperCAmelCase ( self : List[str]) -> int:
"""simple docstring"""
lowercase__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# This will move each submodule on different devices
lowercase__ = 0 if torch.cuda.is_available() else 'cpu'
attach_align_device_hook(
lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict())
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.weight.device , torch.device('meta'))
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
# Buffers are not included in the offload by default, so are on the execution device
lowercase__ = torch.device(lowerCAmelCase)
self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase)
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , lowerCAmelCase)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowerCAmelCase)
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
# Now test with buffers included in the offload
attach_align_device_hook(
lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=lowerCAmelCase , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.weight.device , torch.device('meta'))
self.assertEqual(model.lineara.weight.device , torch.device('meta'))
self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta'))
lowercase__ = torch.randn(2 , 3)
lowercase__ = model(lowerCAmelCase)
self.assertEqual(output.device , lowerCAmelCase)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowerCAmelCase)
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
self.assertEqual(model.batchnorm.weight.device , torch.device('cpu'))
self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
| 716
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : str = XGLMTokenizer
A : List[Any] = XGLMTokenizerFast
A : int = True
A : Optional[Any] = True
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = '<pad>'
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> List[str]:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(len(lowerCAmelCase) , 10_08)
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08)
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase)
lowercase__ = tokenizer.tokenize('This is a test')
self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase)
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return XGLMTokenizer.from_pretrained('facebook/xglm-564M')
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase , f.name)
lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase)
lowercase__ = pickle.dumps(lowerCAmelCase)
pickle.loads(lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any]) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = 'I was born in 92000, and this is falsé.'
lowercase__ = tokenizer.tokenize(lowerCAmelCase)
lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCAmelCase)
lowercase__ = rust_tokenizer.encode(lowerCAmelCase)
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
lowercase__ = 'Hello World!'
lowercase__ = [2, 3_12_27, 44_47, 35]
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase))
@slow
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = {
'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
| 642
| 0
|
import heapq
def _lowerCAmelCase ( A__ ):
lowercase__ = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
lowercase__ = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
lowercase__ = heapq.heappop(A__ )[1][0]
chosen_vertices.add(A__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
lowercase__ = elem[1][1].index(A__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(A__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ : List[str] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 717
|
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
lowercase__ = data
lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0]
@staticmethod
def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64)
lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data))
return padded_data
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64)
]
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]:
"""simple docstring"""
lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64
for i in range(16 , 80):
lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1)
return w
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.padding()
lowercase__ = self.split_blocks()
for block in self.blocks:
lowercase__ = self.expand_block(lowerCAmelCase)
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h
for i in range(0 , 80):
if 0 <= i < 20:
lowercase__ = (b & c) | ((~b) & d)
lowercase__ = 0X5_A_8_2_7_9_9_9
elif 20 <= i < 40:
lowercase__ = b ^ c ^ d
lowercase__ = 0X6_E_D_9_E_B_A_1
elif 40 <= i < 60:
lowercase__ = (b & c) | (b & d) | (c & d)
lowercase__ = 0X8_F_1_B_B_C_D_C
elif 60 <= i < 80:
lowercase__ = b ^ c ^ d
lowercase__ = 0XC_A_6_2_C_1_D_6
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = (
self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F,
a,
self.rotate(lowerCAmelCase , 30),
c,
d,
)
lowercase__ = (
self.h[0] + a & 0XF_F_F_F_F_F_F_F,
self.h[1] + b & 0XF_F_F_F_F_F_F_F,
self.h[2] + c & 0XF_F_F_F_F_F_F_F,
self.h[3] + d & 0XF_F_F_F_F_F_F_F,
self.h[4] + e & 0XF_F_F_F_F_F_F_F,
)
return ("{:08x}" * 5).format(*self.h)
def _lowerCAmelCase ( ):
lowercase__ = B'Test String'
assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
lowercase__ = parser.parse_args()
lowercase__ = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase__ = f.read()
else:
lowercase__ = bytes(A__ , 'utf-8' )
print(SHAaHash(A__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 642
| 0
|
from itertools import product
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = sides_number
lowercase__ = max_face_number * dice_number
lowercase__ = [0] * (max_total + 1)
lowercase__ = 1
lowercase__ = range(A__ , max_face_number + 1 )
for dice_numbers in product(A__ , repeat=A__ ):
lowercase__ = sum(A__ )
totals_frequencies[total] += 1
return totals_frequencies
def _lowerCAmelCase ( ):
lowercase__ = total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowercase__ = total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowercase__ = 0
lowercase__ = 9
lowercase__ = 4 * 9
lowercase__ = 6
for peter_total in range(A__ , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowercase__ = (4**9) * (6**6)
lowercase__ = peter_wins_count / total_games_number
lowercase__ = round(A__ , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F'''{solution() = }''')
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a__ : List[Any] = logging.get_logger(__name__)
a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
a__ : List[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
a__ : int = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = ["input_ids", "attention_mask"]
A : Any = BartTokenizer
def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , )
lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type'))
lowercase__ = add_prefix_space
lowercase__ = pre_tok_class(**lowerCAmelCase)
lowercase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase__ = 'post_processor'
lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
if tokenizer_component_instance:
lowercase__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase__ = tuple(state['sep'])
if "cls" in state:
lowercase__ = tuple(state['cls'])
lowercase__ = False
if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space:
lowercase__ = add_prefix_space
lowercase__ = True
if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets:
lowercase__ = trim_offsets
lowercase__ = True
if changes_to_apply:
lowercase__ = getattr(lowerCAmelCase , state.pop('type'))
lowercase__ = component_class(**lowerCAmelCase)
setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
@property
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.')
return None
return str(self._mask_token)
@mask_token.setter
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value
lowercase__ = value
def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding:
"""simple docstring"""
lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.')
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase)
return tuple(lowerCAmelCase)
def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple:
"""simple docstring"""
lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 642
| 0
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class UpperCAmelCase__:
def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : Any=32 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=5_12 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Any=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=0 , ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
lowercase__ = projection_dim
def UpperCAmelCase ( self : Optional[int]) -> List[Any]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , )
lowercase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict())
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
lowercase__ = TFDPRContextEncoder(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFDPRQuestionEncoder(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = TFDPRReader(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,))
def UpperCAmelCase ( self : Tuple) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids}
return config, inputs_dict
@require_tf
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
A : Optional[Any] = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
A : Optional[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {}
A : Any = False
A : Union[str, Any] = False
A : Dict = False
A : Tuple = False
A : Any = False
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFDPRModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37)
def UpperCAmelCase ( self : Optional[int]) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Any:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*lowerCAmelCase)
@slow
def UpperCAmelCase ( self : List[Any]) -> List[Any]:
"""simple docstring"""
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = TFDPRContextEncoder.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = TFDPRContextEncoder.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = TFDPRQuestionEncoder.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = TFDPRReader.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
@require_tf
class UpperCAmelCase__( unittest.TestCase ):
@slow
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
lowercase__ = tf.constant(
[[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP]
lowercase__ = model(lowerCAmelCase)[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
lowercase__ = tf.constant(
[
[
0.03_23_62_53,
0.12_75_33_35,
0.16_81_85_09,
0.00_27_97_86,
0.3_89_69_33,
0.24_26_49_45,
0.2_17_89_71,
-0.02_33_52_27,
-0.08_48_19_59,
-0.14_32_41_17,
]
])
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4))
| 719
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : str = (DDIMParallelScheduler,)
A : Any = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = {
'num_train_timesteps': 10_00,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**lowerCAmelCase)
return config
def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCAmelCase)
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase)
for t in scheduler.timesteps:
lowercase__ = model(lowerCAmelCase , lowerCAmelCase)
lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample
return sample
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase)
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1)
lowercase__ = scheduler_class(**lowerCAmelCase)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1]))
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , )
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]):
self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCAmelCase)
lowercase__, lowercase__ = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase)
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = self.dummy_sample_deter + 0.1
lowercase__ = self.dummy_sample_deter - 0.1
lowercase__ = samplea.shape[0]
lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0)
lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase)
lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 11_47.79_04) < 1E-2
assert abs(result_mean.item() - 0.49_82) < 1E-3
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_72.00_67) < 1E-2
assert abs(result_mean.item() - 0.22_39_67) < 1E-3
def UpperCAmelCase ( self : int) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(prediction_type='v_prediction')
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 52.53_02) < 1E-2
assert abs(result_mean.item() - 0.06_84) < 1E-3
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.82_95) < 1E-2
assert abs(result_mean.item() - 0.19_51) < 1E-3
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01)
lowercase__ = torch.sum(torch.abs(lowerCAmelCase))
lowercase__ = torch.mean(torch.abs(lowerCAmelCase))
assert abs(result_sum.item() - 1_49.07_84) < 1E-2
assert abs(result_mean.item() - 0.19_41) < 1E-3
| 642
| 0
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Optional[Any] = logging.get_logger(__name__)
def _lowerCAmelCase ( A__ , A__=False , A__=False ):
lowercase__ = 'backbone.' if is_semantic else ''
lowercase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def _lowerCAmelCase ( A__ , A__ , A__=False , A__=False ):
for i in range(config.num_hidden_layers ):
lowercase__ = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase__ = in_proj_weight[
: config.hidden_size, :
]
lowercase__ = q_bias
lowercase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase__ = gamma_a
lowercase__ = gamma_a
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = dct.pop(A__ )
lowercase__ = val
def _lowerCAmelCase ( ):
lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( A__ , A__ , A__=False ):
lowercase__ = False if 'rvlcdip' in checkpoint_url else True
lowercase__ = BeitConfig(use_absolute_position_embeddings=A__ , use_mask_token=A__ )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase__ = 1_024
lowercase__ = 4_096
lowercase__ = 24
lowercase__ = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase__ = 16
lowercase__ = 'huggingface/label-files'
lowercase__ = 'rvlcdip-id2label.json'
lowercase__ = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) )
lowercase__ = {int(A__ ): v for k, v in idalabel.items()}
lowercase__ = idalabel
lowercase__ = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase__ = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['model']
lowercase__ = create_rename_keys(A__ , has_lm_head=A__ )
for src, dest in rename_keys:
rename_key(A__ , A__ , A__ )
read_in_q_k_v(A__ , A__ , has_lm_head=A__ )
# load HuggingFace model
lowercase__ = BeitForMaskedImageModeling(A__ ) if has_lm_head else BeitForImageClassification(A__ )
model.eval()
model.load_state_dict(A__ )
# Check outputs on an image
lowercase__ = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=A__ )
lowercase__ = prepare_img()
lowercase__ = image_processor(images=A__ , return_tensors='pt' )
lowercase__ = encoding['pixel_values']
lowercase__ = model(A__ )
lowercase__ = outputs.logits
# verify logits
lowercase__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(A__ ), "Shape of logits not as expected"
Path(A__ ).mkdir(exist_ok=A__ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(A__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(A__ )
if push_to_hub:
if has_lm_head:
lowercase__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , )
model.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , )
if __name__ == "__main__":
a__ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
a__ : str = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 720
|
import cva
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict:
"""simple docstring"""
if k in (0.04, 0.06):
lowercase__ = k
lowercase__ = window_size
else:
raise ValueError('invalid k value')
def __str__( self : Tuple) -> str:
"""simple docstring"""
return str(self.k)
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]:
"""simple docstring"""
lowercase__ = cva.imread(lowerCAmelCase , 0)
lowercase__, lowercase__ = img.shape
lowercase__ = []
lowercase__ = img.copy()
lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB)
lowercase__, lowercase__ = np.gradient(lowerCAmelCase)
lowercase__ = dx**2
lowercase__ = dy**2
lowercase__ = dx * dy
lowercase__ = 0.04
lowercase__ = self.window_size // 2
for y in range(lowerCAmelCase , h - offset):
for x in range(lowerCAmelCase , w - offset):
lowercase__ = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase__ = (wxx * wyy) - (wxy**2)
lowercase__ = wxx + wyy
lowercase__ = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r])
color_img.itemset((y, x, 0) , 0)
color_img.itemset((y, x, 1) , 0)
color_img.itemset((y, x, 2) , 2_55)
return color_img, corner_list
if __name__ == "__main__":
a__ : Dict = HarrisCorner(0.0_4, 3)
a__ , a__ : Dict = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 642
| 0
|
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Dict=13 , lowerCAmelCase : str=7 , lowerCAmelCase : Dict=True , lowerCAmelCase : str=True , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=99 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Union[str, Any]=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Union[str, Any]=64 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Any=16 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : List[str]=None , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
def UpperCAmelCase ( self : Tuple) -> Optional[int]:
"""simple docstring"""
return MPNetConfig.from_pretrained('microsoft/mpnet-base')
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self : Optional[Any]) -> int:
"""simple docstring"""
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str) -> int:
"""simple docstring"""
lowercase__ = MPNetModel(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = MPNetForQuestionAnswering(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Any) -> int:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = MPNetForSequenceClassification(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = MPNetForMultipleChoice(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase__ = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = MPNetForTokenClassification(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self : Union[str, Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
((lowercase__), (lowercase__), (lowercase__), (lowercase__), (lowercase__), (lowercase__)) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
A : List[Any] = (
{
"feature-extraction": MPNetModel,
"fill-mask": MPNetForMaskedLM,
"question-answering": MPNetForQuestionAnswering,
"text-classification": MPNetForSequenceClassification,
"token-classification": MPNetForTokenClassification,
"zero-shot": MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
A : List[Any] = False
A : Dict = True
def UpperCAmelCase ( self : str) -> Any:
"""simple docstring"""
lowercase__ = MPNetModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37)
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Dict) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Tuple) -> Tuple:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCAmelCase)
def UpperCAmelCase ( self : Optional[int]) -> List[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> int:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCAmelCase)
@require_torch
class UpperCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
lowercase__ = MPNetModel.from_pretrained('microsoft/mpnet-base')
lowercase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]])
lowercase__ = model(lowerCAmelCase)[0]
lowercase__ = torch.Size((1, 11, 7_68))
self.assertEqual(output.shape , lowerCAmelCase)
lowercase__ = torch.tensor(
[[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]])
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4))
| 721
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : List[Any] = {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : int = "speech_to_text"
A : Optional[Any] = ["past_key_values"]
A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = max_source_positions
lowercase__ = max_target_positions
lowercase__ = num_conv_layers
lowercase__ = list(lowerCAmelCase)
lowercase__ = conv_channels
lowercase__ = input_feat_per_channel
lowercase__ = input_channels
if len(self.conv_kernel_sizes) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Tuple = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
a__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[int] = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = load_tool('text-classification')
self.tool.setup()
lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
| 701
|
# Imports
import numpy as np
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int:
"""simple docstring"""
if red is not None:
lowercase__ = red
if green is not None:
lowercase__ = green
if blue is not None:
lowercase__ = blue
if red_edge is not None:
lowercase__ = red_edge
if nir is not None:
lowercase__ = nir
return True
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]:
"""simple docstring"""
self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase)
lowercase__ = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!')
return False
def UpperCAmelCase ( self : Optional[int]) -> List[str]:
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase ( self : str) -> Optional[int]:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase ( self : int) -> Tuple:
"""simple docstring"""
return (self.nir / self.green) - 1
def UpperCAmelCase ( self : Any) -> str:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def UpperCAmelCase ( self : Any) -> List[str]:
"""simple docstring"""
return (self.red - self.blue) / self.red
def UpperCAmelCase ( self : Any) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2))
def UpperCAmelCase ( self : List[Any]) -> str:
"""simple docstring"""
return self.nir - self.green
def UpperCAmelCase ( self : Tuple) -> List[Any]:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def UpperCAmelCase ( self : int) -> Dict:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase ( self : Tuple) -> Any:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
return (max_value - min_value) / max_value
def UpperCAmelCase ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase ( self : str) -> List[Any]:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 642
| 0
|
'''simple docstring'''
from sklearn.metrics import matthews_corrcoef
import datasets
a__ : Optional[Any] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
a__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
a__ : List[Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int32'),
'references': datasets.Value('int32'),
}) , reference_urls=[
'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'
] , )
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : str=None) -> Optional[int]:
"""simple docstring"""
return {
"matthews_correlation": float(matthews_corrcoef(lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase)),
}
| 702
|
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = load_tool('text-classification')
self.tool.setup()
lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Tuple:
"""simple docstring"""
lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
def UpperCAmelCase ( self : Any) -> Any:
"""simple docstring"""
lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(lowerCAmelCase , 'positive')
| 642
| 0
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a__ : Dict = logging.get_logger(__name__)
a__ : Union[str, Any] = {
"SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Optional[int] = "deformable_detr"
A : str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : List[Any] , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=3 , lowerCAmelCase : Any=3_00 , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : str=6 , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : List[str]=8 , lowerCAmelCase : List[str]=6 , lowerCAmelCase : Any=10_24 , lowerCAmelCase : List[str]=8 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Any=True , lowerCAmelCase : int="relu" , lowerCAmelCase : List[Any]=2_56 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : List[str]=1.0 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int="sine" , lowerCAmelCase : int="resnet50" , lowerCAmelCase : Dict=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : Dict=4 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Any=False , lowerCAmelCase : Tuple=3_00 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : int=5 , lowerCAmelCase : str=2 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : Any=2 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=0.25 , lowerCAmelCase : Optional[Any]=False , **lowerCAmelCase : str , ) -> str:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
lowercase__ = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(lowerCAmelCase , lowerCAmelCase):
lowercase__ = backbone_config.get('model_type')
lowercase__ = CONFIG_MAPPING[backbone_model_type]
lowercase__ = config_class.from_dict(lowerCAmelCase)
lowercase__ = use_timm_backbone
lowercase__ = backbone_config
lowercase__ = num_channels
lowercase__ = num_queries
lowercase__ = max_position_embeddings
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = init_xavier_std
lowercase__ = encoder_layerdrop
lowercase__ = auxiliary_loss
lowercase__ = position_embedding_type
lowercase__ = backbone
lowercase__ = use_pretrained_backbone
lowercase__ = dilation
# deformable attributes
lowercase__ = num_feature_levels
lowercase__ = encoder_n_points
lowercase__ = decoder_n_points
lowercase__ = two_stage
lowercase__ = two_stage_num_proposals
lowercase__ = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.')
# Hungarian matcher
lowercase__ = class_cost
lowercase__ = bbox_cost
lowercase__ = giou_cost
# Loss coefficients
lowercase__ = mask_loss_coefficient
lowercase__ = dice_loss_coefficient
lowercase__ = bbox_loss_coefficient
lowercase__ = giou_loss_coefficient
lowercase__ = eos_coefficient
lowercase__ = focal_alpha
lowercase__ = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase)
@property
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCAmelCase ( self : str) -> int:
"""simple docstring"""
return self.d_model
def UpperCAmelCase ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
lowercase__ = copy.deepcopy(self.__dict__)
if self.backbone_config is not None:
lowercase__ = self.backbone_config.to_dict()
lowercase__ = self.__class__.model_type
return output
| 703
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[Any] = None
A : Optional[int] = None
@property
def UpperCAmelCase ( self : str) -> Union[str, Any]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCAmelCase ( self : int) -> Any:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(lowerCAmelCase , 'feature_size'))
self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate'))
self.assertTrue(hasattr(lowerCAmelCase , 'padding_value'))
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name])))
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_torch
def UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
@require_tf
def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase)
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf')
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size))
def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = self.feat_extract_tester.seq_length_diff
lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff
lowercase__ = self.feat_extract_tester.min_seq_length
lowercase__ = self.feat_extract_tester.batch_size
lowercase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest')
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1]))
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
lowercase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
self.assertTrue(len(input_a[0]) == pad_min_length)
self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff)
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0])))
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a))
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size)
# Check padding value is correct
lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff))
< 1E-3)
self.assertTrue(
abs(
np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff))
< 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3)
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1E-3)
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str:
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase : int):
lowercase__ = len(input[0])
for input_slice in input[1:]:
if len(lowerCAmelCase) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]):
if len(lowerCAmelCase) != len(lowerCAmelCase):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase):
if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3):
return False
return True
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase)
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
# truncate to smallest
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]))
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to smallest with np
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(input_a.shape[1] == len(speech_inputs[0]))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
# truncate to middle
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase)
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np')
lowercase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1]))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase))
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1]))
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase):
feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowercase__ = 12
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
lowercase__ = input_a[input_name]
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , )
lowercase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowercase__ = len(speech_inputs[0])
if expected_length % pad_to_multiple_of != 0:
lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0]) == expected_length)
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase))
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase))
def UpperCAmelCase ( self : List[str]) -> List[str]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Any) -> Optional[Any]:
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase)
@require_torch
def UpperCAmelCase ( self : Dict) -> List[str]:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2)
@require_tf
def UpperCAmelCase ( self : str) -> str:
"""simple docstring"""
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name]
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name]
self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2)
def UpperCAmelCase ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase)
def UpperCAmelCase ( self : str) -> Tuple:
"""simple docstring"""
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCAmelCase)
lowercase__ = self.feat_extract_tester.prepare_inputs_for_common()
lowercase__ = [len(lowerCAmelCase) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs})
lowercase__ = min(lowerCAmelCase)
lowercase__ = feat_extract.pad(
lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np')
self.assertIn('attention_mask' , lowerCAmelCase)
self.assertListEqual(
list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length])
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
| 642
| 0
|
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
a__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def _lowerCAmelCase ( A__ ):
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(A__ ):
return ext
raise Exception(
F'''Unable to determine file format from file extension {path}. '''
F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' )
def _lowerCAmelCase ( A__ ):
lowercase__ = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
lowercase__ = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format
lowercase__ = PipelineDataFormat.from_str(
format=A__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(A__ , A__ )
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat) -> List[str]:
"""simple docstring"""
lowercase__ = nlp
lowercase__ = reader
@staticmethod
def UpperCAmelCase ( lowerCAmelCase : ArgumentParser) -> Optional[int]:
"""simple docstring"""
lowercase__ = parser.add_parser('run' , help='Run a pipeline through the CLI')
run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run')
run_parser.add_argument('--input' , type=lowerCAmelCase , help='Path to the file to use for inference')
run_parser.add_argument('--output' , type=lowerCAmelCase , help='Path to the file that will be used post to write results.')
run_parser.add_argument('--model' , type=lowerCAmelCase , help='Name or path to the model to instantiate.')
run_parser.add_argument('--config' , type=lowerCAmelCase , help='Name or path to the model\'s config to instantiate.')
run_parser.add_argument(
'--tokenizer' , type=lowerCAmelCase , help='Name of the tokenizer to use. (default: same as the model name)')
run_parser.add_argument(
'--column' , type=lowerCAmelCase , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , )
run_parser.add_argument(
'--format' , type=lowerCAmelCase , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , )
run_parser.add_argument(
'--device' , type=lowerCAmelCase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , )
run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.')
run_parser.set_defaults(func=lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__, lowercase__ = self._nlp, []
for entry in self._reader:
lowercase__ = nlp(**lowerCAmelCase) if self._reader.is_multi_columns else nlp(lowerCAmelCase)
if isinstance(lowerCAmelCase , lowerCAmelCase):
outputs.append(lowerCAmelCase)
else:
outputs += output
# Saving data
if self._nlp.binary_output:
lowercase__ = self._reader.save_binary(lowerCAmelCase)
logger.warning(f'''Current pipeline requires output to be in binary format, saving at {binary_path}''')
else:
self._reader.save(lowerCAmelCase)
| 704
|
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowerCAmelCase ( A__ ):
lowercase__ = prime_factors(A__ )
if is_square_free(A__ ):
return -1 if len(A__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
a__ : List[str] = logging.get_logger(__name__)
def _lowerCAmelCase ( A__ ):
if isinstance(A__ , np.ndarray ):
return list(tensor.shape )
lowercase__ = tf.shape(A__ )
if tensor.shape == tf.TensorShape(A__ ):
return dynamic
lowercase__ = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(A__ )]
def _lowerCAmelCase ( A__ , A__ = None , A__ = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=A__ , name=A__ )
def _lowerCAmelCase ( A__ , A__ , A__ , A__=1E-5 , A__=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A__ , A__ ):
raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' )
# Get mean and variance on the axis to be normalized
lowercase__, lowercase__ = tf.nn.moments(A__ , axes=[axis] , keepdims=A__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase__ = [1] * inputs.shape.rank
lowercase__ = shape_list(A__ )[axis]
lowercase__ = tf.reshape(A__ , A__ )
lowercase__ = tf.reshape(A__ , A__ )
# Compute layer normalization using the batch_normalization
# function.
lowercase__ = tf.nn.batch_normalization(
A__ , A__ , A__ , offset=A__ , scale=A__ , variance_epsilon=A__ , )
return outputs
def _lowerCAmelCase ( A__ , A__=0 , A__=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase__ = tf.shape(A__ )
lowercase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(A__ , A__ )
def _lowerCAmelCase ( A__ ):
if not isinstance(A__ , tf.Tensor ):
lowercase__ = tf.convert_to_tensor(A__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase__ = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase__ = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase__ = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def _lowerCAmelCase ( A__ , A__ , A__ = "input_ids" ):
tf.debugging.assert_less(
A__ , tf.cast(A__ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(A__ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase__ = [x for x in data if len(A__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'The following attributes cannot be saved to HDF5 file because '
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
lowercase__ = np.asarray(A__ )
lowercase__ = 1
lowercase__ = np.array_split(A__ , A__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase__ = np.array_split(A__ , A__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(A__ ):
lowercase__ = chunk_data
else:
lowercase__ = data
def _lowerCAmelCase ( A__ , A__ ):
if name in group.attrs:
lowercase__ = [n.decode('utf8' ) if hasattr(A__ , 'decode' ) else n for n in group.attrs[name]]
else:
lowercase__ = []
lowercase__ = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('utf8' ) if hasattr(A__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] )
chunk_id += 1
return data
def _lowerCAmelCase ( A__ ):
def _expand_single_ad_tensor(A__ ):
if isinstance(A__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(A__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , A__ )
| 705
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ : List[str] = logging.get_logger(__name__)
a__ : List[Any] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
A : List[str] = "focalnet"
def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = use_conv_embed
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = focal_levels
lowercase__ = focal_windows
lowercase__ = hidden_act
lowercase__ = mlp_ratio
lowercase__ = hidden_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = use_layerscale
lowercase__ = layerscale_value
lowercase__ = use_post_layernorm
lowercase__ = use_post_layernorm_in_modulation
lowercase__ = normalize_modulator
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = encoder_stride
lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)]
lowercase__, lowercase__ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 642
| 0
|
import fire
from utils import calculate_rouge, save_json
def _lowerCAmelCase ( A__ , A__ , A__=None , **A__ ):
lowercase__ = [x.strip() for x in open(A__ ).readlines()]
lowercase__ = [x.strip() for x in open(A__ ).readlines()][: len(A__ )]
lowercase__ = calculate_rouge(A__ , A__ , **A__ )
if save_path is not None:
save_json(A__ , A__ , indent=A__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 706
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Dict = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
a__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
a__ : Any = {"facebook/blenderbot_small-90M": 5_12}
def _lowerCAmelCase ( A__ ):
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(A__ )
return pairs
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase)
with open(lowerCAmelCase , encoding='utf-8') as vocab_handle:
lowercase__ = json.load(lowerCAmelCase)
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase , encoding='utf-8') as merges_handle:
lowercase__ = merges_handle.read().split('\n')[1:-1]
lowercase__ = [tuple(merge.split()) for merge in merges]
lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase))))
lowercase__ = {}
@property
def UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
return len(self.encoder)
def UpperCAmelCase ( self : str) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase)
lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase)
lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase)
if "\n" in token:
lowercase__ = token.replace('\n' , ' __newln__')
lowercase__ = token.split(' ')
lowercase__ = []
for token in tokens:
if not len(lowerCAmelCase):
continue
lowercase__ = token.lower()
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>'])
lowercase__ = get_pairs(lowerCAmelCase)
if not pairs:
words.append(lowerCAmelCase)
continue
while True:
lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf')))
if bigram not in self.bpe_ranks:
break
lowercase__, lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(lowerCAmelCase):
try:
lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase)
new_word.extend(word[i:j])
lowercase__ = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
lowercase__ = tuple(lowerCAmelCase)
lowercase__ = new_word
if len(lowerCAmelCase) == 1:
break
else:
lowercase__ = get_pairs(lowerCAmelCase)
lowercase__ = '@@ '.join(lowerCAmelCase)
lowercase__ = word[:-4]
lowercase__ = word
words.append(lowerCAmelCase)
return " ".join(lowerCAmelCase)
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase)
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' ')))
return split_tokens
def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int:
"""simple docstring"""
lowercase__ = token.lower()
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token))
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str:
"""simple docstring"""
lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip()
return out_string
def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
lowercase__ = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(lowerCAmelCase , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n')
lowercase__ = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!')
lowercase__ = token_index
writer.write(' '.join(lowerCAmelCase) + '\n')
index += 1
return vocab_file, merge_file
| 642
| 0
|
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a__ : List[Any] = getLogger(__name__)
def _lowerCAmelCase ( A__ , A__ , A__ , A__ = 8 , A__ = 1_024 , A__="val" , A__=None , A__=False , A__="summarization" , A__=None , A__=1 , A__ = None , A__="" , **A__ , ):
lowercase__ = str(A__ )
assert local_rank is not None
torch.distributed.init_process_group(backend='nccl' , rank=A__ )
lowercase__ = Path(A__ )
lowercase__ = save_dir.joinpath(F'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(A__ )
lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(A__ ).cuda()
if fpaa:
lowercase__ = model.half()
# determine if we need to increase num_beams
use_task_specific_params(A__ , A__ ) # update config with task specific params
lowercase__ = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
lowercase__ = num_return_sequences
lowercase__ = AutoTokenizer.from_pretrained(A__ )
logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
lowercase__ = tokenizer.model_max_length
if prefix is None:
lowercase__ = prefix or getattr(model.config , 'prefix' , '' ) or ''
lowercase__ = SeqaSeqDataset(
A__ , A__ , A__ , max_target_length=1_024 , type_path=A__ , n_obs=A__ , prefix=A__ , **A__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
lowercase__ = ds.make_sortish_sampler(A__ , distributed=A__ , add_extra_examples=A__ , shuffle=A__ )
lowercase__ = DataLoader(A__ , sampler=A__ , batch_size=A__ , collate_fn=ds.collate_fn )
lowercase__ = []
for batch in tqdm(A__ ):
lowercase__ = model.generate(
input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=A__ , num_beams=A__ , **A__ , )
lowercase__ = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )
lowercase__ = batch['ids']
if num_return_sequences > 1:
lowercase__ = chunks(A__ , A__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(A__ ):
results.append({'pred': pred, 'id': ids[i].item()} )
save_json(A__ , A__ )
return results, sampler.num_replicas
def _lowerCAmelCase ( ):
lowercase__ = argparse.ArgumentParser(
epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' )
parser.add_argument('--data_dir' , type=A__ , help='like cnn_dm/test.source' )
parser.add_argument(
'--model_name' , type=A__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , )
parser.add_argument('--save_dir' , type=A__ , help='where to save' , default='tmp_gen' )
parser.add_argument('--max_source_length' , type=A__ , default=A__ )
parser.add_argument(
'--type_path' , type=A__ , default='test' , help='which subset to evaluate typically train/val/test' )
parser.add_argument('--task' , type=A__ , default='summarization' , help='used for task_specific_params + metrics' )
parser.add_argument('--bs' , type=A__ , default=8 , required=A__ , help='batch size' )
parser.add_argument(
'--local_rank' , type=A__ , default=-1 , required=A__ , help='should be passed by distributed.launch' )
parser.add_argument(
'--n_obs' , type=A__ , default=A__ , required=A__ , help='How many observations. Defaults to all.' )
parser.add_argument(
'--num_return_sequences' , type=A__ , default=1 , required=A__ , help='How many sequences to return' )
parser.add_argument(
'--sync_timeout' , type=A__ , default=600 , required=A__ , help='How long should master process wait for other processes to finish.' , )
parser.add_argument('--src_lang' , type=A__ , default=A__ , required=A__ )
parser.add_argument('--tgt_lang' , type=A__ , default=A__ , required=A__ )
parser.add_argument(
'--prefix' , type=A__ , required=A__ , default=A__ , help='will be added to the begininng of src examples' )
parser.add_argument('--fp16' , action='store_true' )
parser.add_argument('--debug' , action='store_true' )
lowercase__ = time.time()
lowercase__, lowercase__ = parser.parse_known_args()
lowercase__ = parse_numeric_n_bool_cl_kwargs(A__ )
if generate_kwargs and args.local_rank <= 0:
print(F'''parsed the following generate kwargs: {generate_kwargs}''' )
lowercase__ = Path(args.save_dir + '_tmp' )
Path(A__ ).mkdir(exist_ok=A__ ) # this handles locking.
lowercase__ = list(json_save_dir.glob('rank_*.json' ) )
if intermediate_files:
raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
lowercase__ = {}
if args.src_lang is not None:
lowercase__ = args.src_lang
if args.tgt_lang is not None:
lowercase__ = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=A__ )
lowercase__, lowercase__ = eval_data_dir(
args.data_dir , A__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=A__ , **A__ , )
if args.local_rank <= 0:
lowercase__ = Path(args.save_dir )
save_dir.mkdir(exist_ok=A__ )
lowercase__ = gather_results_from_each_node(A__ , A__ , args.sync_timeout )
lowercase__ = combine_partial_results(A__ )
if args.num_return_sequences > 1:
lowercase__ = save_dir.joinpath('pseudolabel_results.json' )
print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(A__ , A__ )
return
lowercase__ = Path(args.data_dir ).joinpath(args.type_path + '.target' )
with open(A__ ) as f:
lowercase__ = [x.rstrip() for x in f.readlines()][: len(A__ )]
# Calculate metrics, save metrics, and save _generations.txt
lowercase__ = 'translation' in args.task
lowercase__ = calculate_bleu if calc_bleu else calculate_rouge
lowercase__ = 'bleu' if calc_bleu else 'rouge'
lowercase__ = score_fn(A__ , A__ )
lowercase__ = len(A__ )
lowercase__ = time.time() - start_time
lowercase__ = round(runtime / metrics['n_obs'] , 4 )
lowercase__ = num_replicas
# TODO(@stas00): add whatever metadata to metrics
lowercase__ = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' )
save_json(A__ , A__ , indent=A__ )
print(A__ )
write_txt_file(A__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(A__ , save_dir.joinpath(F'''{args.type_path}.target''' ) )
else:
shutil.rmtree(A__ )
def _lowerCAmelCase ( A__ ):
lowercase__ = []
for partial_result in partial_results:
records.extend(A__ )
lowercase__ = sorted(A__ , key=lambda A__ : x["id"] )
lowercase__ = [x['pred'] for x in records]
return preds
def _lowerCAmelCase ( A__ , A__ , A__ ):
# WAIT FOR lots of .json files
lowercase__ = time.time()
logger.info('waiting for all nodes to finish' )
lowercase__ = None
while (time.time() - start_wait) < timeout:
lowercase__ = list(save_dir.glob('rank_*.json' ) )
if len(A__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
lowercase__ = lmap(A__ , A__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError('Rank 0 gave up on waiting for other processes' )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 707
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 642
| 0
|
from __future__ import annotations
from collections.abc import Iterator
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : int) -> None:
"""simple docstring"""
lowercase__ = value
lowercase__ = None
lowercase__ = None
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : Node) -> None:
"""simple docstring"""
lowercase__ = tree
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Node | None) -> int:
"""simple docstring"""
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left) + self.depth_first_search(node.right)
)
def __iter__( self : Optional[Any]) -> Iterator[int]:
"""simple docstring"""
yield self.depth_first_search(self.tree)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708
|
import heapq
import sys
import numpy as np
a__ : Dict = tuple[int, int]
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
lowercase__ = []
lowercase__ = set()
def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
return len(self.elements) == 0
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(lowerCAmelCase)
else:
# update
# print("update", item)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
if item in self.set:
self.set.remove(lowerCAmelCase)
lowercase__ = []
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
return self.elements[0][1]
def UpperCAmelCase ( self : List[str]) -> str:
"""simple docstring"""
((lowercase__), (lowercase__)) = heapq.heappop(self.elements)
self.set.remove(lowerCAmelCase)
return (priority, item)
def _lowerCAmelCase ( A__ , A__ ):
# euclidean distance
lowercase__ = np.array(A__ )
lowercase__ = np.array(A__ )
return np.linalg.norm(a - b )
def _lowerCAmelCase ( A__ , A__ ):
# integer division by time variable
return consistent_heuristic(A__ , A__ ) // t
def _lowerCAmelCase ( A__ , A__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ )
return ans
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = np.chararray((n, n) )
for i in range(A__ ):
for j in range(A__ ):
lowercase__ = '*'
for i in range(A__ ):
for j in range(A__ ):
if (j, (n - 1) - i) in blocks:
lowercase__ = '#'
lowercase__ = '-'
lowercase__ = back_pointer[goal]
while x != start:
((lowercase__), (lowercase__)) = x
# print(x)
lowercase__ = '-'
lowercase__ = back_pointer[x]
lowercase__ = '-'
for i in range(A__ ):
for j in range(A__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowercase__ = back_pointer[goal]
while x != start:
print(A__ , end=' ' )
lowercase__ = back_pointer[x]
print(A__ )
sys.exit()
def _lowerCAmelCase ( A__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ):
for itera in range(A__ ):
open_list[itera].remove_element(A__ )
# print("s", s)
# print("j", j)
((lowercase__), (lowercase__)) = s
lowercase__ = (x - 1, y)
lowercase__ = (x + 1, y)
lowercase__ = (x, y + 1)
lowercase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A__ )
lowercase__ = -1
lowercase__ = float('inf' )
if valid(A__ ) and g_function[neighbours] > g_function[s] + 1:
lowercase__ = g_function[s] + 1
lowercase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) )
if neighbours not in close_list_inad:
for var in range(1 , A__ ):
if key(A__ , A__ , A__ , A__ ) <= Wa * key(
A__ , 0 , A__ , A__ ):
open_list[j].put(
A__ , key(A__ , A__ , A__ , A__ ) )
def _lowerCAmelCase ( ):
lowercase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a__ : Any = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a__ : Any = make_common_ground()
a__ : Union[str, Any] = blocks_blk
# hyper parameters
a__ : List[Any] = 1
a__ : List[str] = 1
a__ : Optional[int] = 20
a__ : Optional[Any] = 3 # one consistent and two other inconsistent
# start and end destination
a__ : Tuple = (0, 0)
a__ : str = (n - 1, n - 1)
a__ : Optional[Any] = 1
def _lowerCAmelCase ( A__ , A__ , A__ ):
lowercase__ = {start: 0, goal: float('inf' )}
lowercase__ = {start: -1, goal: -1}
lowercase__ = []
lowercase__ = set()
for i in range(A__ ):
open_list.append(PriorityQueue() )
open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) )
lowercase__ = []
lowercase__ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__, lowercase__ = open_list[i].top_show()
visited.add(A__ )
expand_state(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_inad.append(A__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A__ , A__ , A__ )
else:
lowercase__ = open_list[0].top_show()
visited.add(A__ )
expand_state(
A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , )
close_list_anchor.append(A__ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A__ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 642
| 0
|
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Optional[Any] = {
"snap-research/efficientformer-l1-300": (
"https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
),
}
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : List[str] = "efficientformer"
def __init__( self : Any , lowerCAmelCase : List[int] = [3, 2, 6, 4] , lowerCAmelCase : List[int] = [48, 96, 2_24, 4_48] , lowerCAmelCase : List[bool] = [True, True, True, True] , lowerCAmelCase : int = 4_48 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 4 , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 5 , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 4 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : float = 1E-5 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1E-1_2 , lowerCAmelCase : int = 2_24 , lowerCAmelCase : float = 1E-0_5 , **lowerCAmelCase : Union[str, Any] , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = hidden_sizes
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = depths
lowercase__ = mlp_expansion_ratio
lowercase__ = downsamples
lowercase__ = dim
lowercase__ = key_dim
lowercase__ = attention_ratio
lowercase__ = resolution
lowercase__ = pool_size
lowercase__ = downsample_patch_size
lowercase__ = downsample_stride
lowercase__ = downsample_pad
lowercase__ = drop_path_rate
lowercase__ = num_metaad_blocks
lowercase__ = distillation
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = image_size
lowercase__ = batch_norm_eps
| 709
|
import math
import sys
def _lowerCAmelCase ( A__ ):
lowercase__ = ''
try:
with open(A__ , 'rb' ) as binary_file:
lowercase__ = binary_file.read()
for dat in data:
lowercase__ = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = {'0': '0', '1': '1'}
lowercase__, lowercase__ = '', ''
lowercase__ = len(A__ )
for i in range(len(A__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase__ = lexicon[curr_string]
result += last_match_id
lowercase__ = last_match_id + '0'
if math.loga(A__ ).is_integer():
lowercase__ = {}
for curr_key in list(A__ ):
lowercase__ = lexicon.pop(A__ )
lowercase__ = new_lex
lowercase__ = last_match_id + '1'
index += 1
lowercase__ = ''
return result
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = 8
try:
with open(A__ , 'wb' ) as opened_file:
lowercase__ = [
to_write[i : i + byte_length]
for i in range(0 , len(A__ ) , A__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _lowerCAmelCase ( A__ ):
lowercase__ = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowercase__ = data_bits[counter:]
lowercase__ = data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase ( A__ , A__ ):
lowercase__ = read_file_binary(A__ )
lowercase__ = remove_prefix(A__ )
lowercase__ = decompress_data(A__ )
write_file_binary(A__ , A__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 642
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Dict = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ["DeiTFeatureExtractor"]
a__ : Dict = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 710
|
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Tuple = {"vocab_file": "vocab.txt"}
a__ : int = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a__ : Dict = {
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def _lowerCAmelCase ( A__ ):
with open(A__ , 'r' ) as f:
lowercase__ = f.read().splitlines()
return [l.strip() for l in lines]
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : str = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
lowercase__ = load_vocab_file(lowerCAmelCase)
lowercase__ = dict(enumerate(self.all_tokens))
lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)}
lowercase__ = unk_token
lowercase__ = cls_token
lowercase__ = pad_token
lowercase__ = mask_token
lowercase__ = eos_token
lowercase__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
return text.split()
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]:
"""simple docstring"""
return len(self._id_to_token)
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens)}
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token))
def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str:
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase , self.unk_token)
def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
lowercase__ = [self.cls_token_id]
lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!')
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.')
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase) + [1]
return mask
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict:
"""simple docstring"""
lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt')
with open(lowerCAmelCase , 'w') as f:
f.write('\n'.join(self.all_tokens))
return (vocab_file,)
@property
def UpperCAmelCase ( self : Optional[int]) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase)
def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int:
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
| 642
| 0
|
'''simple docstring'''
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
a__ : Dict = "scheduler_config.json"
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Tuple = 1
A : Union[str, Any] = 2
A : str = 3
A : Union[str, Any] = 4
A : List[Any] = 5
@dataclass
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : jnp.ndarray
class UpperCAmelCase__:
'''simple docstring'''
A : Dict = SCHEDULER_CONFIG_NAME
A : int = ["dtype"]
A : int = []
A : Optional[Any] = True
@classmethod
def UpperCAmelCase ( cls : str , lowerCAmelCase : Dict[str, Any] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : List[str]=False , **lowerCAmelCase : List[str] , ) -> Optional[int]:
"""simple docstring"""
lowercase__, lowercase__ = cls.load_config(
pretrained_model_name_or_path=lowerCAmelCase , subfolder=lowerCAmelCase , return_unused_kwargs=lowerCAmelCase , **lowerCAmelCase , )
lowercase__, lowercase__ = cls.from_config(lowerCAmelCase , return_unused_kwargs=lowerCAmelCase , **lowerCAmelCase)
if hasattr(lowerCAmelCase , 'create_state') and getattr(lowerCAmelCase , 'has_state' , lowerCAmelCase):
lowercase__ = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, os.PathLike] , lowerCAmelCase : bool = False , **lowerCAmelCase : int) -> str:
"""simple docstring"""
self.save_config(save_directory=lowerCAmelCase , push_to_hub=lowerCAmelCase , **lowerCAmelCase)
@property
def UpperCAmelCase ( self : Tuple) -> Tuple:
"""simple docstring"""
return self._get_compatibles()
@classmethod
def UpperCAmelCase ( cls : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = list(set([cls.__name__] + cls._compatibles))
lowercase__ = importlib.import_module(__name__.split('.')[0])
lowercase__ = [
getattr(lowerCAmelCase , lowerCAmelCase) for c in compatible_classes_str if hasattr(lowerCAmelCase , lowerCAmelCase)
]
return compatible_classes
def _lowerCAmelCase ( A__ , A__ ):
assert len(A__ ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A__ ) - x.ndim) ) , A__ )
def _lowerCAmelCase ( A__ , A__=0.9_99 , A__=jnp.floataa ):
def alpha_bar(A__ ):
return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
lowercase__ = []
for i in range(A__ ):
lowercase__ = i / num_diffusion_timesteps
lowercase__ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(A__ ) / alpha_bar(A__ ) , A__ ) )
return jnp.array(A__ , dtype=A__ )
@flax.struct.dataclass
class UpperCAmelCase__:
'''simple docstring'''
A : jnp.ndarray
A : jnp.ndarray
A : jnp.ndarray
@classmethod
def UpperCAmelCase ( cls : Tuple , lowerCAmelCase : str) -> str:
"""simple docstring"""
lowercase__ = scheduler.config
if config.trained_betas is not None:
lowercase__ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype)
elif config.beta_schedule == "linear":
lowercase__ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype)
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
lowercase__ = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype)
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
lowercase__ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype)
else:
raise NotImplementedError(
f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''')
lowercase__ = 1.0 - betas
lowercase__ = jnp.cumprod(lowerCAmelCase , axis=0)
return cls(
alphas=lowerCAmelCase , betas=lowerCAmelCase , alphas_cumprod=lowerCAmelCase , )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = state.alphas_cumprod
lowercase__ = alphas_cumprod[timesteps] ** 0.5
lowercase__ = sqrt_alpha_prod.flatten()
lowercase__ = broadcast_to_shape_from_left(A__ , original_samples.shape )
lowercase__ = (1 - alphas_cumprod[timesteps]) ** 0.5
lowercase__ = sqrt_one_minus_alpha_prod.flatten()
lowercase__ = broadcast_to_shape_from_left(A__ , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ )
lowercase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__, lowercase__ = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ )
lowercase__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 711
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any]) -> MetricInfo:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'),
}) , )
def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]:
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase)
}
| 642
| 0
|
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
a__ : List[Any] = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
a__ : List[Any] = logging.get_logger(__name__)
class UpperCAmelCase__( lowerCamelCase ):
'''simple docstring'''
A : Any = "maskformer"
A : str = {"hidden_size": "mask_feature_size"}
A : Optional[int] = ["resnet", "swin"]
A : Dict = ["detr"]
def __init__( self : Tuple , lowerCAmelCase : int = 2_56 , lowerCAmelCase : int = 2_56 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[Dict] = None , lowerCAmelCase : Optional[Dict] = None , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 20.0 , lowerCAmelCase : Optional[bool] = None , **lowerCAmelCase : List[Any] , ) -> Tuple:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase__ = SwinConfig(
image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCAmelCase , lowerCAmelCase):
lowercase__ = backbone_config.pop('model_type')
lowercase__ = CONFIG_MAPPING[backbone_model_type]
lowercase__ = config_class.from_dict(lowerCAmelCase)
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported)}''')
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase__ = DetrConfig()
else:
# verify that the decoder is supported
lowercase__ = (
decoder_config.pop('model_type') if isinstance(lowerCAmelCase , lowerCAmelCase) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported)}''')
if isinstance(lowerCAmelCase , lowerCAmelCase):
lowercase__ = CONFIG_MAPPING[decoder_type]
lowercase__ = config_class.from_dict(lowerCAmelCase)
lowercase__ = backbone_config
lowercase__ = decoder_config
# main feature dimension for the model
lowercase__ = fpn_feature_size
lowercase__ = mask_feature_size
# initializer
lowercase__ = init_std
lowercase__ = init_xavier_std
# Hungarian matcher && loss
lowercase__ = cross_entropy_weight
lowercase__ = dice_weight
lowercase__ = mask_weight
lowercase__ = use_auxiliary_loss
lowercase__ = no_object_weight
lowercase__ = output_auxiliary_logits
lowercase__ = self.decoder_config.encoder_attention_heads
lowercase__ = self.decoder_config.num_hidden_layers
super().__init__(**lowerCAmelCase)
@classmethod
def UpperCAmelCase ( cls : Optional[Any] , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : List[Any]) -> Dict:
"""simple docstring"""
return cls(
backbone_config=lowerCAmelCase , decoder_config=lowerCAmelCase , **lowerCAmelCase , )
def UpperCAmelCase ( self : int) -> Dict[str, any]:
"""simple docstring"""
lowercase__ = copy.deepcopy(self.__dict__)
lowercase__ = self.backbone_config.to_dict()
lowercase__ = self.decoder_config.to_dict()
lowercase__ = self.__class__.model_type
return output
| 712
|
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class UpperCAmelCase__:
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = block_sizes
lowercase__ = num_decoder_layers
lowercase__ = d_model
lowercase__ = n_head
lowercase__ = d_head
lowercase__ = d_inner
lowercase__ = hidden_act
lowercase__ = hidden_dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = 2
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = scope
lowercase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowercase__ = n_head
# Used in the tests to check the size of the first hidden state
lowercase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowercase__ = self.num_hidden_layers + 2
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
lowercase__ = [input_ids, input_mask]
lowercase__ = model(lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model))
lowercase__ = False
lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase)
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str:
"""simple docstring"""
lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase)
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
lowercase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase)
lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase__ = model(lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self : Union[str, Any]) -> str:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) = config_and_inputs
lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
A : Dict = (
{
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
"fill-mask": TFFunnelForMaskedLM,
"question-answering": TFFunnelForQuestionAnswering,
"text-classification": TFFunnelForSequenceClassification,
"token-classification": TFFunnelForTokenClassification,
"zero-shot": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Optional[int] = False
A : Optional[int] = False
def UpperCAmelCase ( self : Tuple) -> str:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : Dict) -> Dict:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase)
@require_tf
class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
A : List[str] = False
A : int = False
def UpperCAmelCase ( self : Any) -> List[Any]:
"""simple docstring"""
lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase)
lowercase__ = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Tuple) -> int:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*lowerCAmelCase)
def UpperCAmelCase ( self : int) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase)
def UpperCAmelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
| 642
| 0
|
import math
import sys
import cva
import numpy as np
def _lowerCAmelCase ( A__ , A__ ):
# For applying gaussian function for each element in matrix.
lowercase__ = math.sqrt(A__ )
lowercase__ = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ ):
lowercase__ = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def _lowerCAmelCase ( A__ , A__ ):
# Creates a gaussian kernel of given dimension.
lowercase__ = np.zeros((kernel_size, kernel_size) )
for i in range(0 , A__ ):
for j in range(0 , A__ ):
lowercase__ = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(A__ , A__ )
def _lowerCAmelCase ( A__ , A__ , A__ , A__ , ):
lowercase__ = np.zeros(img.shape )
lowercase__ = get_gauss_kernel(A__ , A__ )
lowercase__, lowercase__ = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
lowercase__ = get_slice(A__ , A__ , A__ , A__ )
lowercase__ = img_s - img_s[kernel_size // 2, kernel_size // 2]
lowercase__ = vec_gaussian(A__ , A__ )
lowercase__ = np.multiply(A__ , A__ )
lowercase__ = np.multiply(A__ , A__ )
lowercase__ = np.sum(A__ ) / np.sum(A__ )
lowercase__ = val
return imga
def _lowerCAmelCase ( A__ ):
lowercase__ = args[1] if args[1:] else '../image_data/lena.jpg'
lowercase__ = float(args[2] ) if args[2:] else 1.0
lowercase__ = float(args[3] ) if args[3:] else 1.0
if args[4:]:
lowercase__ = int(args[4] )
lowercase__ = kernel_size + abs(kernel_size % 2 - 1 )
else:
lowercase__ = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
a__ : List[Any] = parse_args(sys.argv)
a__ : Any = cva.imread(filename, 0)
cva.imshow("input image", img)
a__ : Optional[int] = img / 2_55
a__ : List[Any] = out.astype("float32")
a__ : Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
a__ : Optional[Any] = out * 2_55
a__ : Dict = np.uinta(out)
cva.imshow("output image", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 713
|
def _lowerCAmelCase ( A__ , A__ , A__ ):
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(A__ , A__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
lowercase__ = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowercase__ = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.