code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _UpperCAmelCase = hex_num[0] == '-' if is_negative: _UpperCAmelCase = hex_num[1:] try: _UpperCAmelCase = int(_UpperCAmelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _UpperCAmelCase = '' while int_num > 0: _UpperCAmelCase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
import random def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' _UpperCAmelCase = num - 1 _UpperCAmelCase = 0 while s % 2 == 0: _UpperCAmelCase = s // 2 t += 1 for _ in range(5 ): _UpperCAmelCase = random.randrange(2 , num - 1 ) _UpperCAmelCase = pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if v != 1: _UpperCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: _UpperCAmelCase = i + 1 _UpperCAmelCase = (v**2) % num return True def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' if num < 2: return False _UpperCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_UpperCAmelCase ) def A ( _UpperCAmelCase : int = 1_024 ) -> int: '''simple docstring''' while True: _UpperCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_UpperCAmelCase ): return num if __name__ == "__main__": UpperCAmelCase__ = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) if "model" in sd.keys(): _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )['model'] # pop unnecessary weights _UpperCAmelCase = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCAmelCase ) _UpperCAmelCase = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _UpperCAmelCase = sd.pop(_UpperCAmelCase ) _UpperCAmelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _UpperCAmelCase = sd[key] # We split QKV in separate Q,K,V _UpperCAmelCase = key.replace('.qkv_proj.' , '.q_proj.' ) _UpperCAmelCase = key.replace('.qkv_proj.' , '.k_proj.' ) _UpperCAmelCase = key.replace('.qkv_proj.' , '.v_proj.' ) _UpperCAmelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = torch.split(_UpperCAmelCase , depth // 3 , dim=0 ) _UpperCAmelCase = q _UpperCAmelCase = k _UpperCAmelCase = v del sd[key] return sd @torch.no_grad() def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None ) -> Dict: '''simple docstring''' _UpperCAmelCase = load_checkpoint(_UpperCAmelCase ) if config is not None: _UpperCAmelCase = OPTConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase = OPTConfig() _UpperCAmelCase = OPTModel(_UpperCAmelCase ).half().eval() model.load_state_dict(_UpperCAmelCase ) # Check results Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") UpperCAmelCase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
UpperCAmelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] UpperCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase__ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DPTFeatureExtractor"] UpperCAmelCase__ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
def A ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not head: return True # split the list to two parts _UpperCAmelCase , _UpperCAmelCase = head.next, head while fast and fast.next: _UpperCAmelCase = fast.next.next _UpperCAmelCase = slow.next _UpperCAmelCase = slow.next _UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part _UpperCAmelCase = None while second: _UpperCAmelCase = second.next _UpperCAmelCase = node _UpperCAmelCase = second _UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCAmelCase = node.next _UpperCAmelCase = head.next return True def A ( _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = head while fast and fast.next: _UpperCAmelCase , _UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCAmelCase = [slow.val] while slow.next: _UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCAmelCase = cur.next return True def A ( _UpperCAmelCase : Any ) -> Any: '''simple docstring''' if not head or not head.next: return True _UpperCAmelCase = {} _UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(_UpperCAmelCase ) else: _UpperCAmelCase = [pos] _UpperCAmelCase = head.next pos += 1 _UpperCAmelCase = pos - 1 _UpperCAmelCase = 0 for v in d.values(): if len(_UpperCAmelCase ) % 2 != 0: middle += 1 else: _UpperCAmelCase = 0 for i in range(0 , len(_UpperCAmelCase ) ): if v[i] + v[len(_UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCAmelCase__ = logging.getLogger() def A ( ) -> Any: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('-f' ) _UpperCAmelCase = parser.parse_args() return args.f class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(A) def _lowerCamelCase ( self : List[Any] , A : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(A , 'argv' , A): _UpperCAmelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(A , 0.6_6_6) @slow @require_torch_non_multi_gpu def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(A) _UpperCAmelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(A) _UpperCAmelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(A)
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase__ = "tiny-wmt19-en-ru" # Build # borrowed from a test UpperCAmelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase__ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(tmpdirname) UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) UpperCAmelCase__ = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase__ = FSMTConfig( langs=["ru", "en"], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase__ = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test UpperCAmelCase__ = tokenizer(["Making tiny model"], return_tensors="pt") UpperCAmelCase__ = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
UpperCAmelCase__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' _UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase__ = [None] * 1000_0000 UpperCAmelCase__ = True UpperCAmelCase__ = False def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase = chain(next_number(_UpperCAmelCase ) ) _UpperCAmelCase = number_chain while number < 10_000_000: _UpperCAmelCase = number_chain number *= 10 return number_chain def A ( _UpperCAmelCase : int = 10_000_000 ) -> int: '''simple docstring''' for i in range(1 , _UpperCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) _UpperCAmelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCAmelCase = DDPMScheduler() _UpperCAmelCase = AudioDiffusionPipeline(vqvae=A , unet=self.dummy_unet , mel=A , scheduler=A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = torch.Generator(device=A).manual_seed(42) _UpperCAmelCase = pipe(generator=A , steps=4) _UpperCAmelCase = output.audios[0] _UpperCAmelCase = output.images[0] _UpperCAmelCase = torch.Generator(device=A).manual_seed(42) _UpperCAmelCase = pipe(generator=A , steps=4 , return_dict=A) _UpperCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8')[:10] _UpperCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8')[:10] _UpperCAmelCase = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0 _UpperCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vqvae_and_unet _UpperCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A , scheduler=A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) np.random.seed(0) _UpperCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,)) _UpperCAmelCase = torch.Generator(device=A).manual_seed(42) _UpperCAmelCase = pipe(raw_audio=A , generator=A , start_step=5 , steps=10) _UpperCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8')[:10] _UpperCAmelCase = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0 _UpperCAmelCase = self.dummy_unet_condition _UpperCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A , mel=A , scheduler=A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) np.random.seed(0) _UpperCAmelCase = torch.rand((1, 1, 10)) _UpperCAmelCase = pipe(generator=A , encoding=A) _UpperCAmelCase = output.images[0] _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8')[:10] _UpperCAmelCase = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = torch_device _UpperCAmelCase = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256') _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = torch.Generator(device=A).manual_seed(42) _UpperCAmelCase = pipe(generator=A) _UpperCAmelCase = output.audios[0] _UpperCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8')[:10] _UpperCAmelCase = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , ) assert hasattr(self , 'env') def _lowerCamelCase ( self : Any , A : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = { 'enabled': True, 'processes_per_host': 8, } _UpperCAmelCase = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _UpperCAmelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _UpperCAmelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=A , py_version='py36' , ) def _lowerCamelCase ( self : int , A : str) -> int: """simple docstring""" TrainingJobAnalytics(A).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def _lowerCamelCase ( self : List[str] , A : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.create_estimator(A) # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A)
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] UpperCAmelCase__ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : str , A : int , A : int , A : float , **A : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = feature_size _UpperCAmelCase = sampling_rate _UpperCAmelCase = padding_value _UpperCAmelCase = kwargs.pop('padding_side' , 'right') _UpperCAmelCase = kwargs.pop('return_attention_mask' , A) super().__init__(**A) def _lowerCamelCase ( self : Dict , A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A : Union[bool, str, PaddingStrategy] = True , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: """simple docstring""" if isinstance(A , (list, tuple)) and isinstance(processed_features[0] , (dict, BatchFeature)): _UpperCAmelCase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys())}") _UpperCAmelCase = processed_features[self.model_input_names[0]] _UpperCAmelCase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A) == 0: if return_attention_mask: _UpperCAmelCase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _UpperCAmelCase = required_input[0] if isinstance(A , (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _UpperCAmelCase = 0 while len(required_input[index]) == 0: index += 1 if index < len(A): _UpperCAmelCase = required_input[index][0] if return_tensors is None: if is_tf_tensor(A): _UpperCAmelCase = 'tf' elif is_torch_tensor(A): _UpperCAmelCase = 'pt' elif isinstance(A , (int, float, list, tuple, np.ndarray)): _UpperCAmelCase = 'np' else: raise ValueError( F"type of {first_element} unknown: {type(A)}. " 'Should be one of a python, numpy, pytorch or tensorflow object.') for key, value in processed_features.items(): if isinstance(value[0] , (int, float)): _UpperCAmelCase = to_numpy(A) else: _UpperCAmelCase = [to_numpy(A) for v in value] # Convert padding_strategy in PaddingStrategy _UpperCAmelCase = self._get_padding_strategies(padding=A , max_length=A) _UpperCAmelCase = processed_features[self.model_input_names[0]] _UpperCAmelCase = len(A) if not all(len(A) == batch_size for v in processed_features.values()): raise ValueError('Some items in the output dictionary have a different batch size than others.') _UpperCAmelCase = [] for i in range(A): _UpperCAmelCase = {k: v[i] for k, v in processed_features.items()} # truncation _UpperCAmelCase = self._truncate( A , max_length=A , pad_to_multiple_of=A , truncation=A , ) truncated_inputs.append(A) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _UpperCAmelCase = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) _UpperCAmelCase = PaddingStrategy.MAX_LENGTH _UpperCAmelCase = {} for i in range(A): # padding _UpperCAmelCase = self._pad( truncated_inputs[i] , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) for key, value in outputs.items(): if key not in batch_outputs: _UpperCAmelCase = [] if value.dtype is np.dtype(np.floataa): _UpperCAmelCase = value.astype(np.floataa) batch_outputs[key].append(A) return BatchFeature(A , tensor_type=A) def _lowerCamelCase ( self : Union[str, Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ) -> dict: """simple docstring""" _UpperCAmelCase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _UpperCAmelCase = len(A) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A) < max_length if return_attention_mask and "attention_mask" not in processed_features: _UpperCAmelCase = np.ones(len(A) , dtype=np.intaa) if needs_to_be_padded: _UpperCAmelCase = max_length - len(A) if self.padding_side == "right": if return_attention_mask: _UpperCAmelCase = np.pad( processed_features['attention_mask'] , (0, difference)) _UpperCAmelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _UpperCAmelCase = np.pad( A , A , 'constant' , constant_values=self.padding_value) elif self.padding_side == "left": if return_attention_mask: _UpperCAmelCase = np.pad( processed_features['attention_mask'] , (difference, 0)) _UpperCAmelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _UpperCAmelCase = np.pad( A , A , 'constant' , constant_values=self.padding_value) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return processed_features def _lowerCamelCase ( self : Optional[Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : Optional[int] = None , A : Optional[bool] = None , ) -> Union[str, Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.') _UpperCAmelCase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase = len(A) > max_length if needs_to_be_truncated: _UpperCAmelCase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _UpperCAmelCase = processed_features['attention_mask'][:max_length] return processed_features def _lowerCamelCase ( self : Tuple , A : Tuple=False , A : Tuple=None) -> Optional[int]: """simple docstring""" if padding is not False: if padding is True: _UpperCAmelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A , A): _UpperCAmelCase = PaddingStrategy(A) elif isinstance(A , A): _UpperCAmelCase = padding else: _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined") # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.') return padding_strategy
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCAmelCase__ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCAmelCase__ = concatenate_datasets UpperCAmelCase__ = DownloadConfig UpperCAmelCase__ = DownloadManager UpperCAmelCase__ = DownloadMode UpperCAmelCase__ = DownloadConfig UpperCAmelCase__ = DownloadMode UpperCAmelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int] , A : List[Any] , A : Optional[Any]=7 , A : Union[str, Any]=3 , A : Any=18 , A : Union[str, Any]=30 , A : Optional[int]=4_00 , A : Tuple=True , A : Any=None , A : int=True , A : Any=False , A : Any=True , A : Any=True , A : int=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def _lowerCamelCase ( self : str) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self) @property def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'size')) self.assertTrue(hasattr(A , 'do_thumbnail')) self.assertTrue(hasattr(A , 'do_align_long_axis')) self.assertTrue(hasattr(A , 'do_pad')) self.assertTrue(hasattr(A , 'do_normalize')) self.assertTrue(hasattr(A , 'image_mean')) self.assertTrue(hasattr(A , 'image_std')) def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 20}) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84)) self.assertEqual(image_processor.size , {'height': 84, 'width': 42}) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" pass @is_flaky() def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=False ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: _UpperCAmelCase = os.path.abspath(_UpperCAmelCase ) logger.info(F"Loading PyTorch weights from {pt_path}" ) _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) _UpperCAmelCase = convert_pytorch_state_dict_to_flax(_UpperCAmelCase , _UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _UpperCAmelCase = convert_pytorch_sharded_state_dict_to_flax(_UpperCAmelCase , _UpperCAmelCase ) return flax_state_dict def A ( _UpperCAmelCase : Tuple[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, jnp.ndarray] , _UpperCAmelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCAmelCase : Tuple[str] ) -> bool: return len(set(_UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _UpperCAmelCase = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _UpperCAmelCase = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): _UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): _UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _UpperCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _UpperCAmelCase = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _UpperCAmelCase = pt_tuple_key[-2] + '_v' if name is not None: _UpperCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' # convert pytorch tensor to numpy _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _UpperCAmelCase = flax_model.params['params'] else: _UpperCAmelCase = flax_model.params _UpperCAmelCase = flatten_dict(_UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary _UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # add model prefix if necessary _UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Any: '''simple docstring''' import torch # Load the index _UpperCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils _UpperCAmelCase = torch.load(_UpperCAmelCase ) _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase = flax_model.params['params'] _UpperCAmelCase = flatten_dict(_UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: _UpperCAmelCase = flax_model.params _UpperCAmelCase = flatten_dict(_UpperCAmelCase ) _UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary _UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # add model prefix if necessary _UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) continue if "var" in flax_key[-1]: _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> str: '''simple docstring''' _UpperCAmelCase = os.path.abspath(_UpperCAmelCase ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class _UpperCAmelCase = getattr(_UpperCAmelCase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_UpperCAmelCase , 'rb' ) as state_f: try: _UpperCAmelCase = from_bytes(_UpperCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights _UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , _UpperCAmelCase ) ).values() if any(_UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) _UpperCAmelCase = jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCAmelCase ) _UpperCAmelCase = flatten_dict(_UpperCAmelCase ) _UpperCAmelCase = pt_model.state_dict() _UpperCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) _UpperCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _UpperCAmelCase = [] _UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix _UpperCAmelCase = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCAmelCase ) not in pt_model_dict: # conv layer _UpperCAmelCase = flax_key_tuple[:-1] + ('weight',) _UpperCAmelCase = jnp.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ) not in pt_model_dict: # linear layer _UpperCAmelCase = flax_key_tuple[:-1] + ('weight',) _UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _UpperCAmelCase = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: _UpperCAmelCase = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: _UpperCAmelCase = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _UpperCAmelCase = '.'.join(_UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _UpperCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: _UpperCAmelCase = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: _UpperCAmelCase = key_components[-2] + '_v' if name is not None: _UpperCAmelCase = key_components[:-3] + [name] _UpperCAmelCase = '.'.join(_UpperCAmelCase ) _UpperCAmelCase = key if flax_key in special_pt_names: _UpperCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _UpperCAmelCase = np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , np.ndarray ) else flax_tensor _UpperCAmelCase = torch.from_numpy(_UpperCAmelCase ) # remove from missing keys missing_keys.remove(_UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCAmelCase ) pt_model.load_state_dict(_UpperCAmelCase ) # re-transform missing_keys to list _UpperCAmelCase = list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(_UpperCAmelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ' use it for predictions and inference.' ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" 'If your task is similar to the task the model of the checkpoint was trained on, ' F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
from functools import reduce UpperCAmelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase__ = "\\n\n" UpperCAmelCase__ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" UpperCAmelCase__ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string'), }) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def _lowerCamelCase ( self : Optional[Any] , A : Tuple , A : Union[str, Any] , A : int = 16 , A : bool = True , A : str=None) -> Tuple: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = 'cuda' else: _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(A) _UpperCAmelCase = model.to(A) _UpperCAmelCase = AutoTokenizer.from_pretrained(A) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(A) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( A , add_special_tokens=A , padding=A , truncation=A , max_length=A , return_tensors='pt' , return_attention_mask=A , ).to(A) _UpperCAmelCase = encodings['input_ids'] _UpperCAmelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction='none') for start_index in logging.tqdm(range(0 , len(A) , A)): _UpperCAmelCase = min(start_index + batch_size , len(A)) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(A) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(A), attn_mask] , dim=1) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(A , attention_mask=A).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , A) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A)}
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase__ = re.compile(r"\b(a|an|the)\b", re.UNICODE) UpperCAmelCase__ = None def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_UpperCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_UpperCAmelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def A ( _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = bool(qa['answers']['text'] ) return qid_to_has_ans def A ( _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : List[str] ): return ARTICLES_REGEX.sub(' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : List[str] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' if not s: return [] return normalize_answer(_UpperCAmelCase ).split() def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' return int(normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = get_tokens(_UpperCAmelCase ) _UpperCAmelCase = get_tokens(_UpperCAmelCase ) _UpperCAmelCase = collections.Counter(_UpperCAmelCase ) & collections.Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = qa['id'] _UpperCAmelCase = [t for t in qa['answers']['text'] if normalize_answer(_UpperCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _UpperCAmelCase = [''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue _UpperCAmelCase = preds[qid] # Take max over all gold answers _UpperCAmelCase = max(compute_exact(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers ) _UpperCAmelCase = max(compute_fa(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} for qid, s in scores.items(): _UpperCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: _UpperCAmelCase = float(not qid_to_has_ans[qid] ) else: _UpperCAmelCase = s return new_scores def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int=None ) -> Any: '''simple docstring''' if not qid_list: _UpperCAmelCase = len(_UpperCAmelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: _UpperCAmelCase = len(_UpperCAmelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' for k in new_eval: _UpperCAmelCase = new_eval[k] def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' plt.step(_UpperCAmelCase , _UpperCAmelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_UpperCAmelCase , _UpperCAmelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_UpperCAmelCase ) plt.savefig(_UpperCAmelCase ) plt.clf() def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.0 _UpperCAmelCase = [1.0] _UpperCAmelCase = [0.0] _UpperCAmelCase = 0.0 for i, qid in enumerate(_UpperCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] _UpperCAmelCase = true_pos / float(i + 1 ) _UpperCAmelCase = true_pos / float(_UpperCAmelCase ) if i == len(_UpperCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCAmelCase ) recalls.append(_UpperCAmelCase ) if out_image: plot_pr_curve(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return {"ap": 100.0 * avg_prec} def A ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' if out_image_dir and not os.path.exists(_UpperCAmelCase ): os.makedirs(_UpperCAmelCase ) _UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _UpperCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) _UpperCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) _UpperCAmelCase = {k: float(_UpperCAmelCase ) for k, v in qid_to_has_ans.items()} _UpperCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_exact' ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_f1' ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_oracle' ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' if not qid_list: return _UpperCAmelCase = [na_probs[k] for k in qid_list] _UpperCAmelCase = np.ones_like(_UpperCAmelCase ) / float(len(_UpperCAmelCase ) ) plt.hist(_UpperCAmelCase , weights=_UpperCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(_UpperCAmelCase , F"na_prob_hist_{name}.png" ) ) plt.clf() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' _UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _UpperCAmelCase = num_no_ans _UpperCAmelCase = cur_score _UpperCAmelCase = 0.0 _UpperCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] ) for i, qid in enumerate(_UpperCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: _UpperCAmelCase = scores[qid] else: if preds[qid]: _UpperCAmelCase = -1 else: _UpperCAmelCase = 0 cur_score += diff if cur_score > best_score: _UpperCAmelCase = cur_score _UpperCAmelCase = na_probs[qid] return 100.0 * best_score / len(_UpperCAmelCase ), best_thresh def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = best_exact _UpperCAmelCase = exact_thresh _UpperCAmelCase = best_fa _UpperCAmelCase = fa_thresh def A ( ) -> Optional[Any]: '''simple docstring''' with open(OPTS.data_file ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) _UpperCAmelCase = dataset_json['data'] with open(OPTS.pred_file ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) else: _UpperCAmelCase = {k: 0.0 for k in preds} _UpperCAmelCase = make_qid_to_has_ans(_UpperCAmelCase ) # maps qid to True/False _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v] _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] _UpperCAmelCase , _UpperCAmelCase = get_raw_scores(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh ) _UpperCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh ) _UpperCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase ) if has_ans_qids: _UpperCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'HasAns' ) if no_ans_qids: _UpperCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) else: print(json.dumps(_UpperCAmelCase , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
from __future__ import annotations from typing import TypedDict class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = 42 def A ( _UpperCAmelCase : str ) -> list[str]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def A ( _UpperCAmelCase : str ) -> BWTTransformDict: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) _UpperCAmelCase = all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCAmelCase = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCAmelCase ), } return response def A ( _UpperCAmelCase : str , _UpperCAmelCase : int ) -> str: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: _UpperCAmelCase = int(_UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) _UpperCAmelCase = [''] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase__ = "Provide a string that I will generate its BWT transform: " UpperCAmelCase__ = input(entry_msg).strip() UpperCAmelCase__ = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) UpperCAmelCase__ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
from typing import Any def A ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : dict , _UpperCAmelCase : dict , _UpperCAmelCase : dict , ) -> list: '''simple docstring''' _validation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # Creates data structures and fill initial step _UpperCAmelCase = {} _UpperCAmelCase = {} for state in states_space: _UpperCAmelCase = observations_space[0] _UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = observations_space[o] _UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCAmelCase = '' _UpperCAmelCase = -1 for k_state in states_space: _UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCAmelCase = probability _UpperCAmelCase = k_state # Update probabilities and pointers dicts _UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCAmelCase = arg_max # The final observation _UpperCAmelCase = observations_space[len(_UpperCAmelCase ) - 1] # argmax for given final observation _UpperCAmelCase = '' _UpperCAmelCase = -1 for k_state in states_space: _UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCAmelCase = probability _UpperCAmelCase = k_state _UpperCAmelCase = arg_max # Process pointers backwards _UpperCAmelCase = last_state _UpperCAmelCase = [] for o in range(len(_UpperCAmelCase ) - 1 , -1 , -1 ): result.append(_UpperCAmelCase ) _UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , ) -> None: '''simple docstring''' _validate_not_empty( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) _validate_lists(_UpperCAmelCase , _UpperCAmelCase ) _validate_dicts( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> None: '''simple docstring''' _validate_list(_UpperCAmelCase , 'observations_space' ) _validate_list(_UpperCAmelCase , 'states_space' ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> None: '''simple docstring''' if not isinstance(_object , _UpperCAmelCase ): _UpperCAmelCase = F"{var_name} must be a list" raise ValueError(_UpperCAmelCase ) else: for x in _object: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"{var_name} must be a list of strings" raise ValueError(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , ) -> None: '''simple docstring''' _validate_dict(_UpperCAmelCase , 'initial_probabilities' , _UpperCAmelCase ) _validate_nested_dict(_UpperCAmelCase , 'transition_probabilities' ) _validate_nested_dict(_UpperCAmelCase , 'emission_probabilities' ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> None: '''simple docstring''' _validate_dict(_object , _UpperCAmelCase , _UpperCAmelCase ) for x in _object.values(): _validate_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : type , _UpperCAmelCase : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , _UpperCAmelCase ): _UpperCAmelCase = F"{var_name} must be a dict" raise ValueError(_UpperCAmelCase ) if not all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for x in _object ): _UpperCAmelCase = F"{var_name} all keys must be strings" raise ValueError(_UpperCAmelCase ) if not all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for x in _object.values() ): _UpperCAmelCase = 'nested dictionary ' if nested else '' _UpperCAmelCase = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
from math import factorial def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float ) -> float: '''simple docstring''' if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _UpperCAmelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _UpperCAmelCase = float(factorial(_UpperCAmelCase ) ) coefficient /= factorial(_UpperCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A ( _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' def wrapper(*_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ): _UpperCAmelCase = timeit.default_timer() _UpperCAmelCase = func(*_UpperCAmelCase , **_UpperCAmelCase ) _UpperCAmelCase = timeit.default_timer() - starttime return delta _UpperCAmelCase = func.__name__ return wrapper def A ( _UpperCAmelCase : dict , _UpperCAmelCase : List[Any]=100 , _UpperCAmelCase : int=None ) -> str: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = seq_shapes or {} for i in range(_UpperCAmelCase ): _UpperCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_UpperCAmelCase , _ArrayXD ): _UpperCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_UpperCAmelCase , datasets.Value ): if v.dtype == "string": _UpperCAmelCase = 'The small grey turtle was surprisingly fast when challenged.' else: _UpperCAmelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_UpperCAmelCase , datasets.Sequence ): while isinstance(_UpperCAmelCase , datasets.Sequence ): _UpperCAmelCase = v.feature _UpperCAmelCase = seq_shapes[k] _UpperCAmelCase = np.random.rand(*_UpperCAmelCase ).astype(v.dtype ) _UpperCAmelCase = data dummy_data.append((i, example) ) return dummy_data def A ( _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=100 , _UpperCAmelCase : str=None ) -> Dict: '''simple docstring''' _UpperCAmelCase = generate_examples(_UpperCAmelCase , num_examples=_UpperCAmelCase , seq_shapes=_UpperCAmelCase ) with ArrowWriter(features=_UpperCAmelCase , path=_UpperCAmelCase ) as writer: for key, record in dummy_data: _UpperCAmelCase = features.encode_example(_UpperCAmelCase ) writer.write(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) _UpperCAmelCase = datasets.Dataset.from_file(filename=_UpperCAmelCase , info=datasets.DatasetInfo(features=_UpperCAmelCase ) ) return dataset
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = None def A ( _UpperCAmelCase : str , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : Any="cosine" , ) -> Optional[int]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(_UpperCAmelCase ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( A , A ): UpperCamelCase = 1 @register_to_config def __init__( self : Union[str, Any] , A : int = 10_00 , A : float = 0.0_0_0_1 , A : float = 0.0_2 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : bool = True , A : bool = True , A : int = 0 , A : str = "epsilon" , A : float = 1.0 , **A : List[Any] , ) -> str: """simple docstring""" if kwargs.get('set_alpha_to_one' , A) is not None: _UpperCAmelCase = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , A , standard_warn=A) _UpperCAmelCase = kwargs['set_alpha_to_one'] if trained_betas is not None: _UpperCAmelCase = torch.tensor(A , dtype=torch.floataa) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(A , A , A , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(A) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , A).copy().astype(np.intaa)) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Optional[Any] , A : int , A : Union[str, torch.device] = None) -> List[Any]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps.") _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , A) * step_ratio).round().copy().astype(np.intaa) _UpperCAmelCase = torch.from_numpy(A).to(A) self.timesteps += self.config.steps_offset def _lowerCamelCase ( self : str , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : float = 0.0 , A : bool = False , A : Optional[torch.FloatTensor] = None , A : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=A , pred_original_sample=A) def __len__( self : int) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = CLIPTokenizer UpperCamelCase = CLIPTokenizerFast UpperCamelCase = True UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Dict , **A : Any) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : str , **A : List[Any]) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Optional[Any] , A : int) -> str: """simple docstring""" _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _UpperCAmelCase = tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , A) @require_ftfy def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase = 'xa\u0303y' + ' ' + 'x\xe3y' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F"{text_of_1_token} {text_of_1_token}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (0, len(A))) self.assertEqual( encoding.offset_mapping[1] , (len(A) + 1, len(A) + 1 + len(A)) , ) _UpperCAmelCase = F" {text}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A) + 1, 1 + len(A) + 1 + len(A)) , ) def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" with self.assertRaises(A) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer') self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.')) @require_ftfy def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" super().test_tokenization_python_rust_equals() def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" pass
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( A ): def __init__( self : Dict , A : NestedDataStructureLike[PathLike] , A : Optional[NamedSplit] = None , A : Optional[Features] = None , A : str = None , A : bool = False , A : bool = False , A : Optional[int] = None , **A : Dict , ) -> List[Any]: """simple docstring""" super().__init__( A , split=A , features=A , cache_dir=A , keep_in_memory=A , streaming=A , num_proc=A , **A , ) _UpperCAmelCase = path_or_paths if isinstance(A , A) else {self.split: path_or_paths} _UpperCAmelCase = Text( cache_dir=A , data_files=A , features=A , **A , ) def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=A , in_memory=self.keep_in_memory) return dataset
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MvpTokenizer UpperCamelCase = MvpTokenizerFast UpperCamelCase = True UpperCamelCase = filter_roberta_detectors def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Optional[Any] , **A : Optional[int]) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[Any] , **A : Union[str, Any]) -> int: """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp') @cached_property def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp') @require_torch def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , max_length=len(A) , padding=A , return_tensors='pt') self.assertIsInstance(A , A) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(A , A) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , padding=A , return_tensors='pt') # check if input_ids are returned and no labels self.assertIn('input_ids' , A) self.assertIn('attention_mask' , A) self.assertNotIn('labels' , A) self.assertNotIn('decoder_attention_mask' , A) @require_torch def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(text_target=A , max_length=32 , padding='max_length' , return_tensors='pt') self.assertEqual(32 , targets['input_ids'].shape[1]) @require_torch def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=A , truncation=A , return_tensors='pt') self.assertIsInstance(A , A) self.assertEqual(batch.input_ids.shape , (2, 10_24)) @require_torch def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.'] _UpperCAmelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , text_target=A , return_tensors='pt') _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A, <mask> AllenNLP sentence.' _UpperCAmelCase = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A) _UpperCAmelCase = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'])
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) _UpperCAmelCase = Vector() def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(A) , '(0,0,0,0,0,1)') def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3, 4]) self.assertEqual(len(A) , 4) def _lowerCamelCase ( self : int) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2]) _UpperCAmelCase = Vector([1, 2, 3, 4, 5]) _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) _UpperCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3) def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _lowerCamelCase ( self : Union[str, Any]) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([2, -1, 4]) # for test of dot product _UpperCAmelCase = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , '(3.0,6.0,9.0)') self.assertEqual((a * b) , 0) def _lowerCamelCase ( self : Optional[Any]) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10)).count('0') , 10) def _lowerCamelCase ( self : Optional[int]) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , '(0,1,0)') def _lowerCamelCase ( self : Dict) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , A , A)) , '(3,4,7)') def _lowerCamelCase ( self : int) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0, 0, 0, 0]) _UpperCAmelCase = x.copy() self.assertEqual(str(A) , str(A)) def _lowerCamelCase ( self : Optional[int]) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(A) , '(0,1,0)') def _lowerCamelCase ( self : int) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(A)) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(A , A)) def _lowerCamelCase ( self : Tuple) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(A , A)) def _lowerCamelCase ( self : Optional[int]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) _UpperCAmelCase = Vector([1, 2, 3]) self.assertEqual('(14,32,50)' , str(a * x)) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2)) def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(A)) def _lowerCamelCase ( self : List[Any]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.0_1) def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b)) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b)) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __lowerCAmelCase : UpperCamelCase = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) UpperCamelCase = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) UpperCamelCase = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments,) ) ((_UpperCAmelCase) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_UpperCAmelCase , decoder_config=_UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _UpperCAmelCase = decoder_config.decoder_start_token_id _UpperCAmelCase = decoder_config.pad_token_id if decoder_start_token_id is None: _UpperCAmelCase = decoder_config.bos_token_id if pad_token_id is None: _UpperCAmelCase = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _UpperCAmelCase = decoder_config.eos_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , split=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' if issubclass(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = jsonl_path elif issubclass(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({'train': jsonl_path} , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_json_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({'train': jsonl_path} , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = 'train' _UpperCAmelCase = {'train': jsonl_path, 'test': jsonl_path} _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_datasetdict(_UpperCAmelCase , _UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' return json.load(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' return [json.loads(_UpperCAmelCase ) for line in buffer] class __lowerCAmelCase : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def _lowerCamelCase ( self : Union[str, Any] , A : List[str] , A : List[str] , A : Union[str, Any]) -> List[str]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A , A , lines=A).write() buffer.seek(0) _UpperCAmelCase = load_json_function(A) assert isinstance(A , A) assert isinstance(exported_content[0] , A) assert len(A) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def _lowerCamelCase ( self : Tuple , A : List[str] , A : Dict , A : Any , A : Optional[int] , A : List[Any]) -> Tuple: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A , A , lines=A , orient=A).write() buffer.seek(0) _UpperCAmelCase = load_json(A) assert isinstance(A , A) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(A) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def _lowerCamelCase ( self : Union[str, Any] , A : Tuple , A : Optional[int] , A : Any) -> List[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A , A , lines=A , num_proc=2).write() buffer.seek(0) _UpperCAmelCase = load_json_function(A) assert isinstance(A , A) assert isinstance(exported_content[0] , A) assert len(A) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def _lowerCamelCase ( self : Tuple , A : List[str] , A : List[str] , A : Optional[Any] , A : Any , A : Any) -> Optional[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A , A , lines=A , orient=A , num_proc=2).write() buffer.seek(0) _UpperCAmelCase = load_json(A) assert isinstance(A , A) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(A) == 10 def _lowerCamelCase ( self : int , A : Optional[int]) -> Any: """simple docstring""" with pytest.raises(A): with io.BytesIO() as buffer: JsonDatasetWriter(A , A , num_proc=0) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')]) def _lowerCamelCase ( self : Optional[Any] , A : Union[str, Any] , A : Tuple , A : Union[str, Any] , A : str , A : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = tmp_path_factory.mktemp('data') / F"test.json.{extension}" _UpperCAmelCase = str(shared_datadir / F"test_file.json.{extension}") JsonDatasetWriter(A , A , compression=A).write() with fsspec.open(A , 'rb' , compression='infer') as f: _UpperCAmelCase = f.read() with fsspec.open(A , 'rb' , compression='infer') as f: _UpperCAmelCase = f.read() assert exported_content == original_content
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
# Algorithm for the pigeonhole sorting def A ( _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase = min(_UpperCAmelCase ) # min() finds the minimum value _UpperCAmelCase = max(_UpperCAmelCase ) # max() finds the maximum value _UpperCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _UpperCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _UpperCAmelCase = 0 for count in range(_UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 _UpperCAmelCase = count + min_val i += 1 def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCAmelCase ) print('Sorted order is:' , ' '.join(_UpperCAmelCase ) ) if __name__ == "__main__": main()
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import os def A ( ) -> Union[str, Any]: '''simple docstring''' with open(os.path.dirname(_UpperCAmelCase ) + '/p022_names.txt' ) as file: _UpperCAmelCase = str(file.readlines()[0] ) _UpperCAmelCase = names.replace('"' , '' ).split(',' ) names.sort() _UpperCAmelCase = 0 _UpperCAmelCase = 0 for i, name in enumerate(_UpperCAmelCase ): for letter in name: name_score += ord(_UpperCAmelCase ) - 64 total_score += (i + 1) * name_score _UpperCAmelCase = 0 return total_score if __name__ == "__main__": print(solution())
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowerCAmelCase : def __init__( self : Tuple , A : Optional[int] , A : Optional[int]=13 , A : List[Any]=7 , A : int=True , A : str=True , A : Optional[Any]=True , A : Optional[int]=True , A : List[Any]=99 , A : Tuple=64 , A : Tuple=32 , A : Optional[int]=5 , A : List[str]=4 , A : List[Any]=37 , A : Optional[int]="gelu" , A : Any=0.1 , A : Optional[int]=0.1 , A : Optional[int]=5_12 , A : Tuple=16 , A : Any=2 , A : Dict=0.0_2 , A : Tuple=3 , A : List[Any]=4 , A : int=None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = embedding_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : int) -> str: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Dict , A : Union[str, Any] , A : Optional[Any] , A : List[str] , A : Tuple , A : List[Any] , A : Any , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = MegatronBertModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A) _UpperCAmelCase = model(A , token_type_ids=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCamelCase ( self : Optional[Any] , A : List[str] , A : Any , A : Union[str, Any] , A : List[Any] , A : Union[str, Any] , A : Optional[int] , A : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MegatronBertForMaskedLM(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Optional[Any] , A : Any , A : Optional[Any] , A : Any , A : List[Any] , A : str , A : Union[str, Any] , A : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = MegatronBertForCausalLM(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : str , A : List[Any] , A : List[str] , A : str , A : Dict , A : Any , A : List[str] , A : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = MegatronBertForNextSentencePrediction(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _lowerCamelCase ( self : List[str] , A : Union[str, Any] , A : str , A : Any , A : Tuple , A : Optional[int] , A : Dict , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MegatronBertForPreTraining(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , next_sentence_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _lowerCamelCase ( self : Dict , A : str , A : List[str] , A : List[Any] , A : Any , A : Tuple , A : Optional[Any] , A : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = MegatronBertForQuestionAnswering(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Tuple , A : Union[str, Any] , A : Tuple , A : Tuple , A : Optional[Any] , A : List[str] , A : Optional[Any] , A : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MegatronBertForSequenceClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Optional[int] , A : Optional[Any] , A : Dict , A : Union[str, Any] , A : List[Any] , A : int , A : Dict , A : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MegatronBertForTokenClassification(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Any , A : List[Any] , A : List[Any] , A : Any , A : str , A : Dict , A : Union[str, Any] , A : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = MegatronBertForMultipleChoice(config=A) model.to(A) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True # test_resize_embeddings = False UpperCamelCase = False def _lowerCamelCase ( self : str , A : Tuple , A : str , A : int=False) -> Dict: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(A , A , return_labels=A) if return_labels: if model_class in get_values(A): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A) return inputs_dict def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = MegatronBertModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A) def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A) def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A) def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A) def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A) def _lowerCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A) def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A) def A ( _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' return torch.tensor( _UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase , ) UpperCAmelCase__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip('Model is not available.') def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCAmelCase = os.path.join(os.environ['MYDIR'] , A) _UpperCAmelCase = MegatronBertModel.from_pretrained(A) model.to(A) model.half() _UpperCAmelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCAmelCase = model(A)[0] _UpperCAmelCase = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , A) _UpperCAmelCase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCAmelCase = output[0, ii, jj] _UpperCAmelCase = expected[3 * ii + jj] _UpperCAmelCase = 'ii={} jj={} a={} b={}'.format(A , A , A , A) self.assertTrue(math.isclose(A , A , rel_tol=A , abs_tol=A) , msg=A)
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
from math import factorial, radians def A ( _UpperCAmelCase : float , _UpperCAmelCase : int = 18 , _UpperCAmelCase : int = 10 ) -> float: '''simple docstring''' _UpperCAmelCase = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _UpperCAmelCase = radians(_UpperCAmelCase ) _UpperCAmelCase = angle_in_radians _UpperCAmelCase = 3 _UpperCAmelCase = -1 for _ in range(_UpperCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(_UpperCAmelCase ) _UpperCAmelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": __import__("doctest").testmod()
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase__ = random.Random() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None ) -> List[Any]: '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , A : Dict , A : Optional[Any]=7 , A : Optional[Any]=4_00 , A : List[str]=20_00 , A : Tuple=10 , A : Tuple=1_60 , A : Tuple=8 , A : int=0.0 , A : Optional[Any]=40_00 , A : List[Any]=False , A : str=True , ) -> str: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self : Tuple , A : Tuple=False , A : Optional[Any]=False) -> Optional[Any]: """simple docstring""" def _flatten(A : Union[str, Any]): return list(itertools.chain(*A)) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCAmelCase = [np.asarray(A) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = WhisperFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = WhisperFeatureExtractionTester(self) def _lowerCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(A)[0] check_json_file_has_correct_format(A) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(A) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(A , A)) self.assertEqual(A , A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(A , 'feat_extract.json') feat_extract_first.to_json_file(A) _UpperCAmelCase = self.feature_extraction_class.from_json_file(A) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(A , A)) self.assertEqual(A , A) def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = [np.asarray(A) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(A , padding='max_length' , return_tensors='np').input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='np').input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np').input_features self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test batched _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_features _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] _UpperCAmelCase = np.asarray(A) _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_features _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test truncation required _UpperCAmelCase = [floats_list((1, x))[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00)] _UpperCAmelCase = [np.asarray(A) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(A) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_features _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) def _lowerCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = np.random.rand(1_00 , 32).astype(np.floataa) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_features.dtype == np.floataa) _UpperCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _lowerCamelCase ( self : Any , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech _UpperCAmelCase = ds.sort('id').select(range(A))[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ]) # fmt: on _UpperCAmelCase = self._load_datasamples(1) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(A , return_tensors='pt').input_features self.assertEqual(input_features.shape , (1, 80, 30_00)) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A , atol=1E-4)) def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = self._load_datasamples(1)[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A)[0] self.assertTrue(np.all(np.mean(A) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(A) - 1) < 1E-3))
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ = pytest.mark.integration @require_faiss class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(A) for x in np.arange(30).tolist()]}) return dset def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" import faiss _UpperCAmelCase = self._create_dummy_dataset() _UpperCAmelCase = dset.map( lambda A , A: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=A , keep_in_memory=A) _UpperCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" import faiss _UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" import faiss _UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" from elasticsearch import Elasticsearch _UpperCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: _UpperCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30) _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} _UpperCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=A) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" import faiss _UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 10) # single query _UpperCAmelCase = np.zeros(5 , dtype=np.floataa) _UpperCAmelCase = 1 _UpperCAmelCase , _UpperCAmelCase = index.search(A) self.assertRaises(A , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries _UpperCAmelCase = np.eye(5 , dtype=np.floataa)[::-1] _UpperCAmelCase , _UpperCAmelCase = index.search_batch(A) self.assertRaises(A , index.search_batch , queries[0]) _UpperCAmelCase = [scores[0] for scores in total_scores] _UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A) , 0) self.assertListEqual([4, 3, 2, 1, 0] , A) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" import faiss _UpperCAmelCase = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) _UpperCAmelCase = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(A): _UpperCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" import faiss _UpperCAmelCase = faiss.IndexFlat(5) _UpperCAmelCase = FaissIndex(custom_index=A) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _lowerCamelCase ( self : str) -> int: """simple docstring""" import faiss _UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A) as tmp_file: index.save(tmp_file.name) _UpperCAmelCase = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) _UpperCAmelCase = np.zeros(5 , dtype=np.floataa) _UpperCAmelCase = 1 _UpperCAmelCase , _UpperCAmelCase = index.search(A) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' import faiss _UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _UpperCAmelCase = 'index.faiss' _UpperCAmelCase = F"mock://{index_name}" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) _UpperCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) _UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) _UpperCAmelCase = 1 _UpperCAmelCase , _UpperCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: _UpperCAmelCase = Elasticsearch() _UpperCAmelCase = {'acknowledged': True} _UpperCAmelCase = ElasticSearchIndex(es_client=A) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query _UpperCAmelCase = 'foo' _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _UpperCAmelCase , _UpperCAmelCase = index.search(A) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout _UpperCAmelCase = 'foo' _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _UpperCAmelCase , _UpperCAmelCase = index.search(A , request_timeout=30) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries _UpperCAmelCase = ['foo', 'bar', 'foobar'] _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _UpperCAmelCase , _UpperCAmelCase = index.search_batch(A) _UpperCAmelCase = [scores[0] for scores in total_scores] _UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A) , 0) self.assertListEqual([1, 1, 1] , A) # batched queries with timeout _UpperCAmelCase = ['foo', 'bar', 'foobar'] _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _UpperCAmelCase , _UpperCAmelCase = index.search_batch(A , request_timeout=30) _UpperCAmelCase = [scores[0] for scores in total_scores] _UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A) , 0) self.assertListEqual([1, 1, 1] , A)
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def A ( _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] _UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False _UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False _UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _UpperCAmelCase = [3, 3, 3, 3] _UpperCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: _UpperCAmelCase = [4, 4, 4, 4] _UpperCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _UpperCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: _UpperCAmelCase = [3, 3, 3, 3] else: _UpperCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: _UpperCAmelCase = 96 elif "small" in model_name: _UpperCAmelCase = 96 elif "base" in model_name: _UpperCAmelCase = 128 elif "large" in model_name: _UpperCAmelCase = 192 elif "xlarge" in model_name: _UpperCAmelCase = 256 elif "huge" in model_name: _UpperCAmelCase = 352 # set label information _UpperCAmelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: _UpperCAmelCase = 'imagenet-22k-id2label.json' else: _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = FocalNetConfig( embed_dim=_UpperCAmelCase , depths=_UpperCAmelCase , focal_levels=_UpperCAmelCase , focal_windows=_UpperCAmelCase , use_conv_embed=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , use_post_layernorm=_UpperCAmelCase , use_layerscale=_UpperCAmelCase , ) return config def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _UpperCAmelCase = 'encoder.' + name if "encoder.layers" in name: _UpperCAmelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: _UpperCAmelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: _UpperCAmelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _UpperCAmelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _UpperCAmelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _UpperCAmelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": _UpperCAmelCase = 'layernorm.weight' if name == "norm.bias": _UpperCAmelCase = 'layernorm.bias' if "head" in name: _UpperCAmelCase = name.replace('head' , 'classifier' ) else: _UpperCAmelCase = 'focalnet.' + name return name def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=False ) -> str: '''simple docstring''' # fmt: off _UpperCAmelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on _UpperCAmelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , _UpperCAmelCase ) _UpperCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase = state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = val _UpperCAmelCase = get_focalnet_config(_UpperCAmelCase ) _UpperCAmelCase = FocalNetForImageClassification(_UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(_UpperCAmelCase ) # verify conversion _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = BitImageProcessor( do_resize=_UpperCAmelCase , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCAmelCase , crop_size=224 , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , ) _UpperCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _UpperCAmelCase = image_transforms(_UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _UpperCAmelCase , atol=1E-4 ) _UpperCAmelCase = model(**_UpperCAmelCase ) _UpperCAmelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": _UpperCAmelCase = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": _UpperCAmelCase = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": _UpperCAmelCase = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": _UpperCAmelCase = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": _UpperCAmelCase = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(F"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(F"{model_name}" ) processor.push_to_hub(F"{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) UpperCAmelCase__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _UpperCAmelCase = mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: _UpperCAmelCase = max( mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) _UpperCAmelCase = val return f[i][j] def A ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _UpperCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _UpperCAmelCase = dp[i - 1][w_] return dp[n][w_], dp def A ( _UpperCAmelCase : int , _UpperCAmelCase : list , _UpperCAmelCase : list ) -> Any: '''simple docstring''' if not (isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) _UpperCAmelCase = len(_UpperCAmelCase ) if num_items != len(_UpperCAmelCase ): _UpperCAmelCase = ( 'The number of weights must be the same as the number of values.\n' F"But got {num_items} weights and {len(_UpperCAmelCase )} values" ) raise ValueError(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): if not isinstance(wt[i] , _UpperCAmelCase ): _UpperCAmelCase = ( 'All weights must be integers but got weight of ' F"type {type(wt[i] )} at index {i}" ) raise TypeError(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = set() _construct_solution(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return optimal_val, example_optional_set def A ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : set ) -> str: '''simple docstring''' # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: optimal_set.add(_UpperCAmelCase ) _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , j - wt[i - 1] , _UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = [3, 2, 4, 4] UpperCAmelCase__ = [4, 3, 2, 3] UpperCAmelCase__ = 4 UpperCAmelCase__ = 6 UpperCAmelCase__ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase__ , UpperCAmelCase__ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase__ , UpperCAmelCase__ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : str , A : UNetaDModel , A : ScoreSdeVeScheduler) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=A , scheduler=A) @torch.no_grad() def __call__( self : Tuple , A : int = 1 , A : int = 20_00 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[str] = "pil" , A : bool = True , **A : List[str] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _UpperCAmelCase = self.unet.config.sample_size _UpperCAmelCase = (batch_size, 3, img_size, img_size) _UpperCAmelCase = self.unet _UpperCAmelCase = randn_tensor(A , generator=A) * self.scheduler.init_noise_sigma _UpperCAmelCase = sample.to(self.device) self.scheduler.set_timesteps(A) self.scheduler.set_sigmas(A) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): _UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): _UpperCAmelCase = self.unet(A , A).sample _UpperCAmelCase = self.scheduler.step_correct(A , A , generator=A).prev_sample # prediction step _UpperCAmelCase = model(A , A).sample _UpperCAmelCase = self.scheduler.step_pred(A , A , A , generator=A) _UpperCAmelCase , _UpperCAmelCase = output.prev_sample, output.prev_sample_mean _UpperCAmelCase = sample_mean.clamp(0 , 1) _UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(A) if not return_dict: return (sample,) return ImagePipelineOutput(images=A)
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
from maths.prime_factors import prime_factors def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Input value of [number={number}] must be an integer" raise TypeError(_UpperCAmelCase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(_UpperCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''bloom''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : Dict , A : int=25_08_80 , A : Union[str, Any]=64 , A : Any=2 , A : Any=8 , A : List[str]=1E-5 , A : Optional[Any]=0.0_2 , A : List[Any]=True , A : Any=1 , A : Tuple=2 , A : Optional[int]=False , A : str=0.0 , A : Optional[int]=0.0 , A : str=1 , A : str=False , **A : List[Any] , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('n_embed' , A) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = pretraining_tp _UpperCAmelCase = apply_residual_connection_post_layernorm _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=A , eos_token_id=A , **A) class __lowerCAmelCase ( A ): UpperCamelCase = version.parse('''1.12''' ) def __init__( self : int , A : PretrainedConfig , A : str = "default" , A : List[PatchingSpec] = None , A : bool = False , ) -> Union[str, Any]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A) if not getattr(self._config , 'pad_token_id' , A): # TODO: how to do that better? _UpperCAmelCase = 0 @property def _lowerCamelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _UpperCAmelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A , direction='inputs' , inverted_values_shape=A) _UpperCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" return self._config.n_layer @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return self._config.n_head @property def _lowerCamelCase ( self : Optional[Any]) -> float: """simple docstring""" return 1E-3 def _lowerCamelCase ( self : List[str] , A : "PreTrainedTokenizer" , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase = super(A , self).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = self._config.hidden_size // self.num_attention_heads _UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCAmelCase = [ (torch.zeros(A), torch.zeros(A)) for _ in range(self.num_layers) ] _UpperCAmelCase = common_inputs['attention_mask'] if self.use_past: _UpperCAmelCase = ordered_inputs['attention_mask'].dtype _UpperCAmelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(A , A , dtype=A)] , dim=1) return ordered_inputs @property def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" return 13
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''timesformer''' def __init__( self : Optional[Any] , A : str=2_24 , A : List[str]=16 , A : Any=3 , A : Optional[Any]=8 , A : Optional[Any]=7_68 , A : str=12 , A : int=12 , A : str=30_72 , A : Optional[Any]="gelu" , A : Tuple=0.0 , A : str=0.0 , A : Union[str, Any]=0.0_2 , A : List[Any]=1E-6 , A : Any=True , A : Tuple="divided_space_time" , A : Optional[int]=0 , **A : Tuple , ) -> str: """simple docstring""" super().__init__(**A) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = qkv_bias _UpperCAmelCase = attention_type _UpperCAmelCase = drop_path_rate
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import requests def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = {'Content-Type': 'application/json'} _UpperCAmelCase = requests.post(_UpperCAmelCase , json={'text': message_body} , headers=_UpperCAmelCase ) if response.status_code != 200: _UpperCAmelCase = ( 'Request to slack returned an error ' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __lowerCAmelCase ( A , A ): UpperCamelCase = '''focalnet''' def __init__( self : str , A : Any=2_24 , A : Optional[Any]=4 , A : List[Any]=3 , A : int=96 , A : Any=False , A : Union[str, Any]=[1_92, 3_84, 7_68, 7_68] , A : Optional[int]=[2, 2, 6, 2] , A : Any=[2, 2, 2, 2] , A : Dict=[3, 3, 3, 3] , A : List[str]="gelu" , A : Dict=4.0 , A : List[str]=0.0 , A : List[Any]=0.1 , A : Optional[int]=False , A : Union[str, Any]=1E-4 , A : Any=False , A : Dict=False , A : Dict=False , A : List[Any]=0.0_2 , A : Union[str, Any]=1E-5 , A : Optional[Any]=32 , A : Union[str, Any]=None , A : Dict=None , **A : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**A) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ['stem'] + [F"stage{idx}" for idx in range(1 , len(self.depths) + 1)] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names)
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" UpperCAmelCase__ = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" UpperCAmelCase__ = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" UpperCAmelCase__ = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def _lowerCamelCase ( self : Dict , A : Union[str, Any]) -> Any: """simple docstring""" if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').') _UpperCAmelCase = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: _UpperCAmelCase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _UpperCAmelCase = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer _UpperCAmelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) _UpperCAmelCase = score.BleurtScorer(os.path.join(A , A)) def _lowerCamelCase ( self : str , A : List[Any] , A : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = self.scorer.score(references=A , candidates=A) return {"scores": scores}
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = 42 class __lowerCAmelCase ( A , A ): UpperCamelCase = 1 @register_to_config def __init__( self : List[str] , A : int = 20_00 , A : float = 0.1_5 , A : float = 0.0_1 , A : float = 1_3_4_8.0 , A : float = 1E-5 , A : int = 1 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = sigma_max # setable values _UpperCAmelCase = None self.set_sigmas(A , A , A , A) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Union[str, Any] , A : int , A : float = None , A : Union[str, torch.device] = None) -> Any: """simple docstring""" _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps _UpperCAmelCase = torch.linspace(1 , A , A , device=A) def _lowerCamelCase ( self : List[Any] , A : int , A : float = None , A : float = None , A : float = None) -> str: """simple docstring""" _UpperCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min _UpperCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(A , A) _UpperCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _UpperCAmelCase = torch.exp(torch.linspace(math.log(A) , math.log(A) , A)) _UpperCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def _lowerCamelCase ( self : Dict , A : Optional[Any] , A : Union[str, Any]) -> str: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : Optional[torch.Generator] = None , A : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') _UpperCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _UpperCAmelCase = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _UpperCAmelCase = timesteps.to(self.discrete_sigmas.device) _UpperCAmelCase = self.discrete_sigmas[timesteps].to(sample.device) _UpperCAmelCase = self.get_adjacent_sigma(A , A).to(sample.device) _UpperCAmelCase = torch.zeros_like(A) _UpperCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _UpperCAmelCase = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _UpperCAmelCase = diffusion.unsqueeze(-1) _UpperCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _UpperCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=A , device=sample.device , dtype=sample.dtype) _UpperCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _UpperCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=A , prev_sample_mean=A) def _lowerCamelCase ( self : Dict , A : torch.FloatTensor , A : torch.FloatTensor , A : Optional[torch.Generator] = None , A : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _UpperCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=A).to(sample.device) # compute step size from the model_output, the noise, and the snr _UpperCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() _UpperCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() _UpperCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _UpperCAmelCase = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _UpperCAmelCase = step_size.flatten() while len(step_size.shape) < len(sample.shape): _UpperCAmelCase = step_size.unsqueeze(-1) _UpperCAmelCase = sample + step_size * model_output _UpperCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A) def _lowerCamelCase ( self : List[str] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = self.discrete_sigmas.to(original_samples.device)[timesteps] _UpperCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(A) * sigmas[:, None, None, None] ) _UpperCAmelCase = noise + original_samples return noisy_samples def __len__( self : List[Any]) -> str: """simple docstring""" return self.config.num_train_timesteps
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCAmelCase__ = logging.getLogger() def A ( _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , 'r' ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) else: raise ValueError(F"can't find {path}" ) return results UpperCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" import xla_spawn _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(A , 'argv' , A): _UpperCAmelCase = time() xla_spawn.main() _UpperCAmelCase = time() _UpperCAmelCase = get_results(A) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" import xla_spawn _UpperCAmelCase = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(A , 'argv' , A): xla_spawn.main()
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase__ = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class __lowerCAmelCase : UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _str_to_version_tuple(self.version_str) def __repr__( self : List[Any]) -> int: """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" return self.major, self.minor, self.patch def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any]) -> Optional[Any]: """simple docstring""" if isinstance(A , A): return Version(A) elif isinstance(A , A): return other raise TypeError(F"{other} (type {type(A)}) cannot be compared to version.") def __eq__( self : List[str] , A : Optional[int]) -> Tuple: """simple docstring""" try: _UpperCAmelCase = self._validate_operand(A) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : int , A : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self._validate_operand(A) return self.tuple < other.tuple def __hash__( self : Dict) -> int: """simple docstring""" return hash(_version_tuple_to_str(self.tuple)) @classmethod def _lowerCamelCase ( cls : int , A : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return self.version_str def A ( _UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(_UpperCAmelCase ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def A ( _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def A ( _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' return int(x / 2**20 ) class __lowerCAmelCase : def __enter__( self : Optional[int]) -> Tuple: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCAmelCase = torch.cuda.memory_allocated() return self def __exit__( self : int , *A : Any) -> Tuple: """simple docstring""" gc.collect() torch.cuda.empty_cache() _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = torch.cuda.max_memory_allocated() _UpperCAmelCase = bamb(self.end - self.begin) _UpperCAmelCase = bamb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 , _UpperCAmelCase : str = "bert-base-cased" , _UpperCAmelCase : int = 320 , _UpperCAmelCase : int = 160 , ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = load_dataset( 'glue' , 'mrpc' , split={'train': F"train[:{n_train}]", 'validation': F"validation[:{n_val}]"} ) def tokenize_function(_UpperCAmelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) _UpperCAmelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' # Initialize accelerator _UpperCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['lr'] _UpperCAmelCase = int(config['num_epochs'] ) _UpperCAmelCase = int(config['seed'] ) _UpperCAmelCase = int(config['batch_size'] ) _UpperCAmelCase = args.model_name_or_path set_seed(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) # Instantiate optimizer _UpperCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=_UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _UpperCAmelCase = 1 _UpperCAmelCase = (len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=0 , num_training_steps=_UpperCAmelCase , ) else: _UpperCAmelCase = DummyScheduler(_UpperCAmelCase , total_num_steps=_UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase = 0 # Now we train the model _UpperCAmelCase = {} for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_UpperCAmelCase ): _UpperCAmelCase = model(**_UpperCAmelCase ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_UpperCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_UpperCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_UpperCAmelCase , default=1 , help='Number of train epochs.' , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_00 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A) as mock_head: _UpperCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_00 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A) as mock_head: _UpperCAmelCase = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" try: _UpperCAmelCase = tempfile.mktemp() with open(A , 'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A) _UpperCAmelCase = AlbertTokenizer.from_pretrained(A) finally: os.remove(A) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A) _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _lowerCamelCase ( cls : List[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = TOKEN HfFolder.save_token(A) @classmethod def _lowerCamelCase ( cls : List[str]) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer') except HTTPError: pass def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = BertTokenizer(A) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A , repo_id='test-tokenizer' , push_to_hub=A , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = BertTokenizer(A) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def _lowerCamelCase ( self : int) -> int: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = CustomTokenizer(A) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCAmelCase = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=A) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = BertTokenizerFast.from_pretrained(A) bert_tokenizer.save_pretrained(A) _UpperCAmelCase = CustomTokenizerFast.from_pretrained(A) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCAmelCase = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=A) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast') _UpperCAmelCase = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" , use_fast=A , trust_remote_code=A) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = Trie() trie.add('Hello 友達') self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS]', ' This is a ', 'extra_id_100']) def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Trie() trie.add('A') self.assertEqual(trie.split('ABC') , ['A', 'BC']) self.assertEqual(trie.split('BCA') , ['BC', 'A']) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') , ['AB', 'C']) def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCAmelCase = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') , ['ABC', 'D']) def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = Trie() _UpperCAmelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3]) self.assertEqual(A , ['AB', 'C'])
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : def __init__( self : Any , A : int , A : Tuple=13 , A : List[str]=32 , A : Union[str, Any]=2 , A : Union[str, Any]=3 , A : Union[str, Any]=16 , A : List[Any]=[1, 2, 1] , A : Union[str, Any]=[2, 2, 4] , A : Optional[Any]=2 , A : List[Any]=2.0 , A : Tuple=True , A : Any=0.0 , A : List[Any]=0.0 , A : Tuple=0.1 , A : str="gelu" , A : int=False , A : List[str]=True , A : Optional[int]=0.0_2 , A : Optional[Any]=1E-5 , A : Optional[Any]=True , A : Dict=None , A : Dict=True , A : Any=10 , A : str=8 , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride def _lowerCamelCase ( self : int) -> str: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : List[Any] , A : List[Any] , A : int , A : List[str]) -> int: """simple docstring""" _UpperCAmelCase = SwinvaModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self : int , A : Optional[Any] , A : Any , A : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = SwinvaForMaskedImageModeling(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = SwinvaForMaskedImageModeling(A) model.to(A) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : Optional[Any] , A : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = SwinvaForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = SwinvaModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , embed_dim=37) def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear)) def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions _UpperCAmelCase = len(self.model_tester.depths) self.assertEqual(len(A) , A) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = config.window_size**2 _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCAmelCase = len(A) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) if hasattr(self.model_tester , 'num_hidden_states_types'): _UpperCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowerCamelCase ( self : str , A : str , A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(A) , A) # Swinv2 has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(A) , A) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(A , A , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , A) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width)) def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SwinvaModel.from_pretrained(A) self.assertIsNotNone(A) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(A) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=A) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4))
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self : int , A : str , A : List[str]=13 , A : Optional[Any]=10 , A : str=3 , A : Optional[Any]=2 , A : Dict=2 , A : Optional[int]=True , A : int=True , A : Optional[int]=32 , A : Optional[Any]=5 , A : Dict=4 , A : int=37 , A : Optional[int]="gelu" , A : Union[str, Any]=0.1 , A : str=0.1 , A : Dict=10 , A : Union[str, Any]=0.0_2 , A : List[str]="divided_space_time" , A : str=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = attention_type _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCAmelCase = self.num_labels return config def _lowerCamelCase ( self : Optional[Any] , A : List[str] , A : Optional[int] , A : str) -> int: """simple docstring""" _UpperCAmelCase = TimesformerModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : str , A : Tuple , A : List[str] , A : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TimesformerForVideoClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A) # verify the logits shape _UpperCAmelCase = torch.Size((self.batch_size, self.num_labels)) self.parent.assertEqual(result.logits.shape , A) def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = TimesformerModelTester(self) _UpperCAmelCase = ConfigTester( self , config_class=A , has_text_modality=A , hidden_size=37) def _lowerCamelCase ( self : Optional[Any] , A : Union[str, Any] , A : int , A : int=False) -> int: """simple docstring""" _UpperCAmelCase = copy.deepcopy(A) if return_labels: if model_class in get_values(A): _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A) return inputs_dict def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds') def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear)) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*A) @slow def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TimesformerModel.from_pretrained(A) self.assertIsNotNone(A) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length _UpperCAmelCase = self.model_tester.num_frames _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCAmelCase = len(A) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) self.assertEqual(out_len + 1 , len(A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" def check_hidden_states_output(A : Tuple , A : Optional[int] , A : Dict): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A) , A) _UpperCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _UpperCAmelCase = np.load(_UpperCAmelCase ) return list(_UpperCAmelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400').to( A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(video[:8] , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4))
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( A ): def __init__( self : int , A : VQModel , A : UNetaDModel , A : DDIMScheduler) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=A , unet=A , scheduler=A) @torch.no_grad() def __call__( self : Optional[int] , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[str] = "pil" , A : bool = True , **A : Union[str, Any] , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _UpperCAmelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , ) _UpperCAmelCase = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(self.scheduler.timesteps): _UpperCAmelCase = self.scheduler.scale_model_input(A , A) # predict the noise residual _UpperCAmelCase = self.unet(A , A).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(A , A , A , **A).prev_sample # decode the image latents with the VAE _UpperCAmelCase = self.vqvae.decode(A).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(A) if not return_dict: return (image,) return ImagePipelineOutput(images=A)
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } UpperCAmelCase__ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = RealmTokenizer def __init__( self : List[str] , A : Tuple=None , A : Optional[Any]=None , A : Tuple=True , A : str="[UNK]" , A : Dict="[SEP]" , A : Any="[PAD]" , A : Any="[CLS]" , A : Dict="[MASK]" , A : Tuple=True , A : List[str]=None , **A : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , A) != do_lower_case or normalizer_state.get('strip_accents' , A) != strip_accents or normalizer_state.get('handle_chinese_chars' , A) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(A , normalizer_state.pop('type')) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**A) _UpperCAmelCase = do_lower_case def _lowerCamelCase ( self : List[str] , A : Union[str, Any] , **A : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = PaddingStrategy.MAX_LENGTH _UpperCAmelCase = text _UpperCAmelCase = kwargs.pop('text_pair' , A) _UpperCAmelCase = kwargs.pop('return_tensors' , A) _UpperCAmelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(A): if batch_text_pair is not None: _UpperCAmelCase = batch_text_pair[idx] else: _UpperCAmelCase = None _UpperCAmelCase = super().__call__(A , A , return_tensors=A , **A) _UpperCAmelCase = encoded_candidates.get('input_ids') _UpperCAmelCase = encoded_candidates.get('attention_mask') _UpperCAmelCase = encoded_candidates.get('token_type_ids') if encoded_input_ids is not None: output_data["input_ids"].append(A) if encoded_attention_mask is not None: output_data["attention_mask"].append(A) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A) _UpperCAmelCase = {key: item for key, item in output_data.items() if len(A) != 0} return BatchEncoding(A , tensor_type=A) def _lowerCamelCase ( self : Dict , A : Dict , A : Optional[Any]=None) -> List[str]: """simple docstring""" _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(A , name=A) return tuple(A)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) _UpperCAmelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _UpperCAmelCase = os.path.join(self.tmpdirname , A) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(A , A) def _lowerCamelCase ( self : Optional[Any] , **A : Tuple) -> Optional[int]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[Any] , **A : Union[str, Any]) -> str: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Dict , **A : Any) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] _UpperCAmelCase = [Image.fromarray(np.moveaxis(A , 0 , -1)) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) processor_slow.save_pretrained(self.tmpdirname) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A) _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) processor_fast.save_pretrained(self.tmpdirname) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , A) self.assertIsInstance(processor_fast.tokenizer , A) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , A) self.assertIsInstance(processor_fast.image_processor , A) def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') _UpperCAmelCase = self.get_image_processor(do_normalize=A , padding_value=1.0) _UpperCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , A) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , A) def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(A , return_tensors='np') _UpperCAmelCase = processor(images=A , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=A) _UpperCAmelCase = tokenizer(A) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=A , images=A) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(A): processor() def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(images=A , visual_prompt=A) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'conditional_pixel_values']) # test if it raises when no input is passed with pytest.raises(A): processor() def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(A) _UpperCAmelCase = tokenizer.batch_decode(A) self.assertListEqual(A , A)
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' _UpperCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return image def A ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = dct.pop(_UpperCAmelCase ) _UpperCAmelCase = val def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _UpperCAmelCase = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) _UpperCAmelCase = qkv_bias def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = 364 if 'coco' in model_name else 224 _UpperCAmelCase = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() _UpperCAmelCase = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=False ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) _UpperCAmelCase = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0] _UpperCAmelCase , _UpperCAmelCase = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) _UpperCAmelCase = BlipaForConditionalGeneration(_UpperCAmelCase ).eval() _UpperCAmelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } _UpperCAmelCase , _UpperCAmelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys _UpperCAmelCase = original_model.state_dict() _UpperCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase = state_dict.pop(_UpperCAmelCase ) if key.startswith('Qformer.bert' ): _UpperCAmelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _UpperCAmelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: _UpperCAmelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: _UpperCAmelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): _UpperCAmelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): _UpperCAmelCase = key.replace('t5' , 'language' ) _UpperCAmelCase = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert len(_UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase = load_demo_image() _UpperCAmelCase = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) # create processor _UpperCAmelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) _UpperCAmelCase = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits _UpperCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits else: _UpperCAmelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits _UpperCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _UpperCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_UpperCAmelCase ) else: # cast to same type _UpperCAmelCase = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) _UpperCAmelCase = '' _UpperCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) _UpperCAmelCase = original_model.generate({'image': original_pixel_values} ) _UpperCAmelCase = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase ) _UpperCAmelCase = input_ids.shape[1] _UpperCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase ) _UpperCAmelCase = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() UpperCAmelCase__ = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCAmelCase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( A ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , A : str , A : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = False super().__init__(A , A) _UpperCAmelCase = self.image_processor def __call__( self : Union[str, Any] , A : ImageInput = None , A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A : bool = True , A : Union[bool, str, PaddingStrategy] = False , A : Union[bool, str, TruncationStrategy] = None , A : Optional[int] = None , A : int = 0 , A : Optional[int] = None , A : Optional[bool] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : Optional[Union[str, TensorType]] = None , **A : int , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_token_type_ids=A , return_length=A , verbose=A , return_tensors=A , **A , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(A , return_tensors=A) if text is not None: _UpperCAmelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_token_type_ids=A , return_length=A , verbose=A , return_tensors=A , **A , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(A) return encoding_image_processor def _lowerCamelCase ( self : Optional[int] , *A : Union[str, Any] , **A : Optional[Any]) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*A , **A) def _lowerCamelCase ( self : str , *A : str , **A : Tuple) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*A , **A) @property def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import math from collections.abc import Iterator from itertools import takewhile def A ( _UpperCAmelCase : Union[str, Any] ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> Iterator[int]: '''simple docstring''' _UpperCAmelCase = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def A ( _UpperCAmelCase : Optional[Any] = 2_000_000 ) -> int: '''simple docstring''' return sum(takewhile(lambda _UpperCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( _snake_case , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] UpperCamelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" return 32 @property def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" return self.time_input_dim @property def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" return 1_00 @property def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) _UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__) _UpperCAmelCase = text_encoder.eval() return text_encoder @property def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__) return model @property def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_unet _UpperCAmelCase = self.dummy_movq _UpperCAmelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCAmelCase__ , ) _UpperCAmelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCamelCase ( self : Union[str, Any] , A : Any , A : Tuple=0) -> str: """simple docstring""" _UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) _UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowerCAmelCase__) # create init_image _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((2_56, 2_56)) # create mask _UpperCAmelCase = np.ones((64, 64) , dtype=np.floataa) _UpperCAmelCase = 0 if str(lowerCAmelCase__).startswith('mps'): _UpperCAmelCase = torch.manual_seed(lowerCAmelCase__) else: _UpperCAmelCase = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) _UpperCAmelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__) _UpperCAmelCase = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) _UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) _UpperCAmelCase = output.images _UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}") assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy') _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _UpperCAmelCase = np.ones((7_68, 7_68) , dtype=np.floataa) _UpperCAmelCase = 0 _UpperCAmelCase = 'a hat' _UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) _UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa) _UpperCAmelCase = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) _UpperCAmelCase = torch.Generator(device='cpu').manual_seed(0) _UpperCAmelCase , _UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import math UpperCAmelCase__ : Optional[int] = 10 UpperCAmelCase__ : Optional[Any] = 7 UpperCAmelCase__ : Dict = BALLS_PER_COLOUR * NUM_COLOURS def A ( _UpperCAmelCase : Tuple = 20 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( _SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def _lowerCamelCase ( A : Optional[Any]) -> List[Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" raise NotImplementedError()
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __lowerCAmelCase ( A ): '''simple docstring''' UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
import argparse UpperCAmelCase__ = "docs/source/_static/js/custom.js" def A ( _UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' with open(_A , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _UpperCAmelCase = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") UpperCAmelCase__ = parser.parse_args() update_custom_js(args.version)
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = b.T _UpperCAmelCase = np.sum(np.square(lowerCamelCase_ ) , axis=1 ) _UpperCAmelCase = np.sum(np.square(lowerCamelCase_ ) , axis=0 ) _UpperCAmelCase = np.matmul(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def A ( _UpperCAmelCase : int , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = x.reshape(-1 , 3 ) _UpperCAmelCase = squared_euclidean_distance(lowerCamelCase_ , lowerCamelCase_ ) return np.argmin(lowerCamelCase_ , axis=1 ) class __lowerCAmelCase ( __lowerCamelCase ): UpperCamelCase = ['''pixel_values'''] def __init__( self : str , A : Optional[Union[List[List[int]], np.ndarray]] = None , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : bool = True , **A : List[Any] , ) -> str: """simple docstring""" super().__init__(**UpperCAmelCase_) _UpperCAmelCase = size if size is not None else {'height': 2_56, 'width': 2_56} _UpperCAmelCase = get_size_dict(UpperCAmelCase_) _UpperCAmelCase = np.array(UpperCAmelCase_) if clusters is not None else None _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_normalize _UpperCAmelCase = do_color_quantize def _lowerCamelCase ( self : str , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( UpperCAmelCase_ , size=(size['height'], size['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def _lowerCamelCase ( self : str , A : np.ndarray , A : Optional[Union[str, ChannelDimension]] = None , ) -> str: """simple docstring""" _UpperCAmelCase = rescale(image=UpperCAmelCase_ , scale=1 / 1_27.5 , data_format=UpperCAmelCase_) _UpperCAmelCase = image - 1 return image def _lowerCamelCase ( self : Dict , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Optional[bool] = None , A : Optional[Union[List[List[int]], np.ndarray]] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **A : List[str] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(UpperCAmelCase_) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase = clusters if clusters is not None else self.clusters _UpperCAmelCase = np.array(UpperCAmelCase_) _UpperCAmelCase = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=UpperCAmelCase_) for image in images] if do_color_quantize: _UpperCAmelCase = [to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase = np.array(UpperCAmelCase_) _UpperCAmelCase = color_quantize(UpperCAmelCase_ , UpperCAmelCase_).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) _UpperCAmelCase = images.shape[0] _UpperCAmelCase = images.reshape(UpperCAmelCase_ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase = list(UpperCAmelCase_) else: _UpperCAmelCase = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] _UpperCAmelCase = {'input_ids': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
UpperCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCAmelCase__ = {value: key for key, value in encode_dict.items()} def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' _UpperCAmelCase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' if set(__A ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) _UpperCAmelCase = '''''' for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] _UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( A ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''LayoutLMv3ImageProcessor''' UpperCamelCase = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Union[str, Any] , A : List[str]=None , A : List[Any]=None , **A : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCAmelCase , ) _UpperCAmelCase = kwargs.pop('feature_extractor') _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[str] , A : Dict , A : Any = None , A : int = None , A : Dict = None , A : Tuple = None , A : Tuple = True , A : Dict = False , A : int = None , A : Any = None , A : str = 0 , A : int = None , A : List[str] = None , A : Optional[Any] = None , A : Optional[int] = False , A : List[Any] = False , A : Any = False , A : Any = False , A : int = True , A : List[str] = None , **A : Tuple , ) -> Optional[int]: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') # first, apply the image processor _UpperCAmelCase = self.image_processor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_lowerCAmelCase , _lowerCAmelCase): _UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) _UpperCAmelCase = features['words'] _UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel values _UpperCAmelCase = features.pop('pixel_values') if return_overflowing_tokens is True: _UpperCAmelCase = self.get_overflowing_images(_lowerCAmelCase , encoded_inputs['overflow_to_sample_mapping']) _UpperCAmelCase = images return encoded_inputs def _lowerCamelCase ( self : List[Any] , A : Any , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_lowerCAmelCase) != len(_lowerCAmelCase): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F" {len(_lowerCAmelCase)} and {len(_lowerCAmelCase)}") return images_with_overflow def _lowerCamelCase ( self : Optional[Any] , *A : Tuple , **A : List[str]) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def _lowerCamelCase ( self : Optional[int] , *A : Any , **A : Union[str, Any]) -> str: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCAmelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCAmelCase , ) return self.image_processor
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_lowerCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_lowerCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_lowerCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_lowerCAmelCase , default=0 , help='cuda_id.' , ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' if not len(_lowerCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) _UpperCAmelCase = imgs[0].size _UpperCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) _UpperCAmelCase = grid.size for i, img in enumerate(_lowerCAmelCase ): grid.paste(_lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def A ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : int=7.5 , _UpperCAmelCase : Optional[Any]=50 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict=42 , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = torch.Generator(pipeline.device ).manual_seed(_lowerCAmelCase ) _UpperCAmelCase = pipeline( _lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , ).images _UpperCAmelCase = int(math.sqrt(_lowerCAmelCase ) ) _UpperCAmelCase = image_grid(_lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion UpperCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") UpperCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") UpperCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") UpperCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): UpperCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: UpperCAmelCase__ = unet.to(torch.device("cuda", args.cuda_id)) UpperCAmelCase__ = pipeline.to(unet.device) UpperCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) UpperCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase__ = logging.getLogger(__name__) class __lowerCAmelCase ( UpperCamelCase_ ): def _lowerCamelCase ( self : Any , A : List[str] , A : Dict , A : int=None , A : Optional[Any]=None) -> Dict: """simple docstring""" _UpperCAmelCase = self.layer[current_layer](_a , _a , head_mask[current_layer]) _UpperCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : Tuple , A : Optional[int]) -> Dict: """simple docstring""" super().__init__(_a) _UpperCAmelCase = BertEncoderWithPabee(_a) self.init_weights() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 def _lowerCamelCase ( self : Union[str, Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = threshold def _lowerCamelCase ( self : List[Any] , A : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = patience def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCAmelCase = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a) @add_start_docstrings_to_model_forward(_a) def _lowerCamelCase ( self : List[str] , A : int=None , A : Optional[int]=None , A : str=None , A : Any=None , A : str=None , A : List[str]=None , A : int=None , A : str=None , A : int=None , A : Optional[Any]=None , A : List[str]=False , ) -> List[str]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') elif input_ids is not None: _UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds') _UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase = torch.ones(_a , device=_a) if token_type_ids is None: _UpperCAmelCase = torch.zeros(_a , dtype=torch.long , device=_a) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase = self.get_extended_attention_mask(_a , _a , _a) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase = encoder_hidden_states.size() _UpperCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase = torch.ones(_a , device=_a) _UpperCAmelCase = self.invert_attention_mask(_a) else: _UpperCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase = self.get_head_mask(_a , self.config.num_hidden_layers) _UpperCAmelCase = self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a) _UpperCAmelCase = embedding_output if self.training: _UpperCAmelCase = [] for i in range(self.config.num_hidden_layers): _UpperCAmelCase = self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a) _UpperCAmelCase = self.pooler(_a) _UpperCAmelCase = output_layers[i](output_dropout(_a)) res.append(_a) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase = self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _UpperCAmelCase = self.pooler(encoder_outputs[0]) _UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](_a)] else: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 _UpperCAmelCase = self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a) _UpperCAmelCase = self.pooler(_a) _UpperCAmelCase = output_layers[i](_a) if regression: _UpperCAmelCase = logits.detach() if patient_result is not None: _UpperCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase = 0 else: _UpperCAmelCase = logits.detach().argmax(dim=1) if patient_result is not None: _UpperCAmelCase = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(_a)): patient_counter += 1 else: _UpperCAmelCase = 0 _UpperCAmelCase = logits if patient_counter == self.patience: break _UpperCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : List[Any] , A : List[str]) -> Union[str, Any]: """simple docstring""" super().__init__(_a) _UpperCAmelCase = config.num_labels _UpperCAmelCase = BertModelWithPabee(_a) _UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob) _UpperCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(_a) def _lowerCamelCase ( self : str , A : List[Any]=None , A : Union[str, Any]=None , A : Dict=None , A : Dict=None , A : Any=None , A : Dict=None , A : Optional[Any]=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase = (logits[-1],) if labels is not None: _UpperCAmelCase = None _UpperCAmelCase = 0 for ix, logits_item in enumerate(_a): if self.num_labels == 1: # We are doing regression _UpperCAmelCase = MSELoss() _UpperCAmelCase = loss_fct(logits_item.view(-1) , labels.view(-1)) else: _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: _UpperCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase = (total_loss / total_weights,) + outputs return outputs
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
from collections import defaultdict def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCAmelCase ) if ret % 2 == 0: cuts.append(__UpperCAmelCase ) return ret def A ( ) -> Any: '''simple docstring''' dfs(1 ) if __name__ == "__main__": UpperCAmelCase__ , UpperCAmelCase__ = 10, 9 UpperCAmelCase__ = defaultdict(list) UpperCAmelCase__ = {} UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import heapq import sys import numpy as np UpperCAmelCase__ = tuple[int, int] class __lowerCAmelCase : def __init__( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = set() def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" return len(self.elements) == 0 def _lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(_UpperCAmelCase) else: # update # print("update", item) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def _lowerCamelCase ( self : Optional[int] , A : Dict) -> Optional[Any]: """simple docstring""" if item in self.set: self.set.remove(_UpperCAmelCase) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.elements[0][1] def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements) self.set.remove(_UpperCAmelCase) return (priority, item) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' # euclidean distance _UpperCAmelCase = np.array(lowerCAmelCase__ ) _UpperCAmelCase = np.array(lowerCAmelCase__ ) return np.linalg.norm(a - b ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' # integer division by time variable return consistent_heuristic(lowerCAmelCase__ , lowerCAmelCase__ ) // t def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ , lowerCAmelCase__ ) return ans def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' _UpperCAmelCase = np.chararray((n, n) ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): _UpperCAmelCase = '*' for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase = '#' _UpperCAmelCase = '-' _UpperCAmelCase = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) = x # print(x) _UpperCAmelCase = '-' _UpperCAmelCase = back_pointer[x] _UpperCAmelCase = '-' for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) _UpperCAmelCase = back_pointer[goal] while x != start: print(lowerCAmelCase__ , end=' ' ) _UpperCAmelCase = back_pointer[x] print(lowerCAmelCase__ ) sys.exit() def A ( _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , ) -> Dict: '''simple docstring''' for itera in range(lowerCAmelCase__ ): open_list[itera].remove_element(lowerCAmelCase__ ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) = s _UpperCAmelCase = (x - 1, y) _UpperCAmelCase = (x + 1, y) _UpperCAmelCase = (x, y + 1) _UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase__ ) _UpperCAmelCase = -1 _UpperCAmelCase = float('inf' ) if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase = g_function[s] + 1 _UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase__ , key(lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCAmelCase__ ): if key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) <= Wa * key( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ): open_list[j].put( lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) def A ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list UpperCAmelCase__ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase__ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCAmelCase__ = make_common_ground() UpperCAmelCase__ = blocks_blk # hyper parameters UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = 20 UpperCAmelCase__ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = (n - 1, n - 1) UpperCAmelCase__ = 1 def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {start: 0, goal: float('inf' )} _UpperCAmelCase = {start: -1, goal: -1} _UpperCAmelCase = [] _UpperCAmelCase = set() for i in range(lowerCAmelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase = [] _UpperCAmelCase = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , lowerCAmelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCAmelCase , _UpperCAmelCase = open_list[i].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_inad.append(lowerCAmelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCAmelCase = open_list[0].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_anchor.append(lowerCAmelCase__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCAmelCase__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _A ( _UpperCAmelCase : str , _UpperCAmelCase : Any=False ) -> Dict: '''simple docstring''' try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCAmelCase__ = parse_flag_from_env("RUN_SLOW", default=False) def _A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' return unittest.skip('Test was skipped' )(__A ) def _A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__A ) def _A ( _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__A ) def _A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__A ) def _A ( _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__A ) def _A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__A ) def _A ( _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__A ) def _A ( _UpperCAmelCase : Any ) -> int: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__A ) def _A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__A ) def _A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__A ) def _A ( _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__A ) def _A ( _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__A ) def _A ( _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__A ) def _A ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__A ) def _A ( _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__A ) def _A ( _UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__A ) def _A ( _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None ) -> Dict: '''simple docstring''' if test_case is None: return partial(__A , version=__A ) return unittest.skipUnless(is_torch_version('>=' , __A ) , F"test requires torch version >= {version}" )(__A ) def _A ( _UpperCAmelCase : int ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__A ) def _A ( _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__A ) def _A ( _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__A ) UpperCAmelCase__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _A ( _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__A ) class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = True @classmethod def _lowerCamelCase ( cls : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() @classmethod def _lowerCamelCase ( cls : int) -> List[Any]: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : int) -> Any: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any] , A : Union[mock.Mock, List[mock.Mock]]) -> List[str]: """simple docstring""" _UpperCAmelCase = mocks if isinstance(_UpperCamelCase , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def _A ( _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = AcceleratorState() _UpperCAmelCase = tensor[None].clone().to(state.device ) _UpperCAmelCase = gather(__A ).cpu() _UpperCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __A ): return False return True class __lowerCAmelCase : def __init__( self : List[str] , A : Optional[int] , A : Optional[int] , A : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def _A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' while True: _UpperCAmelCase = await stream.readline() if line: callback(__A ) else: break async def _A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Optional[Any]=False ) -> List[Any]: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(__A ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]="" ): _UpperCAmelCase = line.decode('utf-8' ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCAmelCase : tee(__A , __A , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCAmelCase : tee(__A , __A , sys.stderr , label='stderr:' ) ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def _A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : int=180 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=True ) -> Dict: '''simple docstring''' _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) _UpperCAmelCase = """ """.join(__A ) if result.returncode > 0: _UpperCAmelCase = """\n""".join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class __lowerCAmelCase ( __lowerCAmelCase ): pass def _A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str=False ) -> Tuple: '''simple docstring''' try: _UpperCAmelCase = subprocess.check_output(__A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__A , 'decode' ): _UpperCAmelCase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__A )}` failed with the following error:\n\n{e.output.decode()}" ) from e
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def A ( _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' for char in word: _UpperCAmelCase = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def A ( _UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = set() for token in tokens: _UpperCAmelCase = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _UpperCAmelCase = list(_lowerCamelCase ) return word_list def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens _UpperCAmelCase = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _UpperCAmelCase = bert_tokens _UpperCAmelCase = 0, len(_lowerCamelCase ) while start < end: _UpperCAmelCase = True if is_chinese(bert_word[start] ): _UpperCAmelCase = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _UpperCAmelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _UpperCAmelCase = '##' + bert_word[j] _UpperCAmelCase = start + i _UpperCAmelCase = False break if single_word: start += 1 return bert_word def A ( _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _UpperCAmelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] _UpperCAmelCase = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _UpperCAmelCase = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _UpperCAmelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _UpperCAmelCase = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _UpperCAmelCase = [] for id in input_ids: _UpperCAmelCase = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _UpperCAmelCase = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _UpperCAmelCase = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def A ( _UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCAmelCase = LTP(args.ltp ) # faster in GPU device _UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCAmelCase = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase__ = parser.parse_args() main(args)
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
import datasets UpperCAmelCase__ : int = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" UpperCAmelCase__ : str = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" UpperCAmelCase__ : Optional[Any] = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32'), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32'), }) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _lowerCamelCase ( self : List[str] , A : Dict , A : List[str]) -> Optional[Any]: """simple docstring""" return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase)}
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import copy import random from transformers import CLIPTokenizer class __lowerCAmelCase ( _UpperCAmelCase ): def __init__( self : Optional[int] , *A : Union[str, Any] , **A : str) -> Optional[int]: """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_) _UpperCAmelCase = {} def _lowerCamelCase ( self : Dict , A : List[Any] , *A : int , **A : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = super().add_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) if num_added_tokens == 0: raise ValueError( F"The tokenizer already contains the token {placeholder_token}. Please pass a different" ' `placeholder_token` that is not already in the tokenizer.') def _lowerCamelCase ( self : Dict , A : List[Any] , *A : Optional[Any] , A : str=1 , **A : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) output.append(lowerCamelCase_) else: _UpperCAmelCase = [] for i in range(lowerCamelCase_): _UpperCAmelCase = placeholder_token + F"_{i}" self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) output.append(lowerCamelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"The tokenizer already has placeholder token {token} that can get confused with" F" {placeholder_token}keep placeholder tokens independent") _UpperCAmelCase = output def _lowerCamelCase ( self : Tuple , A : Union[str, Any] , A : Tuple=False , A : Optional[int]=1.0) -> Any: """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_): _UpperCAmelCase = [] for i in range(len(lowerCamelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase = self.token_map[placeholder_token] _UpperCAmelCase = tokens[: 1 + int(len(lowerCamelCase_) * prop_tokens_to_load)] if vector_shuffle: _UpperCAmelCase = copy.copy(lowerCamelCase_) random.shuffle(lowerCamelCase_) _UpperCAmelCase = text.replace(lowerCamelCase_ , ' '.join(lowerCamelCase_)) return text def __call__( self : Any , A : Union[str, Any] , *A : str , A : Optional[int]=False , A : Tuple=1.0 , **A : Tuple) -> Any: """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_) , *lowerCamelCase_ , **lowerCamelCase_ , ) def _lowerCamelCase ( self : Tuple , A : str , *A : Union[str, Any] , A : Optional[Any]=False , A : List[str]=1.0 , **A : Union[str, Any]) -> Optional[int]: """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_) , *lowerCamelCase_ , **lowerCamelCase_ , )
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase = getattr(_A , _A ) if weight_type is not None: _UpperCAmelCase = getattr(_A , _A ).shape else: _UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.feature_extractor _UpperCAmelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(_A , _A , _A , _A ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(_A )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , _A ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "bias" in name: _UpperCAmelCase = 'bias' elif "weight" in name: _UpperCAmelCase = 'weight' else: _UpperCAmelCase = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_A ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = full_name.split('adaptor.' )[-1] _UpperCAmelCase = name.split('.' ) if items[1].isdigit(): _UpperCAmelCase = int(items[1] ) else: _UpperCAmelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." _UpperCAmelCase = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." _UpperCAmelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." _UpperCAmelCase = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." _UpperCAmelCase = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(_A , _A ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." _UpperCAmelCase = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." _UpperCAmelCase = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(_A ) def A ( _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(_A , _A , bias=_A ) _UpperCAmelCase = emb.weight.data return lin_layer @torch.no_grad() def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , ) -> List[str]: '''simple docstring''' _UpperCAmelCase = WavaVecaConfig.from_pretrained( _A , add_adapter=_A , adapter_stride=_A , adapter_kernel_size=_A , use_auth_token=_A , output_hidden_size=_A , ) _UpperCAmelCase = MBartConfig.from_pretrained(_A ) # load model _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) _UpperCAmelCase = model[0].eval() # load feature extractor _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_A , use_auth_token=_A ) # set weights for wav2vec2 encoder _UpperCAmelCase = WavaVecaModel(_A ) recursively_load_weights_wavaveca(model.encoder , _A ) # load decoder weights _UpperCAmelCase = MBartForCausalLM(_A ) _UpperCAmelCase , _UpperCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_A ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _UpperCAmelCase = SpeechEncoderDecoderModel(encoder=_A , decoder=_A ) _UpperCAmelCase = False _UpperCAmelCase = MBartaaTokenizer(_A ) tokenizer.save_pretrained(_A ) _UpperCAmelCase = hf_wavavec.config.to_dict() _UpperCAmelCase = tokenizer.pad_token_id _UpperCAmelCase = tokenizer.bos_token_id _UpperCAmelCase = tokenizer.eos_token_id _UpperCAmelCase = 'mbart50' _UpperCAmelCase = 'wav2vec2' _UpperCAmelCase = tokenizer.eos_token_id _UpperCAmelCase = 250_004 _UpperCAmelCase = tokenizer.eos_token_id _UpperCAmelCase = SpeechEncoderDecoderConfig.from_dict(_A ) hf_wavavec.save_pretrained(_A ) feature_extractor.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_0004, type=int, help="`decoder_start_token_id` of model config") UpperCAmelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
from __future__ import annotations def A ( _UpperCAmelCase : str ) -> list[int]: '''simple docstring''' _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCAmelCase ) if n > 1: factors.append(_UpperCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def A ( _UpperCAmelCase : str , _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def A ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = 1_000 _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = num_labels _UpperCAmelCase = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) ) , 'r' ) ) _UpperCAmelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": _UpperCAmelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": _UpperCAmelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _UpperCAmelCase = [2, 2, 20] _UpperCAmelCase = [3, 12, 16] _UpperCAmelCase = [192, 768, 1_024] _UpperCAmelCase = CvtForImageClassification(__UpperCamelCase ) _UpperCAmelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) _UpperCAmelCase = image_size _UpperCAmelCase = torch.load(__UpperCamelCase , map_location=torch.device('cpu' ) ) _UpperCAmelCase = OrderedDict() _UpperCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _UpperCAmelCase = list_of_state_dict + cls_token(__UpperCamelCase ) _UpperCAmelCase = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): _UpperCAmelCase = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): _UpperCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you\'d like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
import argparse import copy def A ( _UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {} with open(snake_case__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' with open(snake_case__ ) as f: _UpperCAmelCase = f.read(1 ) _UpperCAmelCase = start_node _UpperCAmelCase = [] _UpperCAmelCase = start_node _UpperCAmelCase = 0 while visiting not in first_solution: _UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case__ ) and k[0] not in first_solution: _UpperCAmelCase = k[1] _UpperCAmelCase = k[0] first_solution.append(snake_case__ ) _UpperCAmelCase = distance_of_first_solution + int(snake_case__ ) _UpperCAmelCase = best_node first_solution.append(snake_case__ ) _UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [] for n in solution[1:-1]: _UpperCAmelCase = solution.index(snake_case__ ) for kn in solution[1:-1]: _UpperCAmelCase = solution.index(snake_case__ ) if n == kn: continue _UpperCAmelCase = copy.deepcopy(snake_case__ ) _UpperCAmelCase = kn _UpperCAmelCase = n _UpperCAmelCase = 0 for k in _tmp[:-1]: _UpperCAmelCase = _tmp[_tmp.index(snake_case__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _UpperCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = first_solution _UpperCAmelCase = [] _UpperCAmelCase = distance_of_first_solution _UpperCAmelCase = solution while count <= iters: _UpperCAmelCase = find_neighborhood(snake_case__ , snake_case__ ) _UpperCAmelCase = 0 _UpperCAmelCase = neighborhood[index_of_best_solution] _UpperCAmelCase = len(snake_case__ ) - 1 _UpperCAmelCase = False while not found: _UpperCAmelCase = 0 while i < len(snake_case__ ): if best_solution[i] != solution[i]: _UpperCAmelCase = best_solution[i] _UpperCAmelCase = solution[i] break _UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase = True _UpperCAmelCase = best_solution[:-1] _UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase = cost _UpperCAmelCase = solution else: _UpperCAmelCase = index_of_best_solution + 1 _UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case__ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase = count + 1 return best_solution_ever, best_cost def A ( _UpperCAmelCase : List[str]=None ) -> Tuple: '''simple docstring''' _UpperCAmelCase = generate_neighbours(args.File ) _UpperCAmelCase , _UpperCAmelCase = generate_first_solution( args.File , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = tabu_search( snake_case__ , snake_case__ , snake_case__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase ( lowercase__ ): UpperCamelCase = 'cvt' def __init__( self : str , A : int=3 , A : Optional[int]=[7, 3, 3] , A : List[Any]=[4, 2, 2] , A : str=[2, 1, 1] , A : Dict=[64, 1_92, 3_84] , A : Optional[int]=[1, 3, 6] , A : List[str]=[1, 2, 10] , A : List[str]=[4.0, 4.0, 4.0] , A : Any=[0.0, 0.0, 0.0] , A : int=[0.0, 0.0, 0.0] , A : Dict=[0.0, 0.0, 0.1] , A : Union[str, Any]=[True, True, True] , A : List[Any]=[False, False, True] , A : str=["dw_bn", "dw_bn", "dw_bn"] , A : str=[3, 3, 3] , A : int=[1, 1, 1] , A : List[Any]=[2, 2, 2] , A : str=[1, 1, 1] , A : Dict=[1, 1, 1] , A : Any=0.0_2 , A : Any=1E-12 , **A : int , ) -> Tuple: """simple docstring""" super().__init__(**A) _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = depth _UpperCAmelCase = mlp_ratio _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = drop_rate _UpperCAmelCase = drop_path_rate _UpperCAmelCase = qkv_bias _UpperCAmelCase = cls_token _UpperCAmelCase = qkv_projection_method _UpperCAmelCase = kernel_qkv _UpperCAmelCase = padding_kv _UpperCAmelCase = stride_kv _UpperCAmelCase = padding_q _UpperCAmelCase = stride_q _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' _UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"{test_file} instead." ) _UpperCAmelCase = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) _UpperCAmelCase = components[:-1] + [test_fn.replace('.py' , '' )] _UpperCAmelCase = '.'.join(_UpperCAmelCase ) return test_module_path def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = get_module_path(_UpperCAmelCase ) _UpperCAmelCase = importlib.import_module(_UpperCAmelCase ) return test_module def A ( _UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(_UpperCAmelCase ) for attr in dir(_UpperCAmelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def A ( _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(_UpperCAmelCase ) for attr in dir(_UpperCAmelCase ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase = getattr(_UpperCAmelCase , 'all_model_classes' , [] ) if len(_UpperCAmelCase ) > 0: test_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' _UpperCAmelCase = get_test_classes(_UpperCAmelCase ) _UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' _UpperCAmelCase = test_class() if hasattr(_UpperCAmelCase , 'setUp' ): test.setUp() _UpperCAmelCase = None if hasattr(_UpperCAmelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase = test.model_tester.__class__ return model_tester def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = get_test_classes(_UpperCAmelCase ) _UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = [] for test_class in test_classes: _UpperCAmelCase = get_model_tester_from_test_class(_UpperCAmelCase ) if tester_class is not None: tester_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = get_test_classes(_UpperCAmelCase ) _UpperCAmelCase = {test_class: get_model_tester_from_test_class(_UpperCAmelCase ) for test_class in test_classes} return test_tester_mapping def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = get_model_classes(_UpperCAmelCase ) _UpperCAmelCase = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) for model_class in model_classes } return model_test_mapping def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' _UpperCAmelCase = get_model_classes(_UpperCAmelCase ) _UpperCAmelCase = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def A ( _UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple) ): return [to_json(_UpperCAmelCase ) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {to_json(_UpperCAmelCase ): to_json(_UpperCAmelCase ) for k, v in o.items()} else: return o
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class __lowerCAmelCase ( UpperCamelCase_ ): UpperCamelCase = '''deberta-v2''' def __init__( self : Dict , A : Dict=12_81_00 , A : Any=15_36 , A : Union[str, Any]=24 , A : Optional[int]=24 , A : Any=61_44 , A : List[str]="gelu" , A : List[str]=0.1 , A : int=0.1 , A : Dict=5_12 , A : Optional[int]=0 , A : Union[str, Any]=0.0_2 , A : str=1E-7 , A : Union[str, Any]=False , A : str=-1 , A : str=0 , A : Optional[Any]=True , A : Union[str, Any]=None , A : Any=0 , A : Any="gelu" , **A : Optional[int] , ) -> Dict: """simple docstring""" super().__init__(**__A) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = relative_attention _UpperCAmelCase = max_relative_positions _UpperCAmelCase = pad_token_id _UpperCAmelCase = position_biased_input # Backwards compatibility if type(__A) == str: _UpperCAmelCase = [x.strip() for x in pos_att_type.lower().split('|')] _UpperCAmelCase = pos_att_type _UpperCAmelCase = vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = kwargs.get('pooler_hidden_size' , __A) _UpperCAmelCase = pooler_dropout _UpperCAmelCase = pooler_hidden_act class __lowerCAmelCase ( UpperCamelCase_ ): @property def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)]) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)]) @property def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" return 12 def _lowerCamelCase ( self : List[Any] , A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , A : int = -1 , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , A : int = 3 , A : int = 40 , A : int = 40 , A : "PreTrainedTokenizerBase" = None , ) -> int: """simple docstring""" _UpperCAmelCase = super().generate_dummy_inputs(preprocessor=__A , framework=__A) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
from __future__ import annotations from collections import deque class __lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , A : list[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []}) for keyword in keywords: self.add_keyword(A) self.set_fail_transitions() def _lowerCamelCase ( self : int , A : int , A : str) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowerCamelCase ( self : str , A : str) -> None: """simple docstring""" _UpperCAmelCase = 0 for character in keyword: _UpperCAmelCase = self.find_next_state(A , A) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], }) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) _UpperCAmelCase = len(self.adlist) - 1 else: _UpperCAmelCase = next_state self.adlist[current_state]["output"].append(A) def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = deque() for node in self.adlist[0]["next_states"]: q.append(A) _UpperCAmelCase = 0 while q: _UpperCAmelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A) _UpperCAmelCase = self.adlist[r]["fail_state"] while ( self.find_next_state(A , self.adlist[child]['value']) is None and state != 0 ): _UpperCAmelCase = self.adlist[state]["fail_state"] _UpperCAmelCase = self.find_next_state( A , self.adlist[child]['value']) if self.adlist[child]["fail_state"] is None: _UpperCAmelCase = 0 _UpperCAmelCase = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _lowerCamelCase ( self : int , A : str) -> dict[str, list[int]]: """simple docstring""" _UpperCAmelCase = {} # returns a dict with keywords and list of its occurrences _UpperCAmelCase = 0 for i in range(len(A)): while ( self.find_next_state(A , string[i]) is None and current_state != 0 ): _UpperCAmelCase = self.adlist[current_state]["fail_state"] _UpperCAmelCase = self.find_next_state(A , string[i]) if next_state is None: _UpperCAmelCase = 0 else: _UpperCAmelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: _UpperCAmelCase = [] result[key].append(i - len(A) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCAmelCase__ = False UpperCAmelCase__ = False def A ( _UpperCAmelCase : Namespace ) -> Dict: '''simple docstring''' return TrainCommand(_UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @staticmethod def _lowerCamelCase ( A : ArgumentParser) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_a , required=_a , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_a , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_a , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_a , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_a , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_a , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_a , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_a , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_a , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_a , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_a , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_a , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_a , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_a) def __init__( self : Optional[Any] , A : Namespace) -> Tuple: """simple docstring""" _UpperCAmelCase = logging.get_logger('transformers-cli/training') _UpperCAmelCase = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=_a) _UpperCAmelCase = args.output _UpperCAmelCase = args.column_label _UpperCAmelCase = args.column_text _UpperCAmelCase = args.column_id self.logger.info(F"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": _UpperCAmelCase = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"Loading dataset from {args.train_data}") _UpperCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase = None if args.validation_data: self.logger.info(F"Loading validation dataset from {args.validation_data}") _UpperCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase = args.validation_split _UpperCAmelCase = args.train_batch_size _UpperCAmelCase = args.valid_batch_size _UpperCAmelCase = args.learning_rate _UpperCAmelCase = args.adam_epsilon def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" raise NotImplementedError def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
from typing import Any def A ( _UpperCAmelCase : list ) -> Any: '''simple docstring''' if not input_list: return [] _UpperCAmelCase = [input_list.count(snake_case__ ) for value in input_list] _UpperCAmelCase = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCAmelCase ( A ): UpperCamelCase = '''M-CLIP''' def __init__( self : Any , A : Any=10_24 , A : int=7_68 , **A : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = transformerDimSize _UpperCAmelCase = imageDimSize super().__init__(**__lowerCAmelCase) class __lowerCAmelCase ( A ): UpperCamelCase = MCLIPConfig def __init__( self : Tuple , A : Optional[int] , *A : Any , **A : Union[str, Any]) -> int: """simple docstring""" super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase) _UpperCAmelCase = XLMRobertaModel(__lowerCAmelCase) _UpperCAmelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def _lowerCamelCase ( self : List[Any] , A : List[str] , A : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.transformer(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase)[0] _UpperCAmelCase = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(__lowerCAmelCase), embs
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = RemBertConfig.from_json_file(UpperCAmelCase__ ) print('Building PyTorch model from configuration: {}'.format(str(UpperCAmelCase__ ) ) ) _UpperCAmelCase = RemBertModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(UpperCAmelCase__ ) ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCAmelCase ( a__ ): UpperCamelCase = """yolos""" def __init__( self : str , A : List[str]=7_68 , A : Optional[int]=12 , A : List[Any]=12 , A : Union[str, Any]=30_72 , A : Optional[int]="gelu" , A : Tuple=0.0 , A : List[Any]=0.0 , A : Dict=0.0_2 , A : Any=1E-12 , A : Optional[Any]=[5_12, 8_64] , A : Dict=16 , A : int=3 , A : Tuple=True , A : Tuple=1_00 , A : List[str]=True , A : Dict=False , A : Optional[Any]=1 , A : Dict=5 , A : Optional[int]=2 , A : List[Any]=5 , A : int=2 , A : str=0.1 , **A : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase__) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = num_detection_tokens _UpperCAmelCase = use_mid_position_embeddings _UpperCAmelCase = auxiliary_loss # Hungarian matcher _UpperCAmelCase = class_cost _UpperCAmelCase = bbox_cost _UpperCAmelCase = giou_cost # Loss coefficients _UpperCAmelCase = bbox_loss_coefficient _UpperCAmelCase = giou_loss_coefficient _UpperCAmelCase = eos_coefficient class __lowerCAmelCase ( a__ ): UpperCamelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : int) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def _lowerCamelCase ( self : int) -> float: """simple docstring""" return 1E-4 @property def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" return 12
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0