code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' if not is_accelerate_available(): return method _lowerCamelCase = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCAmelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *__UpperCAmelCase , **__UpperCAmelCase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCAmelCase , **__UpperCAmelCase ) return wrapper
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 snake_case__ = 0B101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 snake_case__ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class UpperCamelCase : '''simple docstring''' def __init__( self ) -> Dict: """simple docstring""" _lowerCamelCase = WATERMARK_BITS _lowerCamelCase = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images _lowerCamelCase = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCamelCase = [self.encoder.encode(A_ , '''dwtDct''' ) for image in images] _lowerCamelCase = torch.from_numpy(np.array(A_ ) ).permute(0 , 3 , 1 , 2 ) _lowerCamelCase = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 ) return images
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' A_ = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ = Features({'question': Value('string' ), 'context': Value('string' )} ) A_ = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) A_ = 'question' A_ = 'context' A_ = 'answers' @property def UpperCamelCase_ ( self ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=6 , A_=17 , A_=23 , A_=11 , A_=True , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = act_dim _lowerCamelCase = state_dim _lowerCamelCase = hidden_size _lowerCamelCase = max_length _lowerCamelCase = is_training def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) _lowerCamelCase = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = DecisionTransformerModel(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , A_ , A_ , A_ , A_ , A_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (DecisionTransformerModel,) if is_torch_available() else () A_ = () A_ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids A_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = DecisionTransformerModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = DecisionTransformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A_ )] , A_ ) @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = 2 # number of steps of autoregressive prediction we will perform _lowerCamelCase = 10 # defined by the RL environment, may be normalized _lowerCamelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _lowerCamelCase = model.to(A_ ) _lowerCamelCase = model.config torch.manual_seed(0 ) _lowerCamelCase = torch.randn(1 , 1 , config.state_dim ).to(device=A_ , dtype=torch.floataa ) # env.reset() _lowerCamelCase = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A_ ) _lowerCamelCase = torch.tensor(A_ , device=A_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCamelCase = state _lowerCamelCase = torch.zeros(1 , 0 , config.act_dim , device=A_ , dtype=torch.floataa ) _lowerCamelCase = torch.zeros(1 , 0 , device=A_ , dtype=torch.floataa ) _lowerCamelCase = torch.tensor(0 , device=A_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(A_ ): _lowerCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A_ )] , dim=1 ) _lowerCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=A_ )] , dim=1 ) _lowerCamelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = model( states=A_ , actions=A_ , rewards=A_ , returns_to_go=A_ , timesteps=A_ , attention_mask=A_ , return_dict=A_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A_ , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCamelCase = action_pred[0, -1] _lowerCamelCase = torch.cat([states, state] , dim=1 ) _lowerCamelCase = returns_to_go[0, -1] - reward _lowerCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=A_ , dtype=torch.long ) * (step + 1)] , dim=1 )
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['input_features'] def __init__( self , A_=80 , A_=1_60_00 , A_=1_60 , A_=30 , A_=4_00 , A_=0.0 , A_=False , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , return_attention_mask=A_ , **A_ , ) _lowerCamelCase = n_fft _lowerCamelCase = hop_length _lowerCamelCase = chunk_length _lowerCamelCase = chunk_length * sampling_rate _lowerCamelCase = self.n_samples // hop_length _lowerCamelCase = sampling_rate _lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=A_ , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCamelCase_ ( self , A_ ) -> np.ndarray: """simple docstring""" _lowerCamelCase = spectrogram( A_ , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) _lowerCamelCase = log_spec[:, :-1] _lowerCamelCase = np.maximum(A_ , log_spec.max() - 8.0 ) _lowerCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( A_ , A_ , A_ = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: _lowerCamelCase = np.array(A_ , np.intaa ) _lowerCamelCase = [] for vector, length in zip(A_ , attention_mask.sum(-1 ) ): _lowerCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowerCamelCase = padding_value normed_input_values.append(A_ ) else: _lowerCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , A_ , A_ = True , A_ = None , A_ = None , A_ = None , A_ = "max_length" , A_ = None , A_ = None , A_ = None , **A_ , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _lowerCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): _lowerCamelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase = [np.asarray([raw_speech] ).T] _lowerCamelCase = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding _lowerCamelCase = self.pad( A_ , padding=A_ , max_length=max_length if max_length else self.n_samples , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowerCamelCase = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) _lowerCamelCase = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format _lowerCamelCase = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) _lowerCamelCase = [self._np_extract_fbank_features(A_ ) for waveform in input_features[0]] if isinstance(input_features[0] , A_ ): _lowerCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] else: _lowerCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowerCamelCase = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: _lowerCamelCase = padded_inputs.convert_to_tensors(A_ ) return padded_inputs def UpperCamelCase_ ( self ) -> Dict[str, Any]: """simple docstring""" _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
from __future__ import annotations def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: # noqa: E741 '''simple docstring''' while r - l > 1: _lowerCamelCase = (l + r) // 2 if v[m] >= key: _lowerCamelCase = m else: _lowerCamelCase = m # noqa: E741 return r def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return 0 _lowerCamelCase = [0] * len(__UpperCAmelCase ) _lowerCamelCase = 1 _lowerCamelCase = v[0] for i in range(1 , len(__UpperCAmelCase ) ): if v[i] < tail[0]: _lowerCamelCase = v[i] elif v[i] > tail[length - 1]: _lowerCamelCase = v[i] length += 1 else: _lowerCamelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = '▁' snake_case__ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } snake_case__ = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } snake_case__ = { 'facebook/m2m100_418M': 1024, } # fmt: off snake_case__ = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = ['input_ids', 'attention_mask'] A_ = [] A_ = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: """simple docstring""" _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase = language_codes _lowerCamelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCamelCase = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCamelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) _lowerCamelCase = vocab_file _lowerCamelCase = load_json(A_ ) _lowerCamelCase = {v: k for k, v in self.encoder.items()} _lowerCamelCase = spm_file _lowerCamelCase = load_spm(A_ , self.sp_model_kwargs ) _lowerCamelCase = len(self.encoder ) _lowerCamelCase = { self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } _lowerCamelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} _lowerCamelCase = {v: k for k, v in self.lang_token_to_id.items()} _lowerCamelCase = src_lang if src_lang is not None else '''en''' _lowerCamelCase = tgt_lang _lowerCamelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCamelCase = num_madeup_words @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token _lowerCamelCase = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) _lowerCamelCase = [1] * len(self.prefix_tokens ) _lowerCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = Path(A_ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) _lowerCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _lowerCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def UpperCamelCase_ ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: """simple docstring""" _lowerCamelCase = src_lang _lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ , **A_ ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _lowerCamelCase = src_lang _lowerCamelCase = self(A_ , add_special_tokens=A_ , **A_ ) _lowerCamelCase = self.get_lang_id(A_ ) _lowerCamelCase = tgt_lang_id return inputs def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = self.get_lang_token(A_ ) _lowerCamelCase = self.lang_token_to_id[lang_token] _lowerCamelCase = [self.cur_lang_id] _lowerCamelCase = [self.eos_token_id] def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = self.get_lang_token(A_ ) _lowerCamelCase = self.lang_token_to_id[lang_token] _lowerCamelCase = [self.cur_lang_id] _lowerCamelCase = [self.eos_token_id] def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' _lowerCamelCase = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def __magic_name__( __UpperCAmelCase ) -> Union[Dict, List]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case__ = datasets.utils.logging.get_logger(__name__) class UpperCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' A_ = None A_ = None class UpperCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' A_ = datasets.Audio() A_ = 'audio' A_ = AudioFolderConfig A_ = 42 # definition at the bottom of the script A_ = AudioClassification(audio_column='audio' , label_column='label' ) snake_case__ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] snake_case__ = AUDIO_EXTENSIONS
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 16 , A_ = 88 , A_ = None , A_ = None , A_ = 1 , A_ = 0.0 , A_ = 32 , A_ = None , A_ = False , A_ = None , A_ = "geglu" , A_ = True , A_ = True , ) -> List[str]: """simple docstring""" super().__init__() _lowerCamelCase = num_attention_heads _lowerCamelCase = attention_head_dim _lowerCamelCase = num_attention_heads * attention_head_dim _lowerCamelCase = in_channels _lowerCamelCase = torch.nn.GroupNorm(num_groups=A_ , num_channels=A_ , eps=1E-6 , affine=A_ ) _lowerCamelCase = nn.Linear(A_ , A_ ) # 3. Define transformers blocks _lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , cross_attention_dim=A_ , activation_fn=A_ , attention_bias=A_ , double_self_attention=A_ , norm_elementwise_affine=A_ , ) for d in range(A_ ) ] ) _lowerCamelCase = nn.Linear(A_ , A_ ) def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=None , A_=1 , A_=None , A_ = True , ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = hidden_states.shape _lowerCamelCase = batch_frames // num_frames _lowerCamelCase = hidden_states _lowerCamelCase = hidden_states[None, :].reshape(A_ , A_ , A_ , A_ , A_ ) _lowerCamelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _lowerCamelCase = self.norm(A_ ) _lowerCamelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A_ , A_ ) _lowerCamelCase = self.proj_in(A_ ) # 2. Blocks for block in self.transformer_blocks: _lowerCamelCase = block( A_ , encoder_hidden_states=A_ , timestep=A_ , cross_attention_kwargs=A_ , class_labels=A_ , ) # 3. Output _lowerCamelCase = self.proj_out(A_ ) _lowerCamelCase = ( hidden_states[None, None, :] .reshape(A_ , A_ , A_ , A_ , A_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _lowerCamelCase = hidden_states.reshape(A_ , A_ , A_ , A_ ) _lowerCamelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A_ )
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['image_processor', 'tokenizer'] A_ = 'LayoutLMv2ImageProcessor' A_ = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self , A_=None , A_=None , **A_ ) -> Tuple: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A_ , ) _lowerCamelCase = kwargs.pop('''feature_extractor''' ) _lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(A_ , A_ ) def __call__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding: """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor _lowerCamelCase = self.image_processor(images=A_ , return_tensors=A_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A_ , A_ ): _lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowerCamelCase = features['''words'''] _lowerCamelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) # add pixel values _lowerCamelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: _lowerCamelCase = self.get_overflowing_images(A_ , encoded_inputs['''overflow_to_sample_mapping'''] ) _lowerCamelCase = images return encoded_inputs def UpperCamelCase_ ( self , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A_ ) != len(A_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F' {len(A_ )} and {len(A_ )}' ) return images_with_overflow def UpperCamelCase_ ( self , *A_ , **A_ ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def UpperCamelCase_ ( self , *A_ , **A_ ) -> Any: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A_ , ) return self.image_processor_class @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A_ , ) return self.image_processor
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand snake_case__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__UpperCAmelCase ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _lowerCamelCase = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format _lowerCamelCase = PipelineDataFormat.from_str( format=__UpperCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__UpperCAmelCase , __UpperCAmelCase ) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = nlp _lowerCamelCase = reader @staticmethod def UpperCamelCase_ ( A_ ) -> Dict: """simple docstring""" _lowerCamelCase = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=A_ , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=A_ , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=A_ , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=A_ , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=A_ , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=A_ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=A_ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=A_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=A_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self._nlp, [] for entry in self._reader: _lowerCamelCase = nlp(**A_ ) if self._reader.is_multi_columns else nlp(A_ ) if isinstance(A_ , A_ ): outputs.append(A_ ) else: outputs += output # Saving data if self._nlp.binary_output: _lowerCamelCase = self._reader.save_binary(A_ ) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(A_ )
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCamelCase__ = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] UpperCamelCase__ = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = ' Hello world! cécé herlolip' UpperCamelCase__ = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = torch.load(__UpperCAmelCase , map_location='''cpu''' ) _lowerCamelCase = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase , _lowerCamelCase = emb.weight.shape _lowerCamelCase = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) _lowerCamelCase = emb.weight.data return lin_layer @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if not os.path.exists(__UpperCAmelCase ): _lowerCamelCase = torch.hub.load('''pytorch/fairseq''' , __UpperCAmelCase ).eval() else: _lowerCamelCase = load_xsum_checkpoint(__UpperCAmelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _lowerCamelCase = checkpoint_path.replace('''.''' , '''-''' ) _lowerCamelCase = BartConfig.from_pretrained(__UpperCAmelCase ) _lowerCamelCase = bart.encode(__UpperCAmelCase ).unsqueeze(0 ) _lowerCamelCase = BartTokenizer.from_pretrained(__UpperCAmelCase ).encode(__UpperCAmelCase , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(__UpperCAmelCase , __UpperCAmelCase ).all(): raise ValueError( F'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": _lowerCamelCase = bart.state_dict() remove_ignore_keys_(__UpperCAmelCase ) _lowerCamelCase = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = BartForSequenceClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) _lowerCamelCase = bart.predict('''mnli''' , __UpperCAmelCase , return_logits=__UpperCAmelCase ) _lowerCamelCase = model(__UpperCAmelCase )[0] # logits else: # no classification heads to worry about _lowerCamelCase = bart.model.state_dict() remove_ignore_keys_(__UpperCAmelCase ) _lowerCamelCase = state_dict['''decoder.embed_tokens.weight'''] _lowerCamelCase = bart.extract_features(__UpperCAmelCase ) if hf_checkpoint_name == "facebook/bart-large": _lowerCamelCase = BartModel(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) _lowerCamelCase = model(__UpperCAmelCase ).model[0] else: _lowerCamelCase = BartForConditionalGeneration(__UpperCAmelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''lm_head''' ): _lowerCamelCase = make_linear_from_emb(model.model.shared ) _lowerCamelCase = model.model(__UpperCAmelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) UpperCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = metric_id class UpperCamelCase : '''simple docstring''' A_ = [MetricMock(__lowercase ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if "tmp_path" in args: _lowerCamelCase = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(__UpperCAmelCase , match='''https://huggingface.co/docs/evaluate''' ): func(*__UpperCAmelCase )
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = ReformerTokenizer A_ = ReformerTokenizerFast A_ = True A_ = False A_ = True def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().setUp() _lowerCamelCase = ReformerTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = '''<s>''' _lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(A_ ) , 10_00 ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = '''I was born in 92000, and this is falsé.''' _lowerCamelCase = tokenizer.tokenize(A_ ) _lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self , A_=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) # Simple input _lowerCamelCase = '''This is a simple input''' _lowerCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='''max_length''' ) # Simple input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='''max_length''' ) # Simple input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='''max_length''' , ) # Pair input self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='''max_length''' ) # Pair input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='''max_length''' ) # Pair input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='''max_length''' , ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = ReformerTokenizer(A_ , keep_accents=A_ ) _lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [2_85, 46, 10, 1_70, 3_82] , ) _lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = '''Hello World!''' _lowerCamelCase = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _lowerCamelCase = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @require_torch @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowerCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCamelCase = ''' '''.join(A_ ) _lowerCamelCase = self.big_tokenizer.encode_plus(A_ , return_tensors='''pt''' ) _lowerCamelCase = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) _lowerCamelCase = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowerCamelCase = encoded_sequence['''input_ids'''].shape _lowerCamelCase = ReformerModel(A_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A_ ) model(**A_ ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowerCamelCase = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=A_ , sequences=A_ , )
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __magic_name__( __UpperCAmelCase=32 , __UpperCAmelCase=10 , __UpperCAmelCase=100 , __UpperCAmelCase=1026 , __UpperCAmelCase=True , __UpperCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , __UpperCAmelCase="igf_context_pairs.jbl" , ) -> Dict: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _lowerCamelCase , _lowerCamelCase = generate_datasets( __UpperCAmelCase , __UpperCAmelCase , number=__UpperCAmelCase , min_len=1026 , trim=__UpperCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowerCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model _lowerCamelCase = load_gpta('''gpt2''' ).to(__UpperCAmelCase ) print('''computing perplexity on objective set''' ) _lowerCamelCase = compute_perplexity(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).item() print('''perplexity on objective set:''' , __UpperCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=15 , __UpperCAmelCase=128 , __UpperCAmelCase=100 , __UpperCAmelCase="igf_model.pt" , ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) # Load pre-trained model _lowerCamelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model _lowerCamelCase = SecondaryLearner(__UpperCAmelCase ) # Train secondary learner _lowerCamelCase = train_secondary_learner( __UpperCAmelCase , __UpperCAmelCase , max_epochs=__UpperCAmelCase , batch_size=__UpperCAmelCase , eval_freq=100 , igf_model_path=__UpperCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=32 , __UpperCAmelCase=1000 , __UpperCAmelCase=16 , __UpperCAmelCase=1.0 , __UpperCAmelCase=recopy_gpta , __UpperCAmelCase=None , __UpperCAmelCase=10 , __UpperCAmelCase="gpt2_finetuned.pt" , ) -> str: '''simple docstring''' _lowerCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) _lowerCamelCase = RandomSampler(__UpperCAmelCase ) _lowerCamelCase = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase ) _lowerCamelCase = max_steps // (len(__UpperCAmelCase )) + 1 _lowerCamelCase = 0 _lowerCamelCase = torch.zeros((1, context_len) , dtype=torch.long , device=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = recopy_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(__UpperCAmelCase ) secondary_learner.eval() _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = [] _lowerCamelCase = [] # Compute the performance of the transformer model at the beginning _lowerCamelCase = compute_perplexity(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) test_perps.append(__UpperCAmelCase ) print('''Test perplexity, step''' , __UpperCAmelCase , ''':''' , __UpperCAmelCase ) for epoch in range(int(__UpperCAmelCase ) ): for step, example in enumerate(__UpperCAmelCase ): torch.cuda.empty_cache() _lowerCamelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowerCamelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowerCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) _lowerCamelCase = True if secondary_learner is not None: _lowerCamelCase = secondary_learner.forward( torch.tensor(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__UpperCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowerCamelCase = -1 if predicted_q < threshold: _lowerCamelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowerCamelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowerCamelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowerCamelCase = compute_perplexity(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) test_perps.append(__UpperCAmelCase ) print('''Test perplexity, step''' , __UpperCAmelCase , ''':''' , __UpperCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __UpperCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=__UpperCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=__UpperCAmelCase , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=__UpperCAmelCase , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=__UpperCAmelCase , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=__UpperCAmelCase , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=__UpperCAmelCase , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=__UpperCAmelCase , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=__UpperCAmelCase , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=__UpperCAmelCase , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=__UpperCAmelCase , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=__UpperCAmelCase , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=__UpperCAmelCase , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__UpperCAmelCase , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner _lowerCamelCase = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner _lowerCamelCase = training_secondary_learner( __UpperCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model _lowerCamelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowerCamelCase , _lowerCamelCase = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=__UpperCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__UpperCAmelCase , secondary_learner=__UpperCAmelCase , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'audio-spectrogram-transformer' def __init__( self , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-1_2 , A_=16 , A_=True , A_=10 , A_=10 , A_=10_24 , A_=1_28 , **A_ , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = patch_size _lowerCamelCase = qkv_bias _lowerCamelCase = frequency_stride _lowerCamelCase = time_stride _lowerCamelCase = max_length _lowerCamelCase = num_mel_bins
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available snake_case__ = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import re from filelock import FileLock try: import nltk snake_case__ = True except (ImportError, ModuleNotFoundError): snake_case__ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) _lowerCamelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCamelCase = model(A_ )['''last_hidden_state'''] _lowerCamelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. _lowerCamelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} snake_case__ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } snake_case__ = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = collections.OrderedDict() _lowerCamelCase = collections.OrderedDict() _lowerCamelCase = collections.OrderedDict() with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__UpperCAmelCase ): _lowerCamelCase = b _lowerCamelCase = idx for wd in b: _lowerCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self , A_ , A_ , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|startoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ) -> Dict: """simple docstring""" super().__init__( unk_token=A_ , pad_token=A_ , bos_token=A_ , eos_token=A_ , do_clean_text=A_ , **A_ , ) if not os.path.isfile(A_ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(A_ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) _lowerCamelCase = do_clean_text _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = load_vocab_and_emoji(A_ , A_ ) _lowerCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return len(self.raw_vocab ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" return self.subword_tokenizer.tokenize(A_ , clean=self.do_clean_text ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(A_ ) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> List[int]: """simple docstring""" _lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: _lowerCamelCase = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = 0 if os.path.isdir(A_ ): _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: _lowerCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) _lowerCamelCase = token_index writer.write(''','''.join(A_ ) + '''\n''' ) index += 1 with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , A_ ) return vocab_file, emoji_file class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = vocab # same as swe _lowerCamelCase = ids_to_tokens # same as bpe _lowerCamelCase = emoji _lowerCamelCase = np.max([len(A_ ) for w in self.vocab.keys()] ) _lowerCamelCase = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) _lowerCamelCase = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) _lowerCamelCase = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) _lowerCamelCase = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _lowerCamelCase = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _lowerCamelCase = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) _lowerCamelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' _lowerCamelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' _lowerCamelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.content_repattera.sub('''<URL>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<EMAIL>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<TEL>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<DATE>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<DATE>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<PRICE>''' , A_ ) _lowerCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _lowerCamelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def UpperCamelCase_ ( self , A_ , A_=False ) -> Dict: """simple docstring""" _lowerCamelCase = text.replace(''' ''' , '''<SP>''' ) _lowerCamelCase = text.replace(''' ''' , '''<SP>''' ) _lowerCamelCase = text.replace('''\r\n''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\n''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\r''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\t''' , '''<TAB>''' ) _lowerCamelCase = text.replace('''—''' , '''ー''' ) _lowerCamelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: _lowerCamelCase = text.replace(A_ , A_ ) if clean: _lowerCamelCase = self.clean_text(A_ ) def check_simbol(A_ ): _lowerCamelCase = x.encode() if len(A_ ) == 1 and len(A_ ) == 2: _lowerCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(A_ ): _lowerCamelCase = x.encode() if len(A_ ) == 1 and len(A_ ) == 3: _lowerCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False _lowerCamelCase = 0 _lowerCamelCase = [] while pos < len(A_ ): _lowerCamelCase = min(len(A_ ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 _lowerCamelCase = [] # (token_id, token, pos) for e in range(A_ , A_ , -1 ): _lowerCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(A_ ) > 2: _lowerCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(A_ ) > 0: # the smallest token_id is adopted _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = sorted(A_ , key=lambda A_ : x[0] )[0] result.append(A_ ) _lowerCamelCase = e else: _lowerCamelCase = pos + 1 _lowerCamelCase = text[pos:end] if check_simbol(A_ ): result.append('''<KIGOU>''' ) elif checkuae(A_ ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) _lowerCamelCase = end return result def UpperCamelCase_ ( self , A_ , A_="\n" ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(A_ ) > 0: words.append(bytearray(A_ ).decode('''utf-8''' , errors='''replace''' ) ) _lowerCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(A_ ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(A_ ) if len(A_ ) > 0: words.append(bytearray(A_ ).decode('''utf-8''' , errors='''replace''' ) ) _lowerCamelCase = ''''''.join(A_ ) return text
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'blip_2_vision_model' def __init__( self , A_=14_08 , A_=61_44 , A_=39 , A_=16 , A_=2_24 , A_=14 , A_="gelu" , A_=0.00001 , A_=0.0 , A_=1E-1_0 , A_=True , **A_ , ) -> int: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = hidden_size _lowerCamelCase = intermediate_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = patch_size _lowerCamelCase = image_size _lowerCamelCase = initializer_range _lowerCamelCase = attention_dropout _lowerCamelCase = layer_norm_eps _lowerCamelCase = hidden_act _lowerCamelCase = qkv_bias @classmethod def UpperCamelCase_ ( cls , A_ , **A_ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) _lowerCamelCase , _lowerCamelCase = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": _lowerCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'blip_2_qformer' def __init__( self , A_=3_05_22 , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=0.02 , A_=1E-1_2 , A_=0 , A_="absolute" , A_=2 , A_=14_08 , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = cross_attention_frequency _lowerCamelCase = encoder_hidden_size @classmethod def UpperCamelCase_ ( cls , A_ , **A_ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) _lowerCamelCase , _lowerCamelCase = cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": _lowerCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'blip-2' A_ = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ) -> str: """simple docstring""" super().__init__(**A_ ) if vision_config is None: _lowerCamelCase = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: _lowerCamelCase = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: _lowerCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _lowerCamelCase = BlipaVisionConfig(**A_ ) _lowerCamelCase = BlipaQFormerConfig(**A_ ) _lowerCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _lowerCamelCase = CONFIG_MAPPING[text_model_type](**A_ ) _lowerCamelCase = self.text_config.tie_word_embeddings _lowerCamelCase = self.text_config.is_encoder_decoder _lowerCamelCase = num_query_tokens _lowerCamelCase = self.vision_config.hidden_size _lowerCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCamelCase = 1.0 _lowerCamelCase = 0.02 @classmethod def UpperCamelCase_ ( cls , A_ , A_ , A_ , **A_ , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.vision_config.to_dict() _lowerCamelCase = self.qformer_config.to_dict() _lowerCamelCase = self.text_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCAmelCase__ ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 3 , A_ = 3 , A_ = ("DownEncoderBlock2D",) , A_ = ("UpDecoderBlock2D",) , A_ = (64,) , A_ = 1 , A_ = "silu" , A_ = 3 , A_ = 32 , A_ = 2_56 , A_ = 32 , A_ = None , A_ = 0.18215 , A_ = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder _lowerCamelCase = Encoder( in_channels=A_ , out_channels=A_ , down_block_types=A_ , block_out_channels=A_ , layers_per_block=A_ , act_fn=A_ , norm_num_groups=A_ , double_z=A_ , ) _lowerCamelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCamelCase = nn.Convad(A_ , A_ , 1 ) _lowerCamelCase = VectorQuantizer(A_ , A_ , beta=0.25 , remap=A_ , sane_index_shape=A_ ) _lowerCamelCase = nn.Convad(A_ , A_ , 1 ) # pass init params to Decoder _lowerCamelCase = Decoder( in_channels=A_ , out_channels=A_ , up_block_types=A_ , block_out_channels=A_ , layers_per_block=A_ , act_fn=A_ , norm_num_groups=A_ , norm_type=A_ , ) @apply_forward_hook def UpperCamelCase_ ( self , A_ , A_ = True ) -> VQEncoderOutput: """simple docstring""" _lowerCamelCase = self.encoder(A_ ) _lowerCamelCase = self.quant_conv(A_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=A_ ) @apply_forward_hook def UpperCamelCase_ ( self , A_ , A_ = False , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" # also go through quantization layer if not force_not_quantize: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.quantize(A_ ) else: _lowerCamelCase = h _lowerCamelCase = self.post_quant_conv(A_ ) _lowerCamelCase = self.decoder(A_ , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=A_ ) def UpperCamelCase_ ( self , A_ , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" _lowerCamelCase = sample _lowerCamelCase = self.encode(A_ ).latents _lowerCamelCase = self.decode(A_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A_ )
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase ( __lowercase ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( A_ ) -> List[str]: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self ) -> Any: """simple docstring""" raise NotImplementedError()
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
import numpy as np def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case__ = 'bert-base-cased' snake_case__ = 'google/pegasus-xsum' snake_case__ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] snake_case__ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] snake_case__ = 'patrickvonplaten/t5-tiny-random' snake_case__ = 'sshleifer/bart-tiny-random' snake_case__ = 'sshleifer/tiny-mbart' snake_case__ = 'sshleifer/tiny-marian-en-de' def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''\n'''.join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open('''w''' ).writelines(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(__UpperCAmelCase , F'{split}.source' ) , __UpperCAmelCase ) _dump_articles(os.path.join(__UpperCAmelCase , F'{split}.target' ) , __UpperCAmelCase ) return tmp_dir class UpperCamelCase ( __lowercase ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in ARTICLES ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in SUMMARIES ) _lowerCamelCase = 4 _lowerCamelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCamelCase , _lowerCamelCase = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=A_ , type_path='''train''' , max_source_length=A_ , max_target_length=A_ , src_lang=A_ , tgt_lang=A_ , ) _lowerCamelCase = DataLoader(A_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(A_ , A_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCamelCase = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in ARTICLES ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in SUMMARIES ) _lowerCamelCase = 4 _lowerCamelCase = LegacySeqaSeqDataset( A_ , data_dir=A_ , type_path='''train''' , max_source_length=20 , max_target_length=A_ , ) _lowerCamelCase = DataLoader(A_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) _lowerCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCamelCase = tmp_dir.joinpath('''train.source''' ).open().readlines() _lowerCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(A_ , A_ , 1_28 , A_ ) _lowerCamelCase = {x.name for x in tmp_dir.iterdir()} _lowerCamelCase = {x.name for x in save_dir.iterdir()} _lowerCamelCase = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(A_ ) < len(A_ ) assert len(A_ ) == 1 assert len(packed_examples[0] ) == sum(len(A_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" if not FAIRSEQ_AVAILABLE: return _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._get_dataset(max_len=64 ) _lowerCamelCase = 64 _lowerCamelCase = ds.make_dynamic_sampler(A_ , required_batch_size_multiple=A_ ) _lowerCamelCase = [len(A_ ) for x in batch_sampler] assert len(set(A_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(A_ ) == len(A_ ) # no dropped or added examples _lowerCamelCase = DataLoader(A_ , batch_sampler=A_ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase = [] _lowerCamelCase = [] for batch in data_loader: _lowerCamelCase = batch['''input_ids'''].shape _lowerCamelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCamelCase = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(A_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(A_ ) assert num_src_per_batch[0] == max(A_ ) if failures: raise AssertionError(F'too many tokens in {len(A_ )} batches' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._get_dataset(max_len=5_12 ) _lowerCamelCase = 2 _lowerCamelCase = ds.make_sortish_sampler(A_ , shuffle=A_ ) _lowerCamelCase = DataLoader(A_ , batch_size=A_ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase = DataLoader(A_ , batch_size=A_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=A_ ) _lowerCamelCase = tokenizer.pad_token_id def count_pad_tokens(A_ , A_="input_ids" ): return [batch[k].eq(A_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(A_ , k='''labels''' ) ) < sum(count_pad_tokens(A_ , k='''labels''' ) ) assert sum(count_pad_tokens(A_ ) ) < sum(count_pad_tokens(A_ ) ) assert len(A_ ) == len(A_ ) def UpperCamelCase_ ( self , A_=10_00 , A_=1_28 ) -> Tuple: """simple docstring""" if os.getenv('''USE_REAL_DATA''' , A_ ): _lowerCamelCase = '''examples/seq2seq/wmt_en_ro''' _lowerCamelCase = max_len * 2 * 64 if not Path(A_ ).joinpath('''train.len''' ).exists(): save_len_file(A_ , A_ ) else: _lowerCamelCase = '''examples/seq2seq/test_data/wmt_en_ro''' _lowerCamelCase = max_len * 4 save_len_file(A_ , A_ ) _lowerCamelCase = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=A_ , type_path='''train''' , max_source_length=A_ , max_target_length=A_ , n_obs=A_ , ) return ds, max_tokens, tokenizer def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._get_dataset() _lowerCamelCase = set(DistributedSortishSampler(A_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=A_ ) ) _lowerCamelCase = set(DistributedSortishSampler(A_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=A_ ) ) assert idsa.intersection(A_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained(A_ , use_fast=A_ ) if tok_name == MBART_TINY: _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _lowerCamelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _lowerCamelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(A_ ) == 1 if tok_name == BART_TINY else len(A_ ) == 0
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' A_ = 'pixel_values' A_ = False A_ = TimmBackboneConfig def __init__( self , A_ , **A_ ) -> Any: """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(A_ ) _lowerCamelCase = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(A_ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _lowerCamelCase = getattr(A_ , '''use_pretrained_backbone''' , A_ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _lowerCamelCase = config.out_indices if getattr(A_ , '''out_indices''' , A_ ) is not None else (-1,) _lowerCamelCase = timm.create_model( config.backbone , pretrained=A_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=A_ , **A_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _lowerCamelCase = self._backbone.return_layers _lowerCamelCase = {layer['''module''']: str(A_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(A_ ) @classmethod def UpperCamelCase_ ( cls , A_ , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _lowerCamelCase = kwargs.pop('''config''' , TimmBackboneConfig() ) _lowerCamelCase = kwargs.pop('''use_timm_backbone''' , A_ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _lowerCamelCase = kwargs.pop('''num_channels''' , config.num_channels ) _lowerCamelCase = kwargs.pop('''features_only''' , config.features_only ) _lowerCamelCase = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _lowerCamelCase = kwargs.pop('''out_indices''' , config.out_indices ) _lowerCamelCase = TimmBackboneConfig( backbone=A_ , num_channels=A_ , features_only=A_ , use_pretrained_backbone=A_ , out_indices=A_ , ) return super()._from_config(A_ , **A_ ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=None , **A_ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" _lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _lowerCamelCase = self._all_layers _lowerCamelCase = self._backbone(A_ , **A_ ) _lowerCamelCase = self._return_layers _lowerCamelCase = tuple(hidden_states[i] for i in self.out_indices ) else: _lowerCamelCase = self._backbone(A_ , **A_ ) _lowerCamelCase = None _lowerCamelCase = tuple(A_ ) _lowerCamelCase = tuple(A_ ) if hidden_states is not None else None if not return_dict: _lowerCamelCase = (feature_maps,) if output_hidden_states: _lowerCamelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=A_ , hidden_states=A_ , attentions=A_ )
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for attribute in key.split('''.''' ): _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' _lowerCamelCase = torch.load(__UpperCAmelCase ) _lowerCamelCase = WavLMConfigOrig(checkpoint['''cfg'''] ) _lowerCamelCase = WavLMOrig(__UpperCAmelCase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: _lowerCamelCase = WavLMConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = WavLMConfig() _lowerCamelCase = WavLMModel(__UpperCAmelCase ) recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase ) hf_wavlm.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') snake_case__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = np.max(_outputs , axis=-1 , keepdims=__UpperCAmelCase ) _lowerCamelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__UpperCAmelCase ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'sigmoid' A_ = 'softmax' A_ = 'none' @add_end_docstrings( __lowercase , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = False A_ = ClassificationFunction.NONE def __init__( self , **A_ ) -> str: """simple docstring""" super().__init__(**A_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCamelCase_ ( self , A_=None , A_=None , A_="" , **A_ ) -> str: """simple docstring""" _lowerCamelCase = tokenizer_kwargs _lowerCamelCase = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _lowerCamelCase = self.model.config.return_all_scores if isinstance(A_ , A_ ) or top_k is None: _lowerCamelCase = top_k _lowerCamelCase = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , A_ , ) if return_all_scores: _lowerCamelCase = None else: _lowerCamelCase = 1 if isinstance(A_ , A_ ): _lowerCamelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = super().__call__(*A_ , **A_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase = '''top_k''' not in kwargs if isinstance(args[0] , A_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCamelCase_ ( self , A_ , **A_ ) -> Dict[str, GenericTensor]: """simple docstring""" _lowerCamelCase = self.framework if isinstance(A_ , A_ ): return self.tokenizer(**A_ , return_tensors=A_ , **A_ ) elif isinstance(A_ , A_ ) and len(A_ ) == 1 and isinstance(inputs[0] , A_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=A_ , **A_ ) elif isinstance(A_ , A_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(A_ , return_tensors=A_ , **A_ ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" return self.model(**A_ ) def UpperCamelCase_ ( self , A_ , A_=None , A_=1 , A_=True ) -> List[Any]: """simple docstring""" # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _lowerCamelCase = self.model.config.function_to_apply else: _lowerCamelCase = ClassificationFunction.NONE _lowerCamelCase = model_outputs['''logits'''][0] _lowerCamelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase = sigmoid(A_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase = softmax(A_ ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(A_ ) ] if not _legacy: dict_scores.sort(key=lambda A_ : x["score"] , reverse=A_ ) if top_k is not None: _lowerCamelCase = dict_scores[:top_k] return dict_scores
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration snake_case__ = HfArgumentParser(InitializationArguments) snake_case__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization snake_case__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks snake_case__ = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) snake_case__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config snake_case__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] UpperCamelCase__ = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' def run_func(__UpperCAmelCase ): @wraps(__UpperCAmelCase ) def run_in_eager_mode(*__UpperCAmelCase , **__UpperCAmelCase ): return func(*__UpperCAmelCase , **__UpperCAmelCase ) @wraps(__UpperCAmelCase ) @tf.function(experimental_compile=__UpperCAmelCase ) def run_in_graph_mode(*__UpperCAmelCase , **__UpperCAmelCase ): return func(*__UpperCAmelCase , **__UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> ["tf.Tensor"]: '''simple docstring''' _lowerCamelCase = random.Random() _lowerCamelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = 42 A_ = 'TensorFlow' @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return tf.__version__ def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> float: """simple docstring""" _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_inference_func(A_ , A_ , A_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> float: """simple docstring""" _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_train_func(A_ , A_ , A_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A_ ) _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_inference_func(A_ , A_ , A_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A_ ) _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_train_func(A_ , A_ , A_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Callable[[], None]: """simple docstring""" _lowerCamelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _lowerCamelCase = ( hasattr(A_ , '''architectures''' ) and isinstance(config.architectures , A_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCamelCase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCamelCase = __import__('''transformers''' , fromlist=[model_class] ) _lowerCamelCase = getattr(A_ , A_ ) _lowerCamelCase = model_cls(A_ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _lowerCamelCase = TF_MODEL_MAPPING[config.__class__](A_ ) # encoder-decoder has vocab size saved differently _lowerCamelCase = config.vocab_size if hasattr(A_ , '''vocab_size''' ) else config.encoder.vocab_size _lowerCamelCase = random_input_ids(A_ , A_ , A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A_ , decoder_input_ids=A_ , training=A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A_ , training=A_ ) _lowerCamelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Callable[[], None]: """simple docstring""" _lowerCamelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _lowerCamelCase = ( hasattr(A_ , '''architectures''' ) and isinstance(config.architectures , A_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCamelCase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCamelCase = __import__('''transformers''' , fromlist=[model_class] ) _lowerCamelCase = getattr(A_ , A_ ) _lowerCamelCase = model_cls(A_ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _lowerCamelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A_ ) # encoder-decoder has vocab size saved differently _lowerCamelCase = config.vocab_size if hasattr(A_ , '''vocab_size''' ) else config.encoder.vocab_size _lowerCamelCase = random_input_ids(A_ , A_ , A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCamelCase = model(A_ , decoder_input_ids=A_ , labels=A_ , training=A_ )[0] _lowerCamelCase = tf.gradients(A_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCamelCase = model(A_ , labels=A_ , training=A_ )[0] _lowerCamelCase = tf.gradients(A_ , model.trainable_variables ) return gradients _lowerCamelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self , A_ ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCamelCase = timeit.repeat( A_ , repeat=self.args.repeat , number=10 , ) return min(A_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def UpperCamelCase_ ( self , A_ ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) _lowerCamelCase = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) _lowerCamelCase = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() _lowerCamelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCamelCase = nvml.nvmlDeviceGetMemoryInfo(A_ ) _lowerCamelCase = meminfo.used _lowerCamelCase = Memory(A_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) _lowerCamelCase = None else: _lowerCamelCase = measure_peak_memory_cpu(A_ ) _lowerCamelCase = Memory(A_ ) if isinstance(A_ , A_ ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCamelCase = stop_memory_tracing(A_ ) if memory is None: _lowerCamelCase = summary.total else: _lowerCamelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from __future__ import annotations import queue class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = data _lowerCamelCase = None _lowerCamelCase = None def __magic_name__( ) -> TreeNode: '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) _lowerCamelCase = input('''Enter the value of the root node: ''' ).strip().lower() _lowerCamelCase = queue.Queue() _lowerCamelCase = TreeNode(int(__UpperCAmelCase ) ) q.put(__UpperCAmelCase ) while not q.empty(): _lowerCamelCase = q.get() _lowerCamelCase = F'Enter the left node of {node_found.data}: ' _lowerCamelCase = input(__UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node _lowerCamelCase = TreeNode(int(__UpperCAmelCase ) ) _lowerCamelCase = left_node q.put(__UpperCAmelCase ) _lowerCamelCase = F'Enter the right node of {node_found.data}: ' _lowerCamelCase = input(__UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node _lowerCamelCase = TreeNode(int(__UpperCAmelCase ) ) _lowerCamelCase = right_node q.put(__UpperCAmelCase ) raise def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowerCamelCase = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): _lowerCamelCase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowerCamelCase = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): _lowerCamelCase = [] while not q.empty(): _lowerCamelCase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowerCamelCase = [] _lowerCamelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__UpperCAmelCase ) _lowerCamelCase = n.left # end of while means current node doesn't have left child _lowerCamelCase = stack.pop() # start to traverse its right child _lowerCamelCase = n.right def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowerCamelCase = [] _lowerCamelCase = node while n or stack: while n: stack.append(__UpperCAmelCase ) _lowerCamelCase = n.left _lowerCamelCase = stack.pop() print(n.data , end=''',''' ) _lowerCamelCase = n.right def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowerCamelCase , _lowerCamelCase = [], [] _lowerCamelCase = node stacka.append(__UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCamelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def __magic_name__( __UpperCAmelCase = "" , __UpperCAmelCase=50 , __UpperCAmelCase="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char _lowerCamelCase , _lowerCamelCase = divmod(width - len(__UpperCAmelCase ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) snake_case__ = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if curr_ind == len(__UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__UpperCAmelCase ) ): if valid_connection(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Insert current vertex into path as next transition _lowerCamelCase = next_ver # Validate created path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , curr_ind + 1 ): return True # Backtrack _lowerCamelCase = -1 return False def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> list[int]: '''simple docstring''' _lowerCamelCase = [-1] * (len(__UpperCAmelCase ) + 1) # initialize start and end of path with starting index _lowerCamelCase = _lowerCamelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , 1 ) else []
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
import requests from bsa import BeautifulSoup def __magic_name__( __UpperCAmelCase = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' _lowerCamelCase = BeautifulSoup(requests.get(__UpperCAmelCase ).text , '''html.parser''' ) _lowerCamelCase = soup.findAll('''h1''' ) _lowerCamelCase = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCAmelCase , __UpperCAmelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter snake_case__ = True except ImportError: snake_case__ = False snake_case__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCamelCase ( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=A_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=A_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , A_=None , *A_ ) -> int: """simple docstring""" _lowerCamelCase = testing _lowerCamelCase = testing_file _lowerCamelCase = path def UpperCamelCase_ ( self ) -> str: """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowerCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(A_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) _lowerCamelCase = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _lowerCamelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: _lowerCamelCase = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=A_ , extra_context=A_ , ) _lowerCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: _lowerCamelCase = json.load(A_ ) _lowerCamelCase = configuration['''lowercase_modelname'''] _lowerCamelCase = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F'{directory}/configuration.json' ) _lowerCamelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ , exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , '''w''' ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(A_ ): with open(A_ , '''r''' ) as f: _lowerCamelCase = f.readlines() with open(A_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ , A_ , A_ ): # Create temp file _lowerCamelCase , _lowerCamelCase = mkstemp() _lowerCamelCase = False with fdopen(A_ , '''w''' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: _lowerCamelCase = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ , A_ ) # Remove original file remove(A_ ) # Move new file move(A_ , A_ ) def skip_units(A_ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ ): with open(A_ ) as datafile: _lowerCamelCase = [] _lowerCamelCase = False _lowerCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowerCamelCase = line.split('''"''' )[1] _lowerCamelCase = skip_units(A_ ) elif "# Below: " in line and "##" not in line: _lowerCamelCase = line.split('''"''' )[1] _lowerCamelCase = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ , A_ , A_ ) _lowerCamelCase = [] elif "# Replace with" in line and "##" not in line: _lowerCamelCase = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
from typing import Any class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = data _lowerCamelCase = None def __repr__( self ) -> str: """simple docstring""" return F'Node({self.data})' class UpperCamelCase : '''simple docstring''' def __init__( self ) -> int: """simple docstring""" _lowerCamelCase = None def __iter__( self ) -> Any: """simple docstring""" _lowerCamelCase = self.head while node: yield node.data _lowerCamelCase = node.next def __len__( self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self ) -> str: """simple docstring""" return "->".join([str(A_ ) for item in self] ) def __getitem__( self , A_ ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , A_ , A_ ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) _lowerCamelCase = self.head for _ in range(A_ ): _lowerCamelCase = current.next _lowerCamelCase = data def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" self.insert_nth(len(self ) , A_ ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" self.insert_nth(0 , A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) _lowerCamelCase = Node(A_ ) if self.head is None: _lowerCamelCase = new_node elif index == 0: _lowerCamelCase = self.head # link new_node to head _lowerCamelCase = new_node else: _lowerCamelCase = self.head for _ in range(index - 1 ): _lowerCamelCase = temp.next _lowerCamelCase = temp.next _lowerCamelCase = new_node def UpperCamelCase_ ( self ) -> None: # print every node data """simple docstring""" print(self ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase_ ( self ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self , A_ = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) _lowerCamelCase = self.head # default first node if index == 0: _lowerCamelCase = self.head.next else: _lowerCamelCase = self.head for _ in range(index - 1 ): _lowerCamelCase = temp.next _lowerCamelCase = temp.next _lowerCamelCase = temp.next.next return delete_node.data def UpperCamelCase_ ( self ) -> bool: """simple docstring""" return self.head is None def UpperCamelCase_ ( self ) -> None: """simple docstring""" _lowerCamelCase = None _lowerCamelCase = self.head while current: # Store the current node's next node. _lowerCamelCase = current.next # Make the current node's next point backwards _lowerCamelCase = prev # Make the previous node be the current node _lowerCamelCase = current # Make the current node the next node (to progress iteration) _lowerCamelCase = next_node # Return prev in order to put the head at the end _lowerCamelCase = prev def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCAmelCase ) == i linked_list.insert_nth(__UpperCAmelCase , i + 1 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCAmelCase ) == 9 assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _lowerCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(-8 , 1 ) ) def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = [ -9, 100, Node(7734_5112 ), '''dlrow olleH''', 7, 5555, 0, -192.5_5555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] _lowerCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _lowerCamelCase = linked_list.delete_head() assert result == -9 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _lowerCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _lowerCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCAmelCase ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __magic_name__( ) -> Optional[Any]: '''simple docstring''' from doctest import testmod testmod() _lowerCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__UpperCAmelCase ) print('''\nReading/changing Node data using indexing:''' ) print(F'Element at Position 1: {linked_list[1]}' ) _lowerCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__UpperCAmelCase ) print(F'length of linked_list is : {len(__UpperCAmelCase )}' ) if __name__ == "__main__": main()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [0] * len(__UpperCAmelCase ) _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCAmelCase ) ): if indegree[i] == 0: queue.append(__UpperCAmelCase ) while queue: _lowerCamelCase = queue.pop(0 ) cnt += 1 topo.append(__UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCAmelCase ) if cnt != len(__UpperCAmelCase ): print('''Cycle exists''' ) else: print(__UpperCAmelCase ) # Adjacency List of Graph snake_case__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] snake_case__ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } snake_case__ = {f'''funnel-transformer/{name}''': 512 for name in _model_names} snake_case__ = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = FunnelTokenizer A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = 2 def __init__( self , A_=None , A_=None , A_=True , A_="<unk>" , A_="<sep>" , A_="<pad>" , A_="<cls>" , A_="<mask>" , A_="<s>" , A_="</s>" , A_=True , A_=True , A_=None , A_="##" , **A_ , ) -> Tuple: """simple docstring""" super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , bos_token=A_ , eos_token=A_ , clean_text=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , wordpieces_prefix=A_ , **A_ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(A_ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**A_ ) _lowerCamelCase = do_lower_case def UpperCamelCase_ ( self , A_ , A_=None ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
def __magic_name__( __UpperCAmelCase ) -> int: # noqa: E741 '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = 0 _lowerCamelCase = [0] * n _lowerCamelCase = [False] * n _lowerCamelCase = [False] * n def dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if parent == root: out_edge_count += 1 _lowerCamelCase = True _lowerCamelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCamelCase = dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCamelCase = True # AP found via cycle if at == low[to]: _lowerCamelCase = True else: _lowerCamelCase = min(low[at] , __UpperCAmelCase ) return out_edge_count for i in range(__UpperCAmelCase ): if not visited[i]: _lowerCamelCase = 0 _lowerCamelCase = dfs(__UpperCAmelCase , __UpperCAmelCase , -1 , __UpperCAmelCase ) _lowerCamelCase = out_edge_count > 1 for x in range(len(__UpperCAmelCase ) ): if is_art[x] is True: print(__UpperCAmelCase ) # Adjacency list of graph snake_case__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'mobilenet_v2' def __init__( self , A_=3 , A_=2_24 , A_=1.0 , A_=8 , A_=8 , A_=6 , A_=32 , A_=True , A_=True , A_="relu6" , A_=True , A_=0.8 , A_=0.02 , A_=0.001 , A_=2_55 , **A_ , ) -> str: """simple docstring""" super().__init__(**A_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = depth_multiplier _lowerCamelCase = depth_divisible_by _lowerCamelCase = min_depth _lowerCamelCase = expand_ratio _lowerCamelCase = output_stride _lowerCamelCase = first_layer_is_expansion _lowerCamelCase = finegrained_output _lowerCamelCase = hidden_act _lowerCamelCase = tf_padding _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = semantic_loss_ignore_index class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1E-4
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ = None , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> str: """simple docstring""" _lowerCamelCase = path_or_paths _lowerCamelCase = split if split or isinstance(A_ , A_ ) else '''train''' _lowerCamelCase = features _lowerCamelCase = cache_dir _lowerCamelCase = keep_in_memory _lowerCamelCase = streaming _lowerCamelCase = num_proc _lowerCamelCase = kwargs @abstractmethod def UpperCamelCase_ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> Any: """simple docstring""" _lowerCamelCase = features _lowerCamelCase = cache_dir _lowerCamelCase = keep_in_memory _lowerCamelCase = streaming _lowerCamelCase = num_proc _lowerCamelCase = kwargs @abstractmethod def UpperCamelCase_ ( self ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
snake_case__ = range(2, 20 + 1) snake_case__ = [10**k for k in range(ks[-1] + 1)] snake_case__ = {} def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = sum(a_i[j] for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ) ) _lowerCamelCase = sum(a_i[j] * base[j] for j in range(min(len(__UpperCAmelCase ) , __UpperCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase = 0, 0 _lowerCamelCase = n - i _lowerCamelCase = memo.get(__UpperCAmelCase ) if sub_memo is not None: _lowerCamelCase = sub_memo.get(__UpperCAmelCase ) if jumps is not None and len(__UpperCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase = -1 for _k in range(len(__UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase = diff + c for j in range(min(__UpperCAmelCase , len(__UpperCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) if new_c > 0: add(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _lowerCamelCase = [] else: _lowerCamelCase = {c: []} _lowerCamelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase = next_term(__UpperCAmelCase , k - 1 , i + dn , __UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase = compute(__UpperCAmelCase , __UpperCAmelCase , i + dn , __UpperCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase = 0 while j < len(__UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' if i >= n: return 0, i if k > len(__UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(__UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0, 0, 0 for j in range(len(__UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase = ds_c + ds_b diff += addend _lowerCamelCase = 0 for j in range(__UpperCAmelCase ): _lowerCamelCase = a_i[j] + addend _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return diff, i - start_i def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ): _lowerCamelCase = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) _lowerCamelCase = addend // 10 + quotient else: _lowerCamelCase = s _lowerCamelCase = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) digits.append(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase = 10**15 ) -> int: '''simple docstring''' _lowerCamelCase = [1] _lowerCamelCase = 1 _lowerCamelCase = 0 while True: _lowerCamelCase , _lowerCamelCase = next_term(__UpperCAmelCase , 20 , i + dn , __UpperCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase = 0 for j in range(len(__UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str = "AAPL" ) -> str: '''simple docstring''' _UpperCAmelCase = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase ).text , 'html.parser' ) _UpperCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = XLMRobertaTokenizer UpperCamelCase = XLMRobertaTokenizerFast UpperCamelCase = True UpperCamelCase = True def _lowerCamelCase ( self : Any) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = XLMRobertaTokenizer(A , keep_accents=A) tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A) , A) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A) , A) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(A) , 10_02) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = XLMRobertaTokenizer(A , keep_accents=A) _UpperCAmelCase = tokenizer.tokenize('This is a test') self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(A) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _lowerCamelCase ( self : str) -> str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCAmelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = tokenizer_r.save_pretrained(A) _UpperCAmelCase = tokenizer_p.save_pretrained(A) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) _UpperCAmelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(A , A) # Checks everything loads correctly in the same way _UpperCAmelCase = tokenizer_r.from_pretrained(A) _UpperCAmelCase = tokenizer_p.from_pretrained(A) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A) # Save tokenizer rust, legacy_format=True _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = tokenizer_r.save_pretrained(A , legacy_format=A) _UpperCAmelCase = tokenizer_p.save_pretrained(A) # Checks it save with the same files self.assertSequenceEqual(A , A) # Checks everything loads correctly in the same way _UpperCAmelCase = tokenizer_r.from_pretrained(A) _UpperCAmelCase = tokenizer_p.from_pretrained(A) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A)) shutil.rmtree(A) # Save tokenizer rust, legacy_format=False _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = tokenizer_r.save_pretrained(A , legacy_format=A) _UpperCAmelCase = tokenizer_p.save_pretrained(A) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _UpperCAmelCase = tokenizer_r.from_pretrained(A) _UpperCAmelCase = tokenizer_p.from_pretrained(A) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A)) shutil.rmtree(A) @cached_property def _lowerCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name) _UpperCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=A) _UpperCAmelCase = pickle.dumps(A) pickle.loads(A) def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = rust_tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) _UpperCAmelCase = rust_tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(A) _UpperCAmelCase = rust_tokenizer.encode(A) self.assertListEqual(A , A) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = 'Hello World!' _UpperCAmelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A)) @slow def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _UpperCAmelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A)) @slow def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = {'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch UpperCAmelCase__ = random.Random() def A ( _UpperCAmelCase : int , _UpperCAmelCase : int=1.0 , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[int]=None ) -> Tuple: '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : int , A : Any , A : Optional[int]=7 , A : str=4_00 , A : int=20_00 , A : str=1 , A : Optional[int]=0.0 , A : List[Any]=1_60_00 , A : int=True , A : List[str]=80 , A : List[Any]=16 , A : Any=64 , A : Optional[Any]="hann_window" , A : Tuple=80 , A : Union[str, Any]=76_00 , A : Any=1E-10 , A : Optional[int]=True , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = do_normalize _UpperCAmelCase = num_mel_bins _UpperCAmelCase = hop_length _UpperCAmelCase = win_length _UpperCAmelCase = win_function _UpperCAmelCase = fmin _UpperCAmelCase = fmax _UpperCAmelCase = mel_floor _UpperCAmelCase = return_attention_mask def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCamelCase ( self : int , A : List[str]=False , A : Any=False) -> str: """simple docstring""" def _flatten(A : List[str]): return list(itertools.chain(*A)) if equal_length: _UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size _UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCAmelCase = [np.asarray(A) for x in speech_inputs] return speech_inputs def _lowerCamelCase ( self : str , A : Tuple=False , A : Any=False) -> Dict: """simple docstring""" if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.num_mel_bins)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCAmelCase = [np.asarray(A) for x in speech_inputs] return speech_inputs @require_torch class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = SpeechTaFeatureExtractor def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = SpeechTaFeatureExtractionTester(self) def _lowerCamelCase ( self : str , A : Optional[int]) -> Tuple: """simple docstring""" self.assertTrue(np.all(np.mean(A , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(A , axis=0) - 1) < 1E-3)) def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = [np.asarray(A) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np').input_values _UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test batched _UpperCAmelCase = feat_extract(A , return_tensors='np').input_values _UpperCAmelCase = feat_extract(A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] _UpperCAmelCase = [None, 16_00, None] for max_length, padding in zip(A , A): _UpperCAmelCase = feat_extract(A , padding=A , max_length=A , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self.assertTrue(input_values[0][8_00:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self.assertTrue(input_values[0][10_00:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = range(8_00 , 14_00 , 2_00) _UpperCAmelCase = [floats_list((1, x))[0] for x in lengths] _UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] _UpperCAmelCase = [None, 16_00, None] for max_length, padding in zip(A , A): _UpperCAmelCase = feat_extract(A , max_length=A , padding=A) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = feat_extract( A , truncation=A , max_length=10_00 , padding='max_length' , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = feat_extract( A , truncation=A , max_length=10_00 , padding='longest' , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00)) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = feat_extract( A , truncation=A , max_length=20_00 , padding='longest' , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00)) def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = np.random.rand(1_00).astype(np.floataa) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) _UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = [np.asarray(A) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(audio_target=A , padding=A , return_tensors='np').input_values self.assertTrue(input_values.ndim == 3) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='np').input_values _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test batched _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_values _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] _UpperCAmelCase = np.asarray(A) _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_values _UpperCAmelCase = feature_extractor(A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCAmelCase = feat_extract.model_input_names[0] _UpperCAmelCase = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(A) == len(A) for x, y in zip(A , processed_features[input_name]))) _UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A) _UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='np') _UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A) _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCAmelCase = feat_extract.model_input_names[0] _UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='pt') _UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCAmelCase = feat_extract.model_input_names[0] _UpperCAmelCase = BatchFeature({input_name: speech_inputs}) _UpperCAmelCase = feat_extract.num_mel_bins # hack! _UpperCAmelCase = feat_extract.pad(A , padding='longest' , return_tensors='np')[input_name] _UpperCAmelCase = feat_extract.pad(A , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = self.feat_extract_dict _UpperCAmelCase = True _UpperCAmelCase = self.feature_extraction_class(**A) _UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCAmelCase = [len(A) for x in speech_inputs] _UpperCAmelCase = feat_extract.model_input_names[0] _UpperCAmelCase = BatchFeature({input_name: speech_inputs}) _UpperCAmelCase = feat_extract.num_mel_bins # hack! _UpperCAmelCase = feat_extract.pad(A , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , A) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , A) def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = self.feat_extract_dict _UpperCAmelCase = True _UpperCAmelCase = self.feature_extraction_class(**A) _UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCAmelCase = [len(A) for x in speech_inputs] _UpperCAmelCase = feat_extract.model_input_names[0] _UpperCAmelCase = BatchFeature({input_name: speech_inputs}) _UpperCAmelCase = min(A) _UpperCAmelCase = feat_extract.num_mel_bins # hack! _UpperCAmelCase = feat_extract.pad( A , padding='max_length' , max_length=A , truncation=A , return_tensors='np') self.assertIn('attention_mask' , A) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs]) def _lowerCamelCase ( self : List[Any] , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" from datasets import load_dataset _UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech _UpperCAmelCase = ds.sort('id').select(range(A))[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03]) # fmt: on _UpperCAmelCase = self._load_datasamples(1) _UpperCAmelCase = SpeechTaFeatureExtractor() _UpperCAmelCase = feature_extractor(A , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 9_36_80)) self.assertTrue(torch.allclose(input_values[0, :30] , A , atol=1E-6)) def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8]) # fmt: on _UpperCAmelCase = self._load_datasamples(1) _UpperCAmelCase = SpeechTaFeatureExtractor() _UpperCAmelCase = feature_extractor(audio_target=A , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 3_66, 80)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A , atol=1E-4))
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
def A ( _UpperCAmelCase : str ) -> list: '''simple docstring''' if n_term == "": return [] _UpperCAmelCase = [] for temp in range(int(_UpperCAmelCase ) ): series.append(F"1/{temp + 1}" if series else '1' ) return series if __name__ == "__main__": UpperCAmelCase__ = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCAmelCase ( A , A , A ): @register_to_config def __init__( self : Optional[int] , A : int , A : int , A : int , A : float , A : int , A : int , A : int , A : int , A : str , A : bool = False , ) -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Embedding(A , A) _UpperCAmelCase = nn.Embedding(A , A) _UpperCAmelCase = False _UpperCAmelCase = nn.Dropout(p=A) _UpperCAmelCase = TaConfig( vocab_size=A , d_model=A , num_heads=A , d_kv=A , d_ff=A , dropout_rate=A , feed_forward_proj=A , is_decoder=A , is_encoder_decoder=A , ) _UpperCAmelCase = nn.ModuleList() for lyr_num in range(A): _UpperCAmelCase = TaBlock(A) self.encoders.append(A) _UpperCAmelCase = TaLayerNorm(A) _UpperCAmelCase = nn.Dropout(p=A) def _lowerCamelCase ( self : Dict , A : List[Any] , A : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = self.token_embedder(A) _UpperCAmelCase = encoder_input_tokens.shape[1] _UpperCAmelCase = torch.arange(A , device=encoder_input_tokens.device) x += self.position_encoding(A) _UpperCAmelCase = self.dropout_pre(A) # inverted the attention mask _UpperCAmelCase = encoder_input_tokens.size() _UpperCAmelCase = self.get_extended_attention_mask(A , A) for lyr in self.encoders: _UpperCAmelCase = lyr(A , A)[0] _UpperCAmelCase = self.layer_norm(A) return self.dropout_post(A), encoder_inputs_mask
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) UpperCAmelCase__ = logging.getLogger(__name__) def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) _UpperCAmelCase = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": _UpperCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` _UpperCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": _UpperCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` _UpperCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": _UpperCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` _UpperCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: _UpperCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F"{len(_UpperCAmelCase )} examples to process." ) _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 10_000 _UpperCAmelCase = time.time() for text in data: _UpperCAmelCase = F"{bos} {text.strip()} {sep}" _UpperCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: _UpperCAmelCase = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) _UpperCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F"{len(_UpperCAmelCase )} examples processed." ) _UpperCAmelCase = F"{args.dump_file}.{args.tokenizer_name}.pickle" _UpperCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): _UpperCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: _UpperCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
from __future__ import annotations from random import random from typing import Generic, TypeVar UpperCAmelCase__ = TypeVar("KT") UpperCAmelCase__ = TypeVar("VT") class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : Optional[int] , A : KT | str = "root" , A : VT | None = None) -> str: """simple docstring""" _UpperCAmelCase = key _UpperCAmelCase = value _UpperCAmelCase = [] def __repr__( self : Optional[int]) -> str: """simple docstring""" return F"Node({self.key}: {self.value})" @property def _lowerCamelCase ( self : str) -> int: """simple docstring""" return len(self.forward) class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : Dict , A : float = 0.5 , A : int = 16) -> List[Any]: """simple docstring""" _UpperCAmelCase = Node[KT, VT]() _UpperCAmelCase = 0 _UpperCAmelCase = p _UpperCAmelCase = max_level def __str__( self : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = list(self) if len(A) == 0: return F"SkipList(level={self.level})" _UpperCAmelCase = max((len(str(A)) for item in items) , default=4) _UpperCAmelCase = max(A , 4) + 4 _UpperCAmelCase = self.head _UpperCAmelCase = [] _UpperCAmelCase = node.forward.copy() lines.append(F"[{node.key}]".ljust(A , '-') + '* ' * len(A)) lines.append(' ' * label_size + '| ' * len(A)) while len(node.forward) != 0: _UpperCAmelCase = node.forward[0] lines.append( F"[{node.key}]".ljust(A , '-') + ' '.join(str(n.key) if n.key == node.key else '|' for n in forwards)) lines.append(' ' * label_size + '| ' * len(A)) _UpperCAmelCase = node.forward lines.append('None'.ljust(A) + '* ' * len(A)) return F"SkipList(level={self.level})\n" + "\n".join(A) def __iter__( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.head while len(node.forward) != 0: yield node.forward[0].key _UpperCAmelCase = node.forward[0] def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowerCamelCase ( self : List[str] , A : str) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _UpperCAmelCase = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(A) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowerCamelCase ( self : List[str] , A : KT) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self._locate_node(A) if node is not None: for i, update_node in enumerate(A): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _UpperCAmelCase = node.forward[i] else: _UpperCAmelCase = update_node.forward[:i] def _lowerCamelCase ( self : List[Any] , A : KT , A : VT) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self._locate_node(A) if node is not None: _UpperCAmelCase = value else: _UpperCAmelCase = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , A): update_vector.append(self.head) _UpperCAmelCase = level _UpperCAmelCase = Node(A , A) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(A) else: _UpperCAmelCase = new_node def _lowerCamelCase ( self : List[Any] , A : VT) -> VT | None: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self._locate_node(A) if node is not None: return node.value return None def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) _UpperCAmelCase = skip_list.head _UpperCAmelCase = {} while node.level != 0: _UpperCAmelCase = node.forward[0] _UpperCAmelCase = node.value assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) _UpperCAmelCase = skip_list.head _UpperCAmelCase = {} while node.level != 0: _UpperCAmelCase = node.forward[0] _UpperCAmelCase = node.value if len(_UpperCAmelCase ) != 4: print() assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = SkipList() assert skip_list.find('Some key' ) is None def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def A ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_UpperCAmelCase : Optional[Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def A ( ) -> List[Any]: '''simple docstring''' def is_sorted(_UpperCAmelCase : Union[str, Any] ): return all(next_item >= item for item, next_item in zip(_UpperCAmelCase , lst[1:] ) ) _UpperCAmelCase = SkipList() for i in range(10 ): skip_list.insert(_UpperCAmelCase , _UpperCAmelCase ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCAmelCase ) ) def A ( ) -> int: '''simple docstring''' for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCAmelCase__ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") UpperCAmelCase__ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" _UpperCAmelCase = get_test_to_tester_mapping(A) _UpperCAmelCase = get_test_to_tester_mapping(A) _UpperCAmelCase = {'BertModelTest': 'BertModelTester'} _UpperCAmelCase = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(A) , A) self.assertEqual(get_test_info.to_json(A) , A) def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_model_to_test_mapping(A) _UpperCAmelCase = get_model_to_test_mapping(A) _UpperCAmelCase = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } _UpperCAmelCase = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(A) , A) self.assertEqual(get_test_info.to_json(A) , A) def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = get_model_to_tester_mapping(A) _UpperCAmelCase = get_model_to_tester_mapping(A) _UpperCAmelCase = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } _UpperCAmelCase = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(A) , A) self.assertEqual(get_test_info.to_json(A) , A)
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification UpperCAmelCase__ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co UpperCAmelCase__ = "main" # Default branch name UpperCAmelCase__ = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) UpperCAmelCase__ = "aaaaaaa" # This commit does not exist, so we should 404. UpperCAmelCase__ = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes UpperCAmelCase__ = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def A ( ) -> List[Any]: '''simple docstring''' print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def A ( ) -> Any: '''simple docstring''' print('Bonjour!' ) yield print('Au revoir!' ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers') is not None class __lowerCAmelCase ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO) def _lowerCamelCase ( self : Optional[Any] , A : Union[str, Any]) -> List[str]: """simple docstring""" with ContextManagers([]): print('Transformers are awesome!') # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n') @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO) def _lowerCamelCase ( self : int , A : int) -> Optional[Any]: """simple docstring""" with ContextManagers([context_en()]): print('Transformers are awesome!') # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n') @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO) def _lowerCamelCase ( self : str , A : Tuple) -> Union[str, Any]: """simple docstring""" with ContextManagers([context_fr(), context_en()]): print('Transformers are awesome!') # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n') @require_torch def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" self.assertEqual(find_labels(A) , ['labels']) self.assertEqual(find_labels(A) , ['labels', 'next_sentence_label']) self.assertEqual(find_labels(A) , ['start_positions', 'end_positions']) class __lowerCAmelCase ( A ): pass self.assertEqual(find_labels(A) , ['labels']) @require_tf def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" self.assertEqual(find_labels(A) , ['labels']) self.assertEqual(find_labels(A) , ['labels', 'next_sentence_label']) self.assertEqual(find_labels(A) , ['start_positions', 'end_positions']) class __lowerCAmelCase ( A ): pass self.assertEqual(find_labels(A) , ['labels']) @require_flax def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" self.assertEqual(find_labels(A) , []) self.assertEqual(find_labels(A) , []) self.assertEqual(find_labels(A) , []) class __lowerCAmelCase ( A ): pass self.assertEqual(find_labels(A) , [])
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
from __future__ import annotations def A ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCAmelCase__ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCAmelCase__ = "sshleifer/student_marian_en_ro_6_1" UpperCAmelCase__ = "sshleifer/tiny-mbart" @require_torch class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Optional[int] , A : Dict=False , A : str=None , A : Dict=True , A : Tuple=True , A : Tuple=True , A : List[Any]=True , ) -> int: """simple docstring""" _UpperCAmelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A , num_train_epochs=1 , distributed=A , extra_args_str=A , predict_with_generate=A , do_train=A , do_eval=A , do_predict=A , ) _UpperCAmelCase = TrainerState.load_from_json(os.path.join(A , 'trainer_state.json')).log_history if not do_eval: return _UpperCAmelCase = [log for log in logs if 'eval_loss' in log.keys()] _UpperCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _UpperCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] , A) assert not math.isnan(float(last_step_stats['eval_loss'])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=A) @require_torch_multi_gpu def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" self.run_seqaseq_quick(distributed=A) @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--sharded_ddp simple') @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--sharded_ddp simple --fp16') @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--sharded_ddp zero_dp_2' , predict_with_generate=A) @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick( distributed=A , extra_args_str='--sharded_ddp zero_dp_2 --fp16' , predict_with_generate=A) @require_apex @require_torch_gpu def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--fp16 --fp16_backend=apex') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A , extra_args_str='--fp16 --fp16_backend=apex') @parameterized.expand(['base', 'low', 'high', 'mixed']) @require_torch_multi_gpu def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } _UpperCAmelCase = experiments[experiment_id] _UpperCAmelCase = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} _UpperCAmelCase = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**A , extra_args_str=data['extra_args_str']) _UpperCAmelCase = len(re.findall(A , cl.err)) self.assertEqual(A , data['n_matches']) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A , learning_rate=3E-4 , num_train_epochs=10 , distributed=A , ) # Check metrics _UpperCAmelCase = TrainerState.load_from_json(os.path.join(A , 'trainer_state.json')).log_history _UpperCAmelCase = [log for log in logs if 'eval_loss' in log.keys()] _UpperCAmelCase = eval_metrics[0] _UpperCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] , A) # test if do_predict saves generations and metrics _UpperCAmelCase = os.listdir(A) _UpperCAmelCase = {os.path.basename(A) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(A : str) -> Tuple[int, float]: _UpperCAmelCase = '--skip_memory_metrics 0' _UpperCAmelCase = self.run_trainer( max_len=1_28 , model_name=A , learning_rate=3E-4 , num_train_epochs=1 , optim=A , distributed=A , extra_args_str=A , do_eval=A , do_predict=A , n_gpus_to_use=1 , ) # Check metrics _UpperCAmelCase = TrainerState.load_from_json(Path(A , 'trainer_state.json')).log_history _UpperCAmelCase = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20) _UpperCAmelCase = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20) _UpperCAmelCase = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) _UpperCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _UpperCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig _UpperCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _UpperCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _UpperCAmelCase = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A , A , 'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A , A , 'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A , A , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def _lowerCamelCase ( self : Union[str, Any] , A : int , A : str , A : int , A : float = 3E-3 , A : str = "adafactor" , A : bool = False , A : str = None , A : int = 0 , A : bool = True , A : bool = True , A : bool = True , A : bool = True , A : int = None , ) -> int: """simple docstring""" _UpperCAmelCase = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _UpperCAmelCase = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A)}\n ".split() _UpperCAmelCase = '\n --do_predict\n '.split() _UpperCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _UpperCAmelCase = get_gpu_count() _UpperCAmelCase = get_torch_dist_unique_port() _UpperCAmelCase = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _UpperCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env()) else: _UpperCAmelCase = ['run_translation.py'] + args with patch.object(A , 'argv' , A): main() return output_dir
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
def A ( _UpperCAmelCase : list[list[int | float]] ) -> int: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = len(matrix[0] ) _UpperCAmelCase = min(_UpperCAmelCase , _UpperCAmelCase ) for row in range(_UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _UpperCAmelCase ): _UpperCAmelCase = matrix[col][row] / matrix[row][row] for i in range(_UpperCAmelCase , _UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _UpperCAmelCase = True for i in range(row + 1 , _UpperCAmelCase ): if matrix[i][row] != 0: _UpperCAmelCase , _UpperCAmelCase = matrix[i], matrix[row] _UpperCAmelCase = False break if reduce: rank -= 1 for i in range(_UpperCAmelCase ): _UpperCAmelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
def A ( _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> str: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) _UpperCAmelCase = input_str.split('_' ) _UpperCAmelCase = 0 if use_pascal else 1 _UpperCAmelCase = words[start_index:] _UpperCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] _UpperCAmelCase = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A , 'hidden_sizes')) self.parent.assertTrue(hasattr(A , 'num_attention_heads')) self.parent.assertTrue(hasattr(A , 'num_encoder_blocks')) class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Dict , A : List[str]=13 , A : Any=64 , A : Dict=3 , A : Union[str, Any]=4 , A : Optional[int]=[2, 2, 2, 2] , A : Tuple=[8, 4, 2, 1] , A : Union[str, Any]=[16, 32, 64, 1_28] , A : str=[1, 4, 8, 16] , A : List[str]=[1, 2, 4, 8] , A : Tuple=True , A : str=True , A : int="gelu" , A : int=0.1 , A : List[Any]=0.1 , A : Dict=0.0_2 , A : str=3 , A : Dict=None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = sr_ratios _UpperCAmelCase = depths _UpperCAmelCase = hidden_sizes _UpperCAmelCase = downsampling_rates _UpperCAmelCase = num_attention_heads _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , A : Union[str, Any] , A : str , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = SegformerModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) _UpperCAmelCase = _UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _lowerCamelCase ( self : Any , A : Dict , A : int , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = SegformerForSemanticSegmentation(A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : Dict , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = SegformerForSemanticSegmentation(config=A) model.to(A) model.eval() _UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(A) _UpperCAmelCase = model(A , labels=A) self.parent.assertGreater(result.loss , 0.0) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase = SegformerModelTester(self) _UpperCAmelCase = SegformerConfigTester(self , config_class=A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A) @unittest.skip('SegFormer does not use inputs_embeds') def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" pass def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions _UpperCAmelCase = sum(self.model_tester.depths) self.assertEqual(len(A) , A) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) # verify the first attentions (first block, first layer) _UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _UpperCAmelCase = (self.model_tester.image_size // 32) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _UpperCAmelCase = len(A) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) self.assertEqual(out_len + 1 , len(A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) # verify the first attentions (first block, first layer) _UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" def check_hidden_states_output(A : str , A : List[Any] , A : str): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(A) , A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(A): continue _UpperCAmelCase = model_class(A) model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) _UpperCAmelCase = model(**A).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" pass @slow def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SegformerModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A , align=A , do_random_crop=A) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( A) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = encoded_inputs.pixel_values.to(A) with torch.no_grad(): _UpperCAmelCase = model(A) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A , align=A , do_random_crop=A) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(A) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = encoded_inputs.pixel_values.to(A) with torch.no_grad(): _UpperCAmelCase = model(A) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-1)) @slow def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A , align=A , do_random_crop=A) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( A) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = encoded_inputs.pixel_values.to(A) with torch.no_grad(): _UpperCAmelCase = model(A) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_00, 3_00)]) _UpperCAmelCase = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , A) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A) _UpperCAmelCase = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , A)
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''encodec''' def __init__( self : List[str] , A : List[str]=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , A : Union[str, Any]=2_40_00 , A : Optional[int]=1 , A : Optional[Any]=False , A : Any=None , A : Optional[Any]=None , A : int=1_28 , A : int=32 , A : int=1 , A : Dict=[8, 5, 4, 2] , A : Optional[int]="weight_norm" , A : str=7 , A : Optional[int]=7 , A : Union[str, Any]=3 , A : Optional[Any]=2 , A : Optional[Any]=True , A : Tuple="reflect" , A : Tuple=2 , A : List[str]=2 , A : Optional[Any]=1.0 , A : Any=10_24 , A : Union[str, Any]=None , A : List[Any]=True , **A : Any , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = target_bandwidths _UpperCAmelCase = sampling_rate _UpperCAmelCase = audio_channels _UpperCAmelCase = normalize _UpperCAmelCase = chunk_length_s _UpperCAmelCase = overlap _UpperCAmelCase = hidden_size _UpperCAmelCase = num_filters _UpperCAmelCase = num_residual_layers _UpperCAmelCase = upsampling_ratios _UpperCAmelCase = norm_type _UpperCAmelCase = kernel_size _UpperCAmelCase = last_kernel_size _UpperCAmelCase = residual_kernel_size _UpperCAmelCase = dilation_growth_rate _UpperCAmelCase = use_causal_conv _UpperCAmelCase = pad_mode _UpperCAmelCase = compress _UpperCAmelCase = num_lstm_layers _UpperCAmelCase = trim_right_ratio _UpperCAmelCase = codebook_size _UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size _UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}") super().__init__(**A) @property def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10))
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from itertools import product def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(_UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCAmelCase , repeat=_UpperCAmelCase ): _UpperCAmelCase = sum(_UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def A ( ) -> float: '''simple docstring''' _UpperCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(_UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(_UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self : List[Any] , A : List[Any] , A : int=13 , A : Union[str, Any]=7 , A : List[Any]=True , A : List[Any]=True , A : List[str]=True , A : List[Any]=True , A : int=99 , A : Dict=32 , A : Tuple=5 , A : Optional[int]=4 , A : Optional[int]=37 , A : List[Any]="gelu" , A : Dict=0.1 , A : List[Any]=0.1 , A : Optional[Any]=5_12 , A : int=16 , A : str=2 , A : int=0.0_2 , A : Optional[Any]=3 , A : Tuple=4 , A : List[Any]=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Any , A : Optional[int] , A : int , A : List[Any] , A : Union[str, Any] , A : Any , A : List[str] , A : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = NystromformerModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A) _UpperCAmelCase = model(A , token_type_ids=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Optional[Any] , A : int , A : Any , A : Dict , A : Union[str, Any] , A : List[Any] , A : List[Any] , A : str) -> int: """simple docstring""" _UpperCAmelCase = NystromformerForMaskedLM(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Tuple , A : List[Any] , A : int , A : Union[str, Any] , A : int , A : str , A : Tuple , A : str) -> Dict: """simple docstring""" _UpperCAmelCase = NystromformerForQuestionAnswering(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : List[Any] , A : Union[str, Any] , A : str , A : List[str] , A : str , A : Any) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForSequenceClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : List[Any] , A : Optional[Any] , A : List[Any] , A : Optional[int] , A : Tuple , A : int , A : int , A : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForTokenClassification(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : List[Any] , A : str , A : Tuple , A : Optional[int] , A : int , A : str , A : List[str] , A : Any) -> str: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = NystromformerForMultipleChoice(config=A) model.to(A) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = NystromformerModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A) def _lowerCamelCase ( self : int) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A) @slow def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NystromformerModel.from_pretrained(A) self.assertIsNotNone(A) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = NystromformerModel.from_pretrained('uw-madison/nystromformer-512') _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): _UpperCAmelCase = model(A)[0] _UpperCAmelCase = torch.Size((1, 6, 7_68)) self.assertEqual(output.shape , A) _UpperCAmelCase = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = 'the [MASK] of Belgium is Brussels' _UpperCAmelCase = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512') _UpperCAmelCase = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512') _UpperCAmelCase = tokenizer(A , return_tensors='pt') with torch.no_grad(): _UpperCAmelCase = model(encoding.input_ids).logits _UpperCAmelCase = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(A) , 'capital')
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None class __lowerCAmelCase ( A ): def __init__( self : Optional[Any] , A : List[Any]=1 , A : List[Any]=0 , A : Optional[int]=2 , A : str=5_12 , A : List[Any]="cls" , A : int=False , A : Tuple=True , **A : List[str] , ) -> int: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A) _UpperCAmelCase = project_dim _UpperCAmelCase = pooler_fn _UpperCAmelCase = learn_encoder _UpperCAmelCase = use_attention_mask class __lowerCAmelCase ( A ): UpperCamelCase = [R'''pooler''', R'''logit_scale'''] UpperCamelCase = [R'''position_ids''', R'''predictions.decoder.bias'''] UpperCamelCase = '''roberta''' UpperCamelCase = RobertaSeriesConfig def __init__( self : Any , A : Dict) -> Any: """simple docstring""" super().__init__(A) _UpperCAmelCase = XLMRobertaModel(A) _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim) _UpperCAmelCase = getattr(A , 'has_pre_transformation' , A) if self.has_pre_transformation: _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim) _UpperCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def _lowerCamelCase ( self : List[Any] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : Optional[bool] = None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.base_model( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , encoder_hidden_states=A , encoder_attention_mask=A , output_attentions=A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=A , ) if self.has_pre_transformation: _UpperCAmelCase = outputs['hidden_states'][-2] _UpperCAmelCase = self.pre_LN(A) _UpperCAmelCase = self.transformation_pre(A) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowerCAmelCase : def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int]=13 , A : int=30 , A : Union[str, Any]=2 , A : Dict=3 , A : Optional[int]=True , A : Optional[int]=True , A : Dict=32 , A : List[str]=5 , A : str=4 , A : List[str]=37 , A : Union[str, Any]="gelu" , A : Tuple=0.1 , A : Optional[int]=0.1 , A : List[str]=10 , A : List[str]=0.0_2 , A : Any=3 , A : Any=None , A : int=2 , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 2 def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : Optional[Any] , A : List[Any] , A : Optional[int] , A : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = DeiTModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : int , A : Union[str, Any] , A : Tuple , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = DeiTForMaskedImageModeling(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = DeiTForMaskedImageModeling(A) model.to(A) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCAmelCase = model(A) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Union[str, Any] , A : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = DeiTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = DeiTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = DeiTModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear)) def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A) def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : List[str] , A : str=False) -> Dict: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(A , A , return_labels=A) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _UpperCAmelCase = model_class(A) model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) _UpperCAmelCase = model(**A).loss loss.backward() def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCAmelCase = False _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(A) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _UpperCAmelCase = model_class(A) model.gradient_checkpointing_enable() model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) _UpperCAmelCase = model(**A).loss loss.backward() def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A), *get_values(A), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}"): _UpperCAmelCase = problem_type['title'] _UpperCAmelCase = problem_type['num_labels'] _UpperCAmelCase = model_class(A) model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) if problem_type["num_labels"] > 1: _UpperCAmelCase = inputs['labels'].unsqueeze(1).repeat(1 , problem_type['num_labels']) _UpperCAmelCase = inputs['labels'].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A) as warning_list: _UpperCAmelCase = model(**A).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}") loss.backward() @slow def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DeiTModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _lowerCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto') _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = inputs.pixel_values.to(A) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCAmelCase = model(A)
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , A : Tuple , A : int=7 , A : str=3 , A : List[Any]=30 , A : str=4_00 , A : Tuple=True , A : str=None , A : Tuple=True , A : List[str]=[0.5, 0.5, 0.5] , A : int=[0.5, 0.5, 0.5] , A : List[str]=True , A : List[str]=1 / 2_55 , A : List[Any]=True , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self : Tuple , A : int , A : int=False) -> Dict: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(A , Image.Image): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _UpperCAmelCase = max(A , key=lambda A: item[0])[0] _UpperCAmelCase = max(A , key=lambda A: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = DeformableDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self) @property def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'image_mean')) self.assertTrue(hasattr(A , 'image_std')) self.assertTrue(hasattr(A , 'do_normalize')) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'do_rescale')) self.assertTrue(hasattr(A , 'do_pad')) self.assertTrue(hasattr(A , 'size')) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad , A) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , A) def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : List[str]) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {'image_id': 3_97_69, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=A , annotations=A , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , A) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , A) _UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A)) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A)) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A)) @slow def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic') _UpperCAmelCase = image_processing(images=A , annotations=A , masks_path=A , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , A) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , A) _UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A)) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A)) # verify masks _UpperCAmelCase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A))
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import doctest from collections import deque import numpy as np class __lowerCAmelCase : def __init__( self : Tuple) -> None: """simple docstring""" _UpperCAmelCase = [2, 1, 2, -1] _UpperCAmelCase = [1, 2, 3, 4] def _lowerCamelCase ( self : str) -> list[float]: """simple docstring""" _UpperCAmelCase = len(self.first_signal) _UpperCAmelCase = len(self.second_signal) _UpperCAmelCase = max(A , A) # create a zero matrix of max_length x max_length _UpperCAmelCase = [[0] * max_length for i in range(A)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(A): _UpperCAmelCase = deque(self.second_signal) rotated_signal.rotate(A) for j, item in enumerate(A): matrix[i][j] += item # multiply the matrix with the first signal _UpperCAmelCase = np.matmul(np.transpose(A) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(A , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
from math import factorial def A ( _UpperCAmelCase : int = 20 ) -> int: '''simple docstring''' _UpperCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCAmelCase = n // 2 return int(factorial(_UpperCAmelCase ) / (factorial(_UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] , A : Any) -> str: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): _UpperCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A) def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase = 'sgugger/tiny-distilbert-classification' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision') def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(A) # set architectures equal to `None` _UpperCAmelCase = None _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision') def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tinier_bart' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tinier_bart' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , 'inf_time.csv') , train_memory_csv_file=os.path.join(A , 'train_mem.csv') , inference_memory_csv_file=os.path.join(A , 'inf_mem.csv') , train_time_csv_file=os.path.join(A , 'train_time.csv') , env_info_csv_file=os.path.join(A , 'env.csv') , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) benchmark.run() self.assertTrue(Path(os.path.join(A , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'train_time.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'train_mem.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'env.csv')).exists()) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A : List[Any]): self.assertTrue(hasattr(A , 'sequential')) self.assertTrue(hasattr(A , 'cumulative')) self.assertTrue(hasattr(A , 'current')) self.assertTrue(hasattr(A , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , 'log.txt') , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(A , 'log.txt')).exists())
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = None UpperCamelCase = BloomTokenizerFast UpperCamelCase = BloomTokenizerFast UpperCamelCase = True UpperCamelCase = False UpperCamelCase = '''tokenizer_file''' UpperCamelCase = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer') tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Union[str, Any] , **A : int) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _UpperCAmelCase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] _UpperCAmelCase = tokenizer.batch_encode_plus(A)['input_ids'] self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.batch_decode(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : int , A : Dict=6) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase = 'This is a simple input' _UpperCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] _UpperCAmelCase = ('This is a simple input', 'This is a pair') _UpperCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(A , max_length=A) tokenizer_r.encode_plus(A , max_length=A) tokenizer_r.batch_encode_plus(A , max_length=A) tokenizer_r.encode(A , max_length=A) tokenizer_r.batch_encode_plus(A , max_length=A) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding') _UpperCAmelCase = None # Hotfixing padding = None self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding='max_length') # Simple input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding='max_length') # Simple input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding='max_length' , ) # Pair input self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding='max_length') # Pair input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding='max_length') # Pair input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding='max_length' , ) def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=A) _UpperCAmelCase = next(iter(A))['premise'] # pick up one data _UpperCAmelCase = list(sample_data.values()) _UpperCAmelCase = list(map(tokenizer.encode , A)) _UpperCAmelCase = [tokenizer.decode(A , clean_up_tokenization_spaces=A) for x in output_tokens] self.assertListEqual(A , A) def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: _UpperCAmelCase = TOKENIZER_CLASSES else: _UpperCAmelCase = {tokenizer_name: getattr(_UpperCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: _UpperCAmelCase = TOKENIZER_CLASSES[tokenizer_name] _UpperCAmelCase = True if checkpoint_name is None: _UpperCAmelCase = list(tokenizer_class.max_model_input_sizes.keys() ) else: _UpperCAmelCase = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer _UpperCAmelCase = tokenizer_class.from_pretrained(_UpperCAmelCase , force_download=_UpperCAmelCase ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: _UpperCAmelCase , _UpperCAmelCase = checkpoint.split('/' ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif add_prefix: _UpperCAmelCase = checkpoint _UpperCAmelCase = dump_path else: _UpperCAmelCase = None _UpperCAmelCase = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _UpperCAmelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _UpperCAmelCase = file_path.split(_UpperCAmelCase )[-1][0] if next_char == "/": _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) _UpperCAmelCase = tokenizer.save_pretrained( _UpperCAmelCase , legacy_format=_UpperCAmelCase , filename_prefix=_UpperCAmelCase ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(_UpperCAmelCase ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) UpperCAmelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [] def parse_line(_UpperCAmelCase : Tuple ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: _UpperCAmelCase = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def A ( _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def A ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' return values.split(',' ) UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase__ = extract_warnings(args.output_dir, args.targets) UpperCAmelCase__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
from __future__ import annotations class __lowerCAmelCase : def __init__( self : List[Any] , A : int) -> None: """simple docstring""" _UpperCAmelCase = order # a_{0} ... a_{k} _UpperCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase = [0.0] * self.order def _lowerCamelCase ( self : Any , A : list[float] , A : list[float]) -> None: """simple docstring""" if len(A) < self.order: _UpperCAmelCase = [1.0, *a_coeffs] if len(A) != self.order + 1: _UpperCAmelCase = ( F"Expected a_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(A)}" ) raise ValueError(A) if len(A) != self.order + 1: _UpperCAmelCase = ( F"Expected b_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(A)}" ) raise ValueError(A) _UpperCAmelCase = a_coeffs _UpperCAmelCase = b_coeffs def _lowerCamelCase ( self : Dict , A : float) -> float: """simple docstring""" _UpperCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase = self.input_history[:-1] _UpperCAmelCase = self.output_history[:-1] _UpperCAmelCase = sample _UpperCAmelCase = result return result
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCAmelCase ( A , A ): UpperCamelCase = 1 @register_to_config def __init__( self : Optional[int] , A : int = 10_00 , A : Optional[Union[np.ndarray, List[float]]] = None) -> Optional[int]: """simple docstring""" self.set_timesteps(A) # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _UpperCAmelCase = 4 # running values _UpperCAmelCase = [] def _lowerCamelCase ( self : Union[str, Any] , A : int , A : Union[str, torch.device] = None) -> int: """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1] _UpperCAmelCase = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: _UpperCAmelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa) else: _UpperCAmelCase = torch.sin(steps * math.pi / 2) ** 2 _UpperCAmelCase = (1.0 - self.betas**2) ** 0.5 _UpperCAmelCase = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1] _UpperCAmelCase = timesteps.to(A) _UpperCAmelCase = [] def _lowerCamelCase ( self : Dict , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler') _UpperCAmelCase = (self.timesteps == timestep).nonzero().item() _UpperCAmelCase = timestep_index + 1 _UpperCAmelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A) if len(self.ets) == 1: _UpperCAmelCase = self.ets[-1] elif len(self.ets) == 2: _UpperCAmelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: _UpperCAmelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _UpperCAmelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _UpperCAmelCase = self._get_prev_sample(A , A , A , A) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A) def _lowerCamelCase ( self : Union[str, Any] , A : torch.FloatTensor , *A : Union[str, Any] , **A : Any) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : List[str] , A : Dict , A : int , A : List[str] , A : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = self.alphas[timestep_index] _UpperCAmelCase = self.betas[timestep_index] _UpperCAmelCase = self.alphas[prev_timestep_index] _UpperCAmelCase = self.betas[prev_timestep_index] _UpperCAmelCase = (sample - sigma * ets) / max(A , 1E-8) _UpperCAmelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple) -> List[Any]: """simple docstring""" return self.config.num_train_timesteps
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
from __future__ import annotations import queue class __lowerCAmelCase : def __init__( self : Tuple , A : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None _UpperCAmelCase = None def A ( ) -> TreeNode: '''simple docstring''' print('\n********Press N to stop entering at any point of time********\n' ) _UpperCAmelCase = input('Enter the value of the root node: ' ).strip().lower() _UpperCAmelCase = queue.Queue() _UpperCAmelCase = TreeNode(int(_UpperCAmelCase ) ) q.put(_UpperCAmelCase ) while not q.empty(): _UpperCAmelCase = q.get() _UpperCAmelCase = F"Enter the left node of {node_found.data}: " _UpperCAmelCase = input(_UpperCAmelCase ).strip().lower() or 'n' if check == "n": return tree_node _UpperCAmelCase = TreeNode(int(_UpperCAmelCase ) ) _UpperCAmelCase = left_node q.put(_UpperCAmelCase ) _UpperCAmelCase = F"Enter the right node of {node_found.data}: " _UpperCAmelCase = input(_UpperCAmelCase ).strip().lower() or 'n' if check == "n": return tree_node _UpperCAmelCase = TreeNode(int(_UpperCAmelCase ) ) _UpperCAmelCase = right_node q.put(_UpperCAmelCase ) raise def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return _UpperCAmelCase = queue.Queue() q.put(_UpperCAmelCase ) while not q.empty(): _UpperCAmelCase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return _UpperCAmelCase = queue.Queue() q.put(_UpperCAmelCase ) while not q.empty(): _UpperCAmelCase = [] while not q.empty(): _UpperCAmelCase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_UpperCAmelCase ) def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return _UpperCAmelCase = [] _UpperCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_UpperCAmelCase ) _UpperCAmelCase = n.left # end of while means current node doesn't have left child _UpperCAmelCase = stack.pop() # start to traverse its right child _UpperCAmelCase = n.right def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return _UpperCAmelCase = [] _UpperCAmelCase = node while n or stack: while n: stack.append(_UpperCAmelCase ) _UpperCAmelCase = n.left _UpperCAmelCase = stack.pop() print(n.data , end=',' ) _UpperCAmelCase = n.right def A ( _UpperCAmelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not node: return _UpperCAmelCase , _UpperCAmelCase = [], [] _UpperCAmelCase = node stacka.append(_UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def A ( _UpperCAmelCase : str = "" , _UpperCAmelCase : Optional[Any]=50 , _UpperCAmelCase : List[Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char _UpperCAmelCase , _UpperCAmelCase = divmod(width - len(_UpperCAmelCase ) - 2 , 2 ) return F"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCAmelCase__ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = StableDiffusionSAGPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = False def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _UpperCAmelCase = CLIPTextModel(A) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : Optional[int] , A : Tuple , A : List[str]=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') _UpperCAmelCase = sag_pipe.to(A) sag_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _UpperCAmelCase = sag_pipe.to(A) sag_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _UpperCAmelCase = sag_pipe.to(A) sag_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) _UpperCAmelCase = output.images assert image.shape == (1, 5_12, 7_68, 3)
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
import re from filelock import FileLock try: import nltk UpperCAmelCase__ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' re.sub('<n>' , '' , _UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCAmelCase ) )
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : def __init__( self : List[str] , A : Any , A : Optional[Any]=99 , A : Tuple=13 , A : Optional[Any]=7 , A : Tuple=9 , A : List[Any]=True , A : Union[str, Any]=True , A : Optional[Any]=False , A : Dict=32 , A : Tuple=5 , A : List[Any]=4 , A : Union[str, Any]=37 , A : Dict=8 , A : List[Any]=0.1 , A : int=0.0_0_2 , A : str=1 , A : Union[str, Any]=0 , A : Dict=0 , A : Union[str, Any]=None , A : Optional[Any]=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base') def _lowerCamelCase ( self : Tuple , A : int , A : Union[str, Any] , A : List[str] , A : Any=None , A : List[Any]=None , A : List[Any]=None , A : int=None , A : Optional[Any]=None , ) -> int: """simple docstring""" if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=A) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=A) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=A) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(A , A , A) return config, input_dict def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCamelCase ( self : str , A : List[Any] , A : Any , A : List[str] , A : str , A : Tuple , A : str , ) -> Dict: """simple docstring""" _UpperCAmelCase = UMTaModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model( input_ids=A , decoder_input_ids=A , attention_mask=A , decoder_attention_mask=A , ) _UpperCAmelCase = model(input_ids=A , decoder_input_ids=A) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(A) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Tuple , A : Optional[Any] , A : List[str] , A : str , A : List[str] , ) -> Any: """simple docstring""" _UpperCAmelCase = UMTaModel(config=A).get_decoder().to(A).eval() # first forward pass _UpperCAmelCase = model(A , use_cache=A) _UpperCAmelCase = model(A) _UpperCAmelCase = model(A , use_cache=A) self.parent.assertTrue(len(A) == len(A)) self.parent.assertTrue(len(A) == len(A) + 1) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCAmelCase = model(A)['last_hidden_state'] _UpperCAmelCase = model(A , past_key_values=A)['last_hidden_state'] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3)) def _lowerCamelCase ( self : Optional[Any] , A : str , A : Optional[Any] , ) -> Tuple: """simple docstring""" _UpperCAmelCase = UMTaModel(config=A).to(A).half().eval() _UpperCAmelCase = model(**A)['last_hidden_state'] self.parent.assertFalse(torch.isnan(A).any().item()) @require_torch class __lowerCAmelCase ( A , A , A , unittest.TestCase ): UpperCamelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCamelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True UpperCamelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCamelCase = [0.8, 0.9] def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = UMTaModelTester(self) @unittest.skip('Test has a segmentation fault on torch 1.8.0') def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0]).to(A) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( A , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=A , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision') def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*A) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(A).eval() model.to(A) _UpperCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=A), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=A), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=A), } for attn_name, (name, mask) in zip(A , head_masking.items()): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=A) _UpperCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=A , return_dict_in_generate=A , **A , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.') def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged') def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=A).to(A) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=A , legacy=A) _UpperCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _UpperCAmelCase = tokenizer(A , return_tensors='pt' , padding=A).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ]) # fmt: on torch.testing.assert_allclose(A , A) _UpperCAmelCase = model.generate(input_ids.to(A)) _UpperCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _UpperCAmelCase = tokenizer.batch_decode(A) self.assertEqual(A , A)
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import numpy as np def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Dict: '''simple docstring''' _UpperCAmelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(_UpperCAmelCase ): _UpperCAmelCase = f(_UpperCAmelCase , y[k] ) _UpperCAmelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCAmelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCAmelCase = f(x + h , y[k] + h * ka ) _UpperCAmelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from scipy.stats import spearmanr import datasets UpperCAmelCase__ = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCAmelCase__ = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" UpperCAmelCase__ = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def _lowerCamelCase ( self : List[str] , A : Tuple , A : Union[str, Any] , A : Union[str, Any]=False) -> List[str]: """simple docstring""" _UpperCAmelCase = spearmanr(A , A) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) UpperCamelCase = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.') else: _UpperCAmelCase = self.train_file.split('.')[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase = self.validation_file.split('.')[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def A ( ) -> Dict: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase = data_args.train_file.split('.' )[-1] _UpperCAmelCase = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _UpperCAmelCase = load_dataset('csv' , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase = load_dataset('json' , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase = raw_datasets['train'].features['label'].names _UpperCAmelCase = len(_UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_UpperCAmelCase , ) _UpperCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase = {'Refused': 0, 'Entailed': 1} _UpperCAmelCase = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_UpperCAmelCase : Union[str, Any] ): # Tokenize the texts def _convert_table_text_to_pandas(_UpperCAmelCase : List[Any] ): _UpperCAmelCase = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _UpperCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase = examples['statement'] _UpperCAmelCase = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _UpperCAmelCase = tokenizer(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ) _UpperCAmelCase = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _UpperCAmelCase = raw_datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCAmelCase = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCAmelCase = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _UpperCAmelCase = raw_datasets['test'] if data_args.max_predict_samples is not None: _UpperCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_UpperCAmelCase ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase : EvalPrediction ): _UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _UpperCAmelCase ) else p.predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase = default_data_collator elif training_args.fpaa: _UpperCAmelCase = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase = None # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _UpperCAmelCase ) trainer.save_metrics('train' , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate(eval_dataset=_UpperCAmelCase ) _UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase = predict_dataset.remove_columns('label' ) _UpperCAmelCase = trainer.predict(_UpperCAmelCase , metric_key_prefix='predict' ).predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) _UpperCAmelCase = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_UpperCAmelCase ): _UpperCAmelCase = label_list[item] writer.write(F"{index}\t{item}\n" ) _UpperCAmelCase = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCAmelCase__ = 5_0003 UpperCAmelCase__ = 5_0002 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PLBartTokenizer(A , language_codes='base' , keep_accents=A) tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = PLBartTokenizer(A , language_codes='base' , keep_accents=A) _UpperCAmelCase = tokenizer.tokenize('This is a test') self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(A) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _UpperCAmelCase = tokenizer.vocab_size _UpperCAmelCase = [tokenizer.convert_ids_to_tokens(A) for x in range(end - 4 , A)] self.assertListEqual(A , ['__java__', '__python__', '__en_XX__', '<mask>']) _UpperCAmelCase = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _UpperCAmelCase = tokenizer(A).input_ids self.assertEqual( tokenizer.decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A) , A , ) def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = PLBartTokenizer(A , language_codes='multi' , keep_accents=A) _UpperCAmelCase = tokenizer.tokenize('This is a test') self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(A) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _UpperCAmelCase = tokenizer.vocab_size _UpperCAmelCase = [tokenizer.convert_ids_to_tokens(A) for x in range(end - 7 , A)] self.assertListEqual( A , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__']) _UpperCAmelCase = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _UpperCAmelCase = tokenizer(A).input_ids self.assertEqual( tokenizer.decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A) , A , ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _lowerCamelCase ( cls : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX') _UpperCAmelCase = 1 return cls def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_00_01) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_00_02) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_00_03) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , A) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" self.assertIn(A , self.tokenizer.all_special_ids) _UpperCAmelCase = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] _UpperCAmelCase = self.tokenizer.decode(A , skip_special_tokens=A) _UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A) self.assertEqual(A , A) self.assertNotIn(self.tokenizer.eos_token , A) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , A) _UpperCAmelCase = 10 _UpperCAmelCase = self.tokenizer(A , max_length=A , truncation=A).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , A) self.assertEqual(len(A) , A) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__']) , [5_00_04, 5_00_01]) def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A) _UpperCAmelCase = PLBartTokenizer.from_pretrained(A) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A) @require_torch def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors='pt') _UpperCAmelCase = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , A) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) _UpperCAmelCase = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(A , A) self.assertEqual((2, 26) , batch.input_ids.shape) self.assertEqual((2, 26) , batch.attention_mask.shape) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors='pt') _UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors='pt') _UpperCAmelCase = targets['input_ids'] _UpperCAmelCase = shift_tokens_right(A , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java') self.assertEqual( nested_simplify(A) , { # A, test, EOS, en_XX 'input_ids': [[1_50, 2_42, 2, 5_00_03]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_00_01, } , )
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , A : bool = True , A : Dict[str, int] = None , A : float = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 3_84} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = do_resize _UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : str , A : np.ndarray , A : Dict[str, int] , A : float , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Any , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}") _UpperCAmelCase = size['shortest_edge'] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCAmelCase = int(shortest_edge / crop_pct) _UpperCAmelCase = get_resize_output_image_size(A , size=A , default_to_square=A) _UpperCAmelCase = resize(image=A , size=A , resample=A , data_format=A , **A) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A , size=(shortest_edge, shortest_edge) , data_format=A , **A) else: # warping (no cropping) when evaluated at 384 or larger return resize( A , size=(shortest_edge, shortest_edge) , resample=A , data_format=A , **A) def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : int , ) -> Optional[Any]: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : Optional[Any] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Dict , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : float = None , A : PILImageResampling = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , crop_pct=A , resample=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A)
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''autoformer''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , A : Optional[int] = None , A : Optional[int] = None , A : str = "student_t" , A : str = "nll" , A : int = 1 , A : List[int] = [1, 2, 3, 4, 5, 6, 7] , A : bool = True , A : int = 0 , A : int = 0 , A : int = 0 , A : int = 0 , A : Optional[List[int]] = None , A : Optional[List[int]] = None , A : int = 64 , A : int = 2 , A : int = 2 , A : int = 2 , A : int = 2 , A : int = 32 , A : int = 32 , A : str = "gelu" , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : int = 1_00 , A : float = 0.0_2 , A : bool = True , A : List[Any]=True , A : int = 10 , A : int = 25 , A : int = 3 , **A : Optional[Any] , ) -> Tuple: """simple docstring""" _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length if context_length is not None else prediction_length _UpperCAmelCase = distribution_output _UpperCAmelCase = loss _UpperCAmelCase = input_size _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = scaling _UpperCAmelCase = num_dynamic_real_features _UpperCAmelCase = num_static_real_features _UpperCAmelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') _UpperCAmelCase = cardinality else: _UpperCAmelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') _UpperCAmelCase = embedding_dimension else: _UpperCAmelCase = [min(50 , (cat + 1) // 2) for cat in self.cardinality] _UpperCAmelCase = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase = input_size * len(self.lags_sequence) + self._number_of_features _UpperCAmelCase = d_model _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = use_cache # Autoformer _UpperCAmelCase = label_length _UpperCAmelCase = moving_average _UpperCAmelCase = autocorrelation_factor super().__init__(is_encoder_decoder=A , **A) @property def _lowerCamelCase ( self : str) -> int: """simple docstring""" return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
import os from distutils.util import strtobool def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' for e in env_keys: _UpperCAmelCase = int(os.environ.get(_UpperCAmelCase , -1 ) ) if val >= 0: return val return default def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=False ) -> Dict: '''simple docstring''' _UpperCAmelCase = os.environ.get(_UpperCAmelCase , str(_UpperCAmelCase ) ) return strtobool(_UpperCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def A ( _UpperCAmelCase : int , _UpperCAmelCase : Dict="no" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = os.environ.get(_UpperCAmelCase , str(_UpperCAmelCase ) ) return value
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: _UpperCAmelCase = [int(_UpperCAmelCase ) for i in num_string] _UpperCAmelCase = 1 for i in range(0 , len(_UpperCAmelCase ) ): total *= numbers[i] _UpperCAmelCase = str(_UpperCAmelCase ) steps += 1 return steps def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: _UpperCAmelCase = [int(_UpperCAmelCase ) for i in num_string] _UpperCAmelCase = 0 for i in range(0 , len(_UpperCAmelCase ) ): total += numbers[i] _UpperCAmelCase = str(_UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import math import sys import cva import numpy as np def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: '''simple docstring''' # For applying gaussian function for each element in matrix. _UpperCAmelCase = math.sqrt(_UpperCAmelCase ) _UpperCAmelCase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def A ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: '''simple docstring''' # Creates a gaussian kernel of given dimension. _UpperCAmelCase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): _UpperCAmelCase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = np.zeros(img.shape ) _UpperCAmelCase = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _UpperCAmelCase = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = img_s - img_s[kernel_size // 2, kernel_size // 2] _UpperCAmelCase = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) _UpperCAmelCase = val return imga def A ( _UpperCAmelCase : list ) -> tuple: '''simple docstring''' _UpperCAmelCase = args[1] if args[1:] else '../image_data/lena.jpg' _UpperCAmelCase = float(args[2] ) if args[2:] else 1.0 _UpperCAmelCase = float(args[3] ) if args[3:] else 1.0 if args[4:]: _UpperCAmelCase = int(args[4] ) _UpperCAmelCase = kernel_size + abs(kernel_size % 2 - 1 ) else: _UpperCAmelCase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parse_args(sys.argv) UpperCAmelCase__ = cva.imread(filename, 0) cva.imshow("input image", img) UpperCAmelCase__ = img / 255 UpperCAmelCase__ = out.astype("float32") UpperCAmelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCAmelCase__ = out * 255 UpperCAmelCase__ = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def A ( _UpperCAmelCase : Dict=None ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(add_help=_UpperCAmelCase , allow_abbrev=_UpperCAmelCase ) # The main config parser _UpperCAmelCase = config_command_parser(_UpperCAmelCase ) # The subparser to add commands to _UpperCAmelCase = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(_UpperCAmelCase , parents=[parent_parser] ) update_command_parser(_UpperCAmelCase , parents=[parent_parser] ) return config_parser def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = get_config_parser() _UpperCAmelCase = config_parser.parse_args() if not hasattr(_UpperCAmelCase , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(_UpperCAmelCase ) if __name__ == "__main__": main()
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : int , A : str) -> str: """simple docstring""" with open(A , encoding='utf-8') as input_file: _UpperCAmelCase = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)') _UpperCAmelCase = input_file.read() _UpperCAmelCase = regexp.search(A) return match def _lowerCamelCase ( self : Optional[Any] , A : str) -> List[str]: """simple docstring""" with open(A , encoding='utf-8') as input_file: _UpperCAmelCase = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL) _UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase = regexp.finditer(A) _UpperCAmelCase = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = Path('./datasets') _UpperCAmelCase = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A)): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}") def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase = Path('./datasets') _UpperCAmelCase = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_print_statements(str(A)): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead.")
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer UpperCAmelCase__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A ) class __lowerCAmelCase : def __call__( self : List[str] , A : Any , A : Optional[str] = None , A : Optional[str] = None , A : Union[bool, str] = False , A : Union[bool, str] = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = None , **A : List[Any] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) _UpperCAmelCase = titles if not isinstance(A , A) else [titles] _UpperCAmelCase = texts if not isinstance(A , A) else [texts] _UpperCAmelCase = len(A) _UpperCAmelCase = questions if not isinstance(A , A) else [questions] * n_passages assert len(A) == len( A), F"There should be as many titles than texts but got {len(A)} titles and {len(A)} texts." _UpperCAmelCase = super().__call__(A , A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = super().__call__(A , add_special_tokens=A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _UpperCAmelCase = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A) def _lowerCamelCase ( self : Dict , A : BatchEncoding , A : DPRReaderOutput , A : int = 16 , A : int = 64 , A : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = reader_input['input_ids'] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(A) _UpperCAmelCase = sorted(range(A) , reverse=A , key=relevance_logits.__getitem__) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id) else: _UpperCAmelCase = len(A) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(A) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : List[int] , A : int , A : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = [] for start_index, start_score in enumerate(A): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _UpperCAmelCase = sorted(A , key=lambda A: x[1] , reverse=A) _UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(A) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class __lowerCAmelCase ( A , A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = DPRReaderTokenizer
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1