code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCAmelCase ( A ): UpperCamelCase = '''roformer''' def __init__( self : Dict , A : int=5_00_00 , A : Optional[int]=None , A : Optional[int]=7_68 , A : int=12 , A : Union[str, Any]=12 , A : List[Any]=30_72 , A : str="gelu" , A : List[str]=0.1 , A : str=0.1 , A : Optional[Any]=15_36 , A : Tuple=2 , A : int=0.0_2 , A : List[Any]=1E-12 , A : Dict=0 , A : Tuple=False , A : List[Any]=True , **A : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A , **A) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = rotary_value _UpperCAmelCase = use_cache class __lowerCAmelCase ( A ): @property def _lowerCamelCase ( self : Union[str, Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> float: '''simple docstring''' def get_matched_characters(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase = int(max(0 , i - limit ) ) _UpperCAmelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) _UpperCAmelCase = F"{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}" return "".join(_UpperCAmelCase ) # matching characters _UpperCAmelCase = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = len(_UpperCAmelCase ) # transposition _UpperCAmelCase = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase = 0.0 else: _UpperCAmelCase = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : def __init__( self : str , A : Optional[int] , A : List[str] , A : Any , A : str , A : Dict , A : Union[str, Any]=0.2 , A : int=0.2) -> Optional[int]: """simple docstring""" _UpperCAmelCase = bp_numa _UpperCAmelCase = bp_numa _UpperCAmelCase = bp_numa _UpperCAmelCase = conva_get[:2] _UpperCAmelCase = conva_get[2] _UpperCAmelCase = size_pa _UpperCAmelCase = rate_w _UpperCAmelCase = rate_t _UpperCAmelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _UpperCAmelCase = -2 * np.random.rand(self.conva[1]) + 1 _UpperCAmelCase = -2 * np.random.rand(self.num_bpa) + 1 _UpperCAmelCase = -2 * np.random.rand(self.num_bpa) + 1 def _lowerCamelCase ( self : List[Any] , A : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(A , 'wb') as f: pickle.dump(A , A) print(F"Model saved: {save_path}") @classmethod def _lowerCamelCase ( cls : Tuple , A : Optional[Any]) -> Any: """simple docstring""" with open(A , 'rb') as f: _UpperCAmelCase = pickle.load(A) # noqa: S301 _UpperCAmelCase = model_dic.get('conv1') conv_get.append(model_dic.get('step_conv1')) _UpperCAmelCase = model_dic.get('size_pooling1') _UpperCAmelCase = model_dic.get('num_bp1') _UpperCAmelCase = model_dic.get('num_bp2') _UpperCAmelCase = model_dic.get('num_bp3') _UpperCAmelCase = model_dic.get('rate_weight') _UpperCAmelCase = model_dic.get('rate_thre') # create model instance _UpperCAmelCase = CNN(A , A , A , A , A , A , A) # modify model parameter _UpperCAmelCase = model_dic.get('w_conv1') _UpperCAmelCase = model_dic.get('wkj') _UpperCAmelCase = model_dic.get('vji') _UpperCAmelCase = model_dic.get('thre_conv1') _UpperCAmelCase = model_dic.get('thre_bp2') _UpperCAmelCase = model_dic.get('thre_bp3') return conv_ins def _lowerCamelCase ( self : Dict , A : int) -> Dict: """simple docstring""" return 1 / (1 + np.exp(-1 * x)) def _lowerCamelCase ( self : Tuple , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" return round(A , 3) def _lowerCamelCase ( self : Optional[int] , A : Optional[Any] , A : Optional[Any] , A : List[str] , A : str , A : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = convs[0] _UpperCAmelCase = convs[1] _UpperCAmelCase = np.shape(A)[0] # get the data slice of original image data, data_focus _UpperCAmelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , A): for j_focus in range(0 , size_data - size_conv + 1 , A): _UpperCAmelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A) # calculate the feature map of every single kernel, and saved as list of matrix _UpperCAmelCase = [] _UpperCAmelCase = int((size_data - size_conv) / conv_step + 1) for i_map in range(A): _UpperCAmelCase = [] for i_focus in range(len(A)): _UpperCAmelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(A)) _UpperCAmelCase = np.asmatrix(A).reshape( A , A) data_featuremap.append(A) # expanding the data slice to One dimenssion _UpperCAmelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A)) _UpperCAmelCase = np.asarray(A) return focus_list, data_featuremap def _lowerCamelCase ( self : Tuple , A : Tuple , A : List[str] , A : int="average_pool") -> str: """simple docstring""" _UpperCAmelCase = len(featuremaps[0]) _UpperCAmelCase = int(size_map / size_pooling) _UpperCAmelCase = [] for i_map in range(len(A)): _UpperCAmelCase = featuremaps[i_map] _UpperCAmelCase = [] for i_focus in range(0 , A , A): for j_focus in range(0 , A , A): _UpperCAmelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A)) _UpperCAmelCase = np.asmatrix(A).reshape(A , A) featuremap_pooled.append(A) return featuremap_pooled def _lowerCamelCase ( self : List[str] , A : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [] for i in range(len(A)): _UpperCAmelCase = np.shape(data[i]) _UpperCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1]) _UpperCAmelCase = data_listed.getA().tolist()[0] data_expanded.extend(A) _UpperCAmelCase = np.asarray(A) return data_expanded def _lowerCamelCase ( self : Optional[int] , A : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = np.asarray(A) _UpperCAmelCase = np.shape(A) _UpperCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _lowerCamelCase ( self : int , A : Optional[int] , A : Optional[Any] , A : int , A : Any , A : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = 0 for i_map in range(A): _UpperCAmelCase = np.ones((size_map, size_map)) for i in range(0 , A , A): for j in range(0 , A , A): _UpperCAmelCase = pd_pool[ i_pool ] _UpperCAmelCase = i_pool + 1 _UpperCAmelCase = np.multiply( A , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(A) return pd_all def _lowerCamelCase ( self : Dict , A : List[Any] , A : List[str] , A : Dict , A : Dict , A : List[str] , A : Any=bool) -> Any: """simple docstring""" print('----------------------Start Training-------------------------') print((' - - Shape: Train_Data ', np.shape(A))) print((' - - Shape: Teach_Data ', np.shape(A))) _UpperCAmelCase = 0 _UpperCAmelCase = [] _UpperCAmelCase = 1_00_00 while rp < n_repeat and mse >= error_accuracy: _UpperCAmelCase = 0 print(F"-------------Learning Time {rp}--------------") for p in range(len(A)): # print('------------Learning Image: %d--------------'%p) _UpperCAmelCase = np.asmatrix(datas_train[p]) _UpperCAmelCase = np.asarray(datas_teach[p]) _UpperCAmelCase , _UpperCAmelCase = self.convolute( A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase = self.pooling(A , self.size_poolinga) _UpperCAmelCase = np.shape(A) _UpperCAmelCase = self._expand(A) _UpperCAmelCase = data_bp_input _UpperCAmelCase = np.dot(A , self.vji.T) - self.thre_bpa _UpperCAmelCase = self.sig(A) _UpperCAmelCase = np.dot(A , self.wkj.T) - self.thre_bpa _UpperCAmelCase = self.sig(A) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _UpperCAmelCase = np.multiply( (data_teach - bp_outa) , np.multiply(A , (1 - bp_outa))) _UpperCAmelCase = np.multiply( np.dot(A , self.wkj) , np.multiply(A , (1 - bp_outa))) _UpperCAmelCase = np.dot(A , self.vji) _UpperCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) _UpperCAmelCase = pd_conva_pooled.T.getA().tolist() _UpperCAmelCase = self._calculate_gradient_from_pool( A , A , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _UpperCAmelCase = self._expand_mat(pd_conva_all[k_conv]) _UpperCAmelCase = self.rate_weight * np.dot(A , A) _UpperCAmelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _UpperCAmelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _UpperCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _UpperCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight _UpperCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre _UpperCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _UpperCAmelCase = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _UpperCAmelCase = rp + 1 _UpperCAmelCase = error_count / patterns all_mse.append(A) def draw_error(): _UpperCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(A , '+-') plt.plot(A , 'r--') plt.xlabel('Learning Times') plt.ylabel('All_mse') plt.grid(A , alpha=0.5) plt.show() print('------------------Training Complished---------------------') print((' - - Training epoch: ', rp, F" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def _lowerCamelCase ( self : Dict , A : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [] print('-------------------Start Testing-------------------------') print((' - - Shape: Test_Data ', np.shape(A))) for p in range(len(A)): _UpperCAmelCase = np.asmatrix(datas_test[p]) _UpperCAmelCase , _UpperCAmelCase = self.convolute( A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase = self.pooling(A , self.size_poolinga) _UpperCAmelCase = self._expand(A) _UpperCAmelCase = data_bp_input _UpperCAmelCase = bp_outa * self.vji.T - self.thre_bpa _UpperCAmelCase = self.sig(A) _UpperCAmelCase = bp_outa * self.wkj.T - self.thre_bpa _UpperCAmelCase = self.sig(A) produce_out.extend(bp_outa.getA().tolist()) _UpperCAmelCase = [list(map(self.do_round , A)) for each in produce_out] return np.asarray(A) def _lowerCamelCase ( self : Tuple , A : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = np.asmatrix(A) _UpperCAmelCase , _UpperCAmelCase = self.convolute( A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase = self.pooling(A , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
from queue import PriorityQueue from typing import Any import numpy as np def A ( _UpperCAmelCase : dict , _UpperCAmelCase : str , _UpperCAmelCase : set , _UpperCAmelCase : set , _UpperCAmelCase : dict , _UpperCAmelCase : dict , _UpperCAmelCase : PriorityQueue , _UpperCAmelCase : dict , _UpperCAmelCase : float | int , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase = cst_fwd.get(_UpperCAmelCase , np.inf ) _UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase = new_cost_f _UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : dict , _UpperCAmelCase : dict ) -> int: '''simple docstring''' _UpperCAmelCase = -1 _UpperCAmelCase = set() _UpperCAmelCase = set() _UpperCAmelCase = {source: 0} _UpperCAmelCase = {destination: 0} _UpperCAmelCase = {source: None} _UpperCAmelCase = {destination: None} _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase = queue_forward.get() visited_forward.add(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = queue_backward.get() visited_backward.add(_UpperCAmelCase ) _UpperCAmelCase = pass_and_relaxation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) _UpperCAmelCase = pass_and_relaxation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase = shortest_distance return shortest_path_distance UpperCAmelCase__ = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } UpperCAmelCase__ = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPFeatureExtractor"] UpperCAmelCase__ = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self : Union[str, Any] , A : Union[str, Any] , A : List[str]=13 , A : List[str]=7 , A : List[Any]=True , A : List[Any]=True , A : int=True , A : Union[str, Any]=True , A : Dict=99 , A : int=16 , A : Optional[int]=36 , A : List[Any]=6 , A : int=6 , A : Optional[int]=6 , A : str=37 , A : int="gelu" , A : int=0.1 , A : List[Any]=0.1 , A : str=5_12 , A : str=16 , A : List[Any]=2 , A : Optional[int]=0.0_2 , A : Any=3 , A : List[Any]=4 , A : Optional[int]=None , ) -> str: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_hidden_groups _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self : Optional[int] , A : Optional[int] , A : str , A : int , A : Tuple , A : Union[str, Any] , A : List[Any] , A : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = AlbertModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A) _UpperCAmelCase = model(A , token_type_ids=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCamelCase ( self : List[Any] , A : List[str] , A : Any , A : Tuple , A : List[Any] , A : int , A : List[str] , A : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = AlbertForPreTraining(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def _lowerCamelCase ( self : Optional[Any] , A : Any , A : Any , A : Dict , A : Optional[Any] , A : int , A : int , A : Dict) -> Any: """simple docstring""" _UpperCAmelCase = AlbertForMaskedLM(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Tuple , A : List[str] , A : List[Any] , A : Tuple , A : Any , A : str , A : List[Any] , A : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = AlbertForQuestionAnswering(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : List[Any] , A : List[Any] , A : List[str] , A : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : Any , A : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForSequenceClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : Optional[Any] , A : int , A : Tuple , A : Any , A : Union[str, Any] , A : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForTokenClassification(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : Optional[int] , A : Union[str, Any] , A : Optional[int] , A : Tuple , A : List[str] , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = AlbertForMultipleChoice(config=A) model.to(A) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : Optional[int] , A : Tuple=False) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(A , A , return_labels=A) if return_labels: if model_class in get_values(A): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A) return inputs_dict def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = AlbertModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A) def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*A) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AlbertModel.from_pretrained(A) self.assertIsNotNone(A) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = AlbertModel.from_pretrained('albert-base-v2') _UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCAmelCase = model(A , attention_mask=A)[0] _UpperCAmelCase = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , A) _UpperCAmelCase = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4))
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 42 class __lowerCAmelCase ( A , A ): @register_to_config def __init__( self : Optional[Any] , A : int = 3 , A : int = 3 , A : Tuple[str] = ("DownEncoderBlock2D",) , A : Tuple[str] = ("UpDecoderBlock2D",) , A : Tuple[int] = (64,) , A : int = 1 , A : str = "silu" , A : int = 3 , A : int = 32 , A : int = 2_56 , A : int = 32 , A : Optional[int] = None , A : float = 0.1_8_2_1_5 , A : str = "group" , ) -> Dict: """simple docstring""" super().__init__() # pass init params to Encoder _UpperCAmelCase = Encoder( in_channels=A , out_channels=A , down_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , double_z=A , ) _UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _UpperCAmelCase = nn.Convad(A , A , 1) _UpperCAmelCase = VectorQuantizer(A , A , beta=0.2_5 , remap=A , sane_index_shape=A) _UpperCAmelCase = nn.Convad(A , A , 1) # pass init params to Decoder _UpperCAmelCase = Decoder( in_channels=A , out_channels=A , up_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , norm_type=A , ) @apply_forward_hook def _lowerCamelCase ( self : str , A : torch.FloatTensor , A : bool = True) -> VQEncoderOutput: """simple docstring""" _UpperCAmelCase = self.encoder(A) _UpperCAmelCase = self.quant_conv(A) if not return_dict: return (h,) return VQEncoderOutput(latents=A) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] , A : torch.FloatTensor , A : bool = False , A : bool = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.quantize(A) else: _UpperCAmelCase = h _UpperCAmelCase = self.post_quant_conv(A) _UpperCAmelCase = self.decoder(A , quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=A) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : bool = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" _UpperCAmelCase = sample _UpperCAmelCase = self.encode(A).latents _UpperCAmelCase = self.decode(A).sample if not return_dict: return (dec,) return DecoderOutput(sample=A)
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase__ = logging.get_logger(__name__) # General docstring UpperCAmelCase__ = "ResNetConfig" # Base docstring UpperCAmelCase__ = "microsoft/resnet-50" UpperCAmelCase__ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase__ = "microsoft/resnet-50" UpperCAmelCase__ = "tiger cat" UpperCAmelCase__ = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): def __init__( self : List[Any] , A : int , A : int , A : int = 3 , A : int = 1 , A : str = "relu") -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Convad( A , A , kernel_size=A , stride=A , padding=kernel_size // 2 , bias=A) _UpperCAmelCase = nn.BatchNormad(A) _UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCamelCase ( self : Optional[int] , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = self.convolution(A) _UpperCAmelCase = self.normalization(A) _UpperCAmelCase = self.activation(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Dict , A : ResNetConfig) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) _UpperCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) _UpperCAmelCase = config.num_channels def _lowerCamelCase ( self : str , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') _UpperCAmelCase = self.embedder(A) _UpperCAmelCase = self.pooler(A) return embedding class __lowerCAmelCase ( nn.Module ): def __init__( self : int , A : int , A : int , A : int = 2) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Convad(A , A , kernel_size=1 , stride=A , bias=A) _UpperCAmelCase = nn.BatchNormad(A) def _lowerCamelCase ( self : Optional[int] , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = self.convolution(A) _UpperCAmelCase = self.normalization(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , A : int , A : int , A : int = 1 , A : str = "relu") -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = ( ResNetShortCut(A , A , stride=A) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase = nn.Sequential( ResNetConvLayer(A , A , stride=A) , ResNetConvLayer(A , A , activation=A) , ) _UpperCAmelCase = ACTaFN[activation] def _lowerCamelCase ( self : Tuple , A : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = hidden_state _UpperCAmelCase = self.layer(A) _UpperCAmelCase = self.shortcut(A) hidden_state += residual _UpperCAmelCase = self.activation(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : str , A : int , A : int , A : int = 1 , A : str = "relu" , A : int = 4) -> Union[str, Any]: """simple docstring""" super().__init__() _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = out_channels // reduction _UpperCAmelCase = ( ResNetShortCut(A , A , stride=A) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase = nn.Sequential( ResNetConvLayer(A , A , kernel_size=1) , ResNetConvLayer(A , A , stride=A) , ResNetConvLayer(A , A , kernel_size=1 , activation=A) , ) _UpperCAmelCase = ACTaFN[activation] def _lowerCamelCase ( self : List[Any] , A : Dict) -> int: """simple docstring""" _UpperCAmelCase = hidden_state _UpperCAmelCase = self.layer(A) _UpperCAmelCase = self.shortcut(A) hidden_state += residual _UpperCAmelCase = self.activation(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Dict , A : ResNetConfig , A : int , A : int , A : int = 2 , A : int = 2 , ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _UpperCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A , A , stride=A , activation=config.hidden_act) , *[layer(A , A , activation=config.hidden_act) for _ in range(depth - 1)] , ) def _lowerCamelCase ( self : str , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = input for layer in self.layers: _UpperCAmelCase = layer(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Any , A : ResNetConfig) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(A , config.depths[1:]): self.stages.append(ResNetStage(A , A , A , depth=A)) def _lowerCamelCase ( self : Dict , A : Tensor , A : bool = False , A : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) _UpperCAmelCase = stage_module(A) if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=A , hidden_states=A , ) class __lowerCAmelCase ( A ): UpperCamelCase = ResNetConfig UpperCamelCase = '''resnet''' UpperCamelCase = '''pixel_values''' UpperCamelCase = True def _lowerCamelCase ( self : Any , A : int) -> str: """simple docstring""" if isinstance(A , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu') elif isinstance(A , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def _lowerCamelCase ( self : List[str] , A : List[Any] , A : Union[str, Any]=False) -> str: """simple docstring""" if isinstance(A , A): _UpperCAmelCase = value UpperCAmelCase__ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , A , ) class __lowerCAmelCase ( A ): def __init__( self : List[Any] , A : Any) -> str: """simple docstring""" super().__init__(A) _UpperCAmelCase = config _UpperCAmelCase = ResNetEmbeddings(A) _UpperCAmelCase = ResNetEncoder(A) _UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : Optional[int] , A : Tensor , A : Optional[bool] = None , A : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.embedder(A) _UpperCAmelCase = self.encoder( A , output_hidden_states=A , return_dict=A) _UpperCAmelCase = encoder_outputs[0] _UpperCAmelCase = self.pooler(A) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A , pooler_output=A , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A , ) class __lowerCAmelCase ( A ): def __init__( self : Any , A : Any) -> int: """simple docstring""" super().__init__(A) _UpperCAmelCase = config.num_labels _UpperCAmelCase = ResNetModel(A) # classification head _UpperCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Any , A : Optional[torch.FloatTensor] = None , A : Optional[torch.LongTensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.resnet(A , output_hidden_states=A , return_dict=A) _UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase = self.classifier(A) _UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase = 'single_label_classification' else: _UpperCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": _UpperCAmelCase = MSELoss() if self.num_labels == 1: _UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze()) else: _UpperCAmelCase = loss_fct(A , A) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase = BCEWithLogitsLoss() _UpperCAmelCase = loss_fct(A , A) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A , logits=A , hidden_states=outputs.hidden_states) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , A , ) class __lowerCAmelCase ( A , A ): def __init__( self : Dict , A : List[str]) -> Any: """simple docstring""" super().__init__(A) super()._init_backbone(A) _UpperCAmelCase = [config.embedding_size] + config.hidden_sizes _UpperCAmelCase = ResNetEmbeddings(A) _UpperCAmelCase = ResNetEncoder(A) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A) @replace_return_docstrings(output_type=A , config_class=_CONFIG_FOR_DOC) def _lowerCamelCase ( self : Optional[int] , A : Tensor , A : Optional[bool] = None , A : Optional[bool] = None) -> BackboneOutput: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = self.embedder(A) _UpperCAmelCase = self.encoder(A , output_hidden_states=A , return_dict=A) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A , )
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase__ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "allenai/led-base-16384": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , A : int , A : Any , A : Tuple="replace" , A : Any="<s>" , A : List[Any]="</s>" , A : int="</s>" , A : List[Any]="<s>" , A : Any="<unk>" , A : Tuple="<pad>" , A : Optional[Any]="<mask>" , A : str=False , **A : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else bos_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else eos_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else sep_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else cls_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else unk_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding='utf-8') as vocab_handle: _UpperCAmelCase = json.load(A) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding='utf-8') as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n')[1:-1] _UpperCAmelCase = [tuple(merge.split()) for merge in bpe_merges] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" return len(self.encoder) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self : Optional[Any] , A : Dict) -> List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(A) _UpperCAmelCase = get_pairs(A) if not pairs: return token while True: _UpperCAmelCase = min(A , key=lambda A: self.bpe_ranks.get(A , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(A): try: _UpperCAmelCase = word.index(A , A) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCAmelCase = j if word[i] == first and i < len(A) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCAmelCase = tuple(A) _UpperCAmelCase = new_word if len(A) == 1: break else: _UpperCAmelCase = get_pairs(A) _UpperCAmelCase = ' '.join(A) _UpperCAmelCase = word return word def _lowerCamelCase ( self : Optional[int] , A : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = [] for token in re.findall(self.pat , A): _UpperCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A).split(' ')) return bpe_tokens def _lowerCamelCase ( self : Any , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" return self.encoder.get(A , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self : str , A : int) -> Union[str, Any]: """simple docstring""" return self.decoder.get(A) def _lowerCamelCase ( self : List[Any] , A : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = ''.join(A) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def _lowerCamelCase ( self : Any , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A) + '\n') _UpperCAmelCase = 0 with open(A , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!') _UpperCAmelCase = token_index writer.write(' '.join(A) + '\n') index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : Dict , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self : str , A : List[int] , A : Optional[List[int]] = None , A : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A) if token_ids_a is None: return [1] + ([0] * len(A)) + [1] return [1] + ([0] * len(A)) + [1, 1] + ([0] * len(A)) + [1] def _lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self : Any , A : Optional[int] , A : str=False , **A : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(A) > 0 and not text[0].isspace()): _UpperCAmelCase = ' ' + text return (text, kwargs) def _lowerCamelCase ( self : List[Any] , A : Union[Dict[str, EncodedInput], BatchEncoding] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ) -> dict: """simple docstring""" _UpperCAmelCase = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: _UpperCAmelCase = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCAmelCase = len(encoded_inputs['global_attention_mask']) != len(A) if needs_to_be_padded: _UpperCAmelCase = len(A) - len(encoded_inputs['global_attention_mask']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCAmelCase = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _UpperCAmelCase = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return encoded_inputs
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
from __future__ import annotations def A ( _UpperCAmelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCAmelCase , [] , 0 , [0 for i in range(len(_UpperCAmelCase ) )] ) def A ( _UpperCAmelCase : list[int | str] , _UpperCAmelCase : list[int | str] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return for i in range(len(_UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _UpperCAmelCase = True create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 , _UpperCAmelCase ) current_sequence.pop() _UpperCAmelCase = False UpperCAmelCase__ = [3, 1, 2, 4] generate_all_permutations(sequence) UpperCAmelCase__ = ["A", "B", "C"] generate_all_permutations(sequence_a)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] UpperCAmelCase__ = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) return sd def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=rename_keys_prefix ) -> str: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase = key for name_pair in rename_keys_prefix: _UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: _UpperCAmelCase = 'pretraining' if "vcr" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 512} _UpperCAmelCase = 'multichoice' elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048} _UpperCAmelCase = 'vqa_advanced' elif "vqa" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} _UpperCAmelCase = 'vqa' elif "nlvr" in checkpoint_path: _UpperCAmelCase = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } _UpperCAmelCase = 'nlvr' _UpperCAmelCase = VisualBertConfig(**_UpperCAmelCase ) # Load State Dict _UpperCAmelCase = load_state_dict(_UpperCAmelCase ) _UpperCAmelCase = get_new_dict(_UpperCAmelCase , _UpperCAmelCase ) if model_type == "pretraining": _UpperCAmelCase = VisualBertForPreTraining(_UpperCAmelCase ) elif model_type == "vqa": _UpperCAmelCase = VisualBertForQuestionAnswering(_UpperCAmelCase ) elif model_type == "nlvr": _UpperCAmelCase = VisualBertForVisualReasoning(_UpperCAmelCase ) elif model_type == "multichoice": _UpperCAmelCase = VisualBertForMultipleChoice(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # Save Checkpoints Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=A ): UpperCamelCase = ['''torch''', '''scipy'''] def __init__( self : Any , *A : Any , **A : str) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch', 'scipy']) @classmethod def _lowerCamelCase ( cls : Dict , *A : int , **A : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ['torch', 'scipy']) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *A : List[Any] , **A : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ['torch', 'scipy'])
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = None def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any=0.999 , _UpperCAmelCase : int="cosine" , ) -> str: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(_UpperCAmelCase ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( A , A ): @register_to_config def __init__( self : int , A : int = 10_00 , A : str = "fixed_small_log" , A : bool = True , A : Optional[float] = 1.0 , A : str = "epsilon" , A : str = "squaredcos_cap_v2" , ) -> Any: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'') _UpperCAmelCase = betas_for_alpha_bar(A) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) _UpperCAmelCase = torch.tensor(1.0) # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , A)[::-1].copy()) _UpperCAmelCase = variance_type def _lowerCamelCase ( self : Optional[int] , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Optional[int] , A : int , A : Union[str, torch.device] = None) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _UpperCAmelCase = (np.arange(0 , A) * step_ratio).round()[::-1].copy().astype(np.intaa) _UpperCAmelCase = torch.from_numpy(A).to(A) def _lowerCamelCase ( self : Tuple , A : List[str] , A : Dict=None , A : Optional[Any]=None , A : Union[str, Any]=None) -> List[str]: """simple docstring""" if prev_timestep is None: _UpperCAmelCase = t - 1 _UpperCAmelCase = self.alphas_cumprod[t] _UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _UpperCAmelCase = self.betas[t] else: _UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _UpperCAmelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _UpperCAmelCase = torch.log(torch.clamp(A , min=1E-20)) _UpperCAmelCase = torch.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _UpperCAmelCase = variance.log() _UpperCAmelCase = beta.log() _UpperCAmelCase = (predicted_variance + 1) / 2 _UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : Optional[int] = None , A : Any=None , A : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _UpperCAmelCase , _UpperCAmelCase = torch.split(A , sample.shape[1] , dim=1) else: _UpperCAmelCase = None # 1. compute alphas, betas if prev_timestep is None: _UpperCAmelCase = t - 1 _UpperCAmelCase = self.alphas_cumprod[t] _UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _UpperCAmelCase = self.betas[t] _UpperCAmelCase = self.alphas[t] else: _UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev _UpperCAmelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ' for the UnCLIPScheduler.') # 3. Clip "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = torch.clamp( A , -self.config.clip_sample_range , self.config.clip_sample_range) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _UpperCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase = 0 if t > 0: _UpperCAmelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A , device=model_output.device) _UpperCAmelCase = self._get_variance( A , predicted_variance=A , prev_timestep=A , ) if self.variance_type == "fixed_small_log": _UpperCAmelCase = variance elif self.variance_type == "learned_range": _UpperCAmelCase = (0.5 * variance).exp() else: raise ValueError( F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ' for the UnCLIPScheduler.') _UpperCAmelCase = variance * variance_noise _UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A , pred_original_sample=A) def _lowerCamelCase ( self : Optional[Any] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype) _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5 _UpperCAmelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): _UpperCAmelCase = sqrt_alpha_prod.unsqueeze(-1) _UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): _UpperCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1) _UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCAmelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def A ( _UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {} with open(_UpperCAmelCase , 'r' ) as file: for line_number, line in enumerate(_UpperCAmelCase ): _UpperCAmelCase = line.strip() if line: _UpperCAmelCase = line.split() _UpperCAmelCase = line_number _UpperCAmelCase = words[0] _UpperCAmelCase = value return result def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> str: '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): _UpperCAmelCase = PARAM_MAPPING[full_name.split('.' )[-1]] _UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('.' ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = shape_pointer.shape # let's reduce dimension _UpperCAmelCase = value[0] else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): _UpperCAmelCase = PARAM_MAPPING[full_name.split('.' )[-1]] _UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": _UpperCAmelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase = '.'.join([key, hf_param_name] ) else: _UpperCAmelCase = key _UpperCAmelCase = value if 'lm_head' in full_key else value[0] UpperCAmelCase__ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Union[str, Any]=None ) -> str: '''simple docstring''' _UpperCAmelCase = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(_UpperCAmelCase )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "bias" in name: _UpperCAmelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = 'weight' else: _UpperCAmelCase = None if hf_dict is not None: rename_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return is_used return is_used def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True else: _UpperCAmelCase = load_wavaveca_layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Union[str, Any]=False ) -> List[str]: '''simple docstring''' if config_path is not None: _UpperCAmelCase = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase = WavaVecaConfig() if is_seq_class: _UpperCAmelCase = read_txt_into_dict(_UpperCAmelCase ) _UpperCAmelCase = idalabel _UpperCAmelCase = WavaVecaForSequenceClassification(_UpperCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) feature_extractor.save_pretrained(_UpperCAmelCase ) elif is_finetuned: if dict_path: _UpperCAmelCase = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.eos_index _UpperCAmelCase = len(target_dict.symbols ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase = 0 _UpperCAmelCase = 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , ) _UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) _UpperCAmelCase = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) _UpperCAmelCase = WavaVecaForCTC(_UpperCAmelCase ) else: _UpperCAmelCase = WavaVecaForPreTraining(_UpperCAmelCase ) if is_finetuned or is_seq_class: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _UpperCAmelCase = argparse.Namespace(task='audio_pretraining' ) _UpperCAmelCase = fairseq.tasks.setup_task(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_UpperCAmelCase ) _UpperCAmelCase = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCAmelCase__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCAmelCase__ = "UperNetConfig" class __lowerCAmelCase ( nn.Module ): def __init__( self : List[str] , A : int , A : int , A : Union[int, Tuple[int, int]] , A : Union[int, Tuple[int, int], str] = 0 , A : bool = False , A : Union[int, Tuple[int, int]] = 1 , ) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Convad( in_channels=A , out_channels=A , kernel_size=A , padding=A , bias=A , dilation=A , ) _UpperCAmelCase = nn.BatchNormad(A) _UpperCAmelCase = nn.ReLU() def _lowerCamelCase ( self : Union[str, Any] , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = self.conv(A) _UpperCAmelCase = self.batch_norm(A) _UpperCAmelCase = self.activation(A) return output class __lowerCAmelCase ( nn.Module ): def __init__( self : str , A : int , A : int , A : int) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = [ nn.AdaptiveAvgPoolad(A), UperNetConvModule(A , A , kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(A) , A) def _lowerCamelCase ( self : Any , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = input for layer in self.layers: _UpperCAmelCase = layer(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Dict , A : Tuple[int, ...] , A : int , A : int , A : bool) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = pool_scales _UpperCAmelCase = align_corners _UpperCAmelCase = in_channels _UpperCAmelCase = channels _UpperCAmelCase = [] for i, pool_scale in enumerate(A): _UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=A , in_channels=A , channels=A) self.blocks.append(A) self.add_module(str(A) , A) def _lowerCamelCase ( self : str , A : torch.Tensor) -> List[torch.Tensor]: """simple docstring""" _UpperCAmelCase = [] for ppm in self.blocks: _UpperCAmelCase = ppm(A) _UpperCAmelCase = nn.functional.interpolate( A , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners) ppm_outs.append(A) return ppm_outs class __lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , A : Tuple , A : List[str]) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) _UpperCAmelCase = in_channels _UpperCAmelCase = config.hidden_size _UpperCAmelCase = False _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1) # PSP Module _UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _UpperCAmelCase = UperNetConvModule(A , self.channels , kernel_size=1) _UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1) self.lateral_convs.append(A) self.fpn_convs.append(A) _UpperCAmelCase = UperNetConvModule( len(self.in_channels) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.apply(self._init_weights) def _lowerCamelCase ( self : Optional[Any] , A : Dict) -> Any: """simple docstring""" if isinstance(A , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self : Tuple , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = inputs[-1] _UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(A)) _UpperCAmelCase = torch.cat(A , dim=1) _UpperCAmelCase = self.bottleneck(A) return output def _lowerCamelCase ( self : List[str] , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(A)) # build top-down path _UpperCAmelCase = len(A) for i in range(used_backbone_levels - 1 , 0 , -1): _UpperCAmelCase = laterals[i - 1].shape[2:] _UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=A , mode='bilinear' , align_corners=self.align_corners) # build outputs _UpperCAmelCase = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1 , 0 , -1): _UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners) _UpperCAmelCase = torch.cat(A , dim=1) _UpperCAmelCase = self.fpn_bottleneck(A) _UpperCAmelCase = self.classifier(A) return output class __lowerCAmelCase ( nn.Module ): def __init__( self : Any , A : List[str] , A : int = 2 , A : int = 3 , A : Union[int, Tuple[int, int]] = 1) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.auxiliary_in_channels _UpperCAmelCase = config.auxiliary_channels _UpperCAmelCase = config.auxiliary_num_convs _UpperCAmelCase = config.auxiliary_concat_input _UpperCAmelCase = in_index _UpperCAmelCase = (kernel_size // 2) * dilation _UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=A , padding=A , dilation=A)) for i in range(self.num_convs - 1): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=A , padding=A , dilation=A)) if self.num_convs == 0: _UpperCAmelCase = nn.Identity() else: _UpperCAmelCase = nn.Sequential(*A) if self.concat_input: _UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=A , padding=kernel_size // 2) _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any]) -> Any: """simple docstring""" if isinstance(A , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self : Tuple , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = encoder_hidden_states[self.in_index] _UpperCAmelCase = self.convs(A) if self.concat_input: _UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1)) _UpperCAmelCase = self.classifier(A) return output class __lowerCAmelCase ( A ): UpperCamelCase = UperNetConfig UpperCamelCase = '''pixel_values''' UpperCamelCase = True def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" if isinstance(A , A): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self : str , A : str , A : int=False) -> Dict: """simple docstring""" if isinstance(A , A): _UpperCAmelCase = value UpperCAmelCase__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , A , ) class __lowerCAmelCase ( A ): def __init__( self : Dict , A : Optional[int]) -> int: """simple docstring""" super().__init__(A) _UpperCAmelCase = AutoBackbone.from_config(config.backbone_config) # Semantic segmentation head(s) _UpperCAmelCase = UperNetHead(A , in_channels=self.backbone.channels) _UpperCAmelCase = UperNetFCNHead(A) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length')) @replace_return_docstrings(output_type=A , config_class=_CONFIG_FOR_DOC) def _lowerCamelCase ( self : List[Any] , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions _UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( A , output_hidden_states=A , output_attentions=A) _UpperCAmelCase = outputs.feature_maps _UpperCAmelCase = self.decode_head(A) _UpperCAmelCase = nn.functional.interpolate(A , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=A) _UpperCAmelCase = None if self.auxiliary_head is not None: _UpperCAmelCase = self.auxiliary_head(A) _UpperCAmelCase = nn.functional.interpolate( A , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=A) _UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one') else: # compute weighted loss _UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) _UpperCAmelCase = loss_fct(A , A) _UpperCAmelCase = loss_fct(A , A) _UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _UpperCAmelCase = (logits,) + outputs[1:] else: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=A , logits=A , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCAmelCase__ = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") UpperCAmelCase__ = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def A ( _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = None # source code of `config_class` _UpperCAmelCase = inspect.getsource(_UpperCAmelCase ) _UpperCAmelCase = _re_checkpoint.findall(_UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _UpperCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = ckpt_name break return checkpoint def A ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase = get_checkpoint_from_config_class(_UpperCAmelCase ) _UpperCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = '\n'.join(sorted(_UpperCAmelCase ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
from __future__ import annotations UpperCAmelCase__ = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def A ( _UpperCAmelCase : Matrix , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def A ( _UpperCAmelCase : Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def A ( _UpperCAmelCase : Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(_UpperCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = digit if sudoku(_UpperCAmelCase ) is not None: return grid _UpperCAmelCase = 0 return None def A ( _UpperCAmelCase : Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(_UpperCAmelCase , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCAmelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase__ = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): _UpperCAmelCase = True # Deal with multi-line cases elif ( re.search( RF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , _UpperCAmelCase , ) is not None ): _UpperCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _UpperCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _UpperCAmelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _UpperCAmelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _UpperCAmelCase = True if not attribute_used: _UpperCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _UpperCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: _UpperCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _UpperCAmelCase = True elif attribute.endswith('_token_id' ): _UpperCAmelCase = True # configuration class specific cases if not case_allowed: _UpperCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _UpperCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A ( _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) _UpperCAmelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _UpperCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _UpperCAmelCase = {} if len(config_class.attribute_map ) > 0: _UpperCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _UpperCAmelCase = inspect.getsourcefile(_UpperCAmelCase ) _UpperCAmelCase = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _UpperCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _UpperCAmelCase = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) _UpperCAmelCase = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` _UpperCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def A ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _UpperCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _UpperCAmelCase = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = unused_attributes if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
def A ( _UpperCAmelCase : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError('Input must be a positive integer' ) _UpperCAmelCase = [True] * (num + 1) _UpperCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _UpperCAmelCase ): _UpperCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import socket def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _UpperCAmelCase = socket.gethostname() _UpperCAmelCase = 12_312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _UpperCAmelCase = sock.recv(1_024 ) if not data: break out_file.write(_UpperCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import requests UpperCAmelCase__ = "" # <-- Put your OpenWeatherMap appid here! UpperCAmelCase__ = "https://api.openweathermap.org/data/2.5/" def A ( _UpperCAmelCase : str = "Chicago" , _UpperCAmelCase : str = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def A ( _UpperCAmelCase : str = "Kolkata, India" , _UpperCAmelCase : str = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def A ( _UpperCAmelCase : float = 55.68 , _UpperCAmelCase : float = 12.57 , _UpperCAmelCase : str = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase__ = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ = 5 UpperCAmelCase__ = 10 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = SpeechaTextTokenizer UpperCamelCase = False UpperCamelCase = True def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" super().setUp() _UpperCAmelCase = sp.SentencePieceProcessor() spm_model.Load(A) _UpperCAmelCase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(A))] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = Path(self.tmpdirname) save_json(A , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A) , A) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A) , A) def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(A) , 10_01) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCAmelCase = tokenizer.tokenize('This is a test') self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(A) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( A , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) self.assertListEqual(A , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertListEqual( A , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = '''valhalla/s2t_mustc_multilinguial_medium''' UpperCamelCase = '''C\'est trop cool''' UpperCamelCase = '''Esto es genial''' @classmethod def _lowerCamelCase ( cls : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" self.assertIn(A , self.tokenizer.all_special_ids) _UpperCAmelCase = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCAmelCase = self.tokenizer.decode(A , skip_special_tokens=A) _UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A) self.assertEqual(A , A) self.assertNotIn(self.tokenizer.eos_token , A) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'fr' _UpperCAmelCase = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , A) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCAmelCase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase__ = "src/transformers" UpperCAmelCase__ = "docs/source/en/tasks" def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() # Find the start prompt. _UpperCAmelCase = 0 while not lines[start_index].startswith(_UpperCAmelCase ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index while not lines[end_index].startswith(_UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase__ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase__ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def A ( _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _UpperCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCAmelCase , set() ) _UpperCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=False ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _find_text_in_file( filename=os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _UpperCAmelCase = get_model_list_for_task(_UpperCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" ' to fix this.' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
def A ( _UpperCAmelCase : int = 4_000_000 ) -> int: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(A ) class __lowerCAmelCase ( A ): def __init__( self : Optional[Any] , **A : Optional[Any]) -> Optional[int]: """simple docstring""" super().__init__(**A) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch.") requires_backends(self , 'vision') self.check_model_type(A) def __call__( self : str , A : Union[str, "Image.Image", List[Dict[str, Any]]] , A : Union[str, List[str]] = None , **A : Dict , ) -> Optional[int]: """simple docstring""" if "text_queries" in kwargs: _UpperCAmelCase = kwargs.pop('text_queries') if isinstance(A , (str, Image.Image)): _UpperCAmelCase = {'image': image, 'candidate_labels': candidate_labels} else: _UpperCAmelCase = image _UpperCAmelCase = super().__call__(A , **A) return results def _lowerCamelCase ( self : Dict , **A : Any) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = {} if "threshold" in kwargs: _UpperCAmelCase = kwargs['threshold'] if "top_k" in kwargs: _UpperCAmelCase = kwargs['top_k'] return {}, {}, postprocess_params def _lowerCamelCase ( self : List[Any] , A : str) -> Dict: """simple docstring""" _UpperCAmelCase = load_image(inputs['image']) _UpperCAmelCase = inputs['candidate_labels'] if isinstance(A , A): _UpperCAmelCase = candidate_labels.split(',') _UpperCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(A): _UpperCAmelCase = self.tokenizer(A , return_tensors=self.framework) _UpperCAmelCase = self.image_processor(A , return_tensors=self.framework) yield { "is_last": i == len(A) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowerCamelCase ( self : str , A : List[str]) -> str: """simple docstring""" _UpperCAmelCase = model_inputs.pop('target_size') _UpperCAmelCase = model_inputs.pop('candidate_label') _UpperCAmelCase = model_inputs.pop('is_last') _UpperCAmelCase = self.model(**A) _UpperCAmelCase = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def _lowerCamelCase ( self : str , A : List[str] , A : Dict=0.1 , A : Optional[Any]=None) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for model_output in model_outputs: _UpperCAmelCase = model_output['candidate_label'] _UpperCAmelCase = BaseModelOutput(A) _UpperCAmelCase = self.image_processor.post_process_object_detection( outputs=A , threshold=A , target_sizes=model_output['target_size'])[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase = outputs['scores'][index].item() _UpperCAmelCase = self._get_bounding_box(outputs['boxes'][index][0]) _UpperCAmelCase = {'score': score, 'label': label, 'box': box} results.append(A) _UpperCAmelCase = sorted(A , key=lambda A: x["score"] , reverse=A) if top_k: _UpperCAmelCase = results[:top_k] return results def _lowerCamelCase ( self : Tuple , A : "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.') _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = box.int().tolist() _UpperCAmelCase = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import sys import turtle def A ( _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : tuple[float, float] ) -> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A ( _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : int , ) -> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , depth - 1 ) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , depth - 1 ) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) UpperCAmelCase__ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") UpperCAmelCase__ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
from heapq import heappop, heappush import numpy as np def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : tuple[int, int] , _UpperCAmelCase : tuple[int, int] , _UpperCAmelCase : bool , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = grid.shape _UpperCAmelCase = [-1, 1, 0, 0] _UpperCAmelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _UpperCAmelCase , _UpperCAmelCase = [(0, source)], set() _UpperCAmelCase = np.full((rows, cols) , np.inf ) _UpperCAmelCase = 0 _UpperCAmelCase = np.empty((rows, cols) , dtype=_UpperCAmelCase ) _UpperCAmelCase = None while queue: ((_UpperCAmelCase) , (_UpperCAmelCase)) = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _UpperCAmelCase = [] while (x, y) != source: path.append((x, y) ) _UpperCAmelCase , _UpperCAmelCase = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase , _UpperCAmelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _UpperCAmelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) _UpperCAmelCase = dist + 1 _UpperCAmelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from graphs.minimum_spanning_tree_kruskal import kruskal def A ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 9 _UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCAmelCase = kruskal(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_UpperCAmelCase ) == sorted(_UpperCAmelCase )
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def A ( _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase = model_type_to_module_name(_UpperCAmelCase ) _UpperCAmelCase = importlib.import_module(F".{module_name}" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def A ( _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Tuple , ) -> str: '''simple docstring''' _UpperCAmelCase = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class __lowerCAmelCase : def __init__( self : Tuple) -> Tuple: """simple docstring""" raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.') @classmethod @replace_list_option_in_docstrings(A) def _lowerCamelCase ( cls : Tuple , A : Union[str, Any] , **A : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = kwargs.pop('config' , A) _UpperCAmelCase = kwargs.pop('trust_remote_code' , A) _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(A , **A) _UpperCAmelCase = config_dict.get('feature_extractor_type' , A) _UpperCAmelCase = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {}): _UpperCAmelCase = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A): _UpperCAmelCase = AutoConfig.from_pretrained(A , **A) # It could be in `config.feature_extractor_type`` _UpperCAmelCase = getattr(A , 'feature_extractor_type' , A) if hasattr(A , 'auto_map') and "AutoFeatureExtractor" in config.auto_map: _UpperCAmelCase = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: _UpperCAmelCase = feature_extractor_class_from_name(A) _UpperCAmelCase = feature_extractor_auto_map is not None _UpperCAmelCase = feature_extractor_class is not None or type(A) in FEATURE_EXTRACTOR_MAPPING _UpperCAmelCase = resolve_trust_remote_code( A , A , A , A) if has_remote_code and trust_remote_code: _UpperCAmelCase = get_class_from_dynamic_module( A , A , **A) _UpperCAmelCase = kwargs.pop('code_revision' , A) if os.path.isdir(A): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A) in FEATURE_EXTRACTOR_MAPPING: _UpperCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(A)] return feature_extractor_class.from_dict(A , **A) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}") @staticmethod def _lowerCamelCase ( A : int , A : Any) -> Union[str, Any]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(A , A)
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
def A ( _UpperCAmelCase : int = 50 ) -> int: '''simple docstring''' _UpperCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Dict , A : List[Any] , A : str=7 , A : Tuple=3 , A : Dict=18 , A : int=30 , A : Optional[Any]=4_00 , A : int=True , A : List[Any]=None , A : int=True , ) -> int: """simple docstring""" _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = apply_ocr def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase = LayoutLMvaImageProcessingTester(self) @property def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'size')) self.assertTrue(hasattr(A , 'apply_ocr')) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A) self.assertIsInstance(encoding.boxes , A) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') _UpperCAmelCase = Image.open(ds[0]['file']).convert('RGB') _UpperCAmelCase = image_processing(A , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _UpperCAmelCase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A) self.assertListEqual(encoding.boxes , A) # with apply_OCR = False _UpperCAmelCase = LayoutLMvaImageProcessor(apply_ocr=A) _UpperCAmelCase = image_processing(A , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24))
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( _UpperCAmelCase : int = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_UpperCAmelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) _UpperCAmelCase = QuantumRegister(_UpperCAmelCase , 'qr' ) _UpperCAmelCase = ClassicalRegister(_UpperCAmelCase , 'cr' ) _UpperCAmelCase = QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = number_of_qubits for i in range(_UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCAmelCase , _UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCAmelCase , _UpperCAmelCase ) # simulate with 10000 shots _UpperCAmelCase = Aer.get_backend('qasm_simulator' ) _UpperCAmelCase = execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_000 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCAmelCase__ = 0 UpperCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCAmelCase__ = tuple[int, int] class __lowerCAmelCase : def __init__( self : str , A : int , A : int , A : int , A : int , A : int , A : Node | None , ) -> None: """simple docstring""" _UpperCAmelCase = pos_x _UpperCAmelCase = pos_y _UpperCAmelCase = (pos_y, pos_x) _UpperCAmelCase = goal_x _UpperCAmelCase = goal_y _UpperCAmelCase = g_cost _UpperCAmelCase = parent _UpperCAmelCase = self.calculate_heuristic() _UpperCAmelCase = self.g_cost + self.h_cost def _lowerCamelCase ( self : Tuple) -> float: """simple docstring""" _UpperCAmelCase = self.pos_x - self.goal_x _UpperCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A) + abs(A) else: return sqrt(dy**2 + dx**2) def __lt__( self : Tuple , A : Node) -> bool: """simple docstring""" return self.f_cost < other.f_cost class __lowerCAmelCase : def __init__( self : str , A : TPosition , A : TPosition) -> Tuple: """simple docstring""" _UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A) _UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , A) _UpperCAmelCase = [self.start] _UpperCAmelCase = [] _UpperCAmelCase = False def _lowerCamelCase ( self : Optional[int]) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCAmelCase = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(A) self.closed_nodes.append(A) _UpperCAmelCase = self.get_successors(A) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A) else: # retrieve the best current path _UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(A)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A) else: self.open_nodes.append(A) return [self.start.pos] def _lowerCamelCase ( self : str , A : Node) -> list[Node]: """simple docstring""" _UpperCAmelCase = [] for action in delta: _UpperCAmelCase = parent.pos_x + action[1] _UpperCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(A) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A , A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A , )) return successors def _lowerCamelCase ( self : List[Any] , A : Node | None) -> list[TPosition]: """simple docstring""" _UpperCAmelCase = node _UpperCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) _UpperCAmelCase = current_node.parent path.reverse() return path class __lowerCAmelCase : def __init__( self : List[str] , A : TPosition , A : TPosition) -> None: """simple docstring""" _UpperCAmelCase = AStar(A , A) _UpperCAmelCase = AStar(A , A) _UpperCAmelCase = False def _lowerCamelCase ( self : Optional[int]) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _UpperCAmelCase = self.fwd_astar.open_nodes.pop(0) _UpperCAmelCase = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A , A) self.fwd_astar.closed_nodes.append(A) self.bwd_astar.closed_nodes.append(A) _UpperCAmelCase = current_bwd_node _UpperCAmelCase = current_fwd_node _UpperCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(A), self.bwd_astar: self.bwd_astar.get_successors(A), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A) else: # retrieve the best current path _UpperCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(A)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A) else: astar.open_nodes.append(A) return [self.fwd_astar.start.pos] def _lowerCamelCase ( self : str , A : Node , A : Node) -> list[TPosition]: """simple docstring""" _UpperCAmelCase = self.fwd_astar.retrace_path(A) _UpperCAmelCase = self.bwd_astar.retrace_path(A) bwd_path.pop() bwd_path.reverse() _UpperCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase__ = time.time() UpperCAmelCase__ = AStar(init, goal) UpperCAmelCase__ = a_star.search() UpperCAmelCase__ = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") UpperCAmelCase__ = time.time() UpperCAmelCase__ = BidirectionalAStar(init, goal) UpperCAmelCase__ = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _UpperCAmelCase = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , A) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.feature_extraction_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') # load decoder from hub _UpperCAmelCase = 'hf-internal-testing/ngram-beam-search-decoder' def _lowerCamelCase ( self : Optional[int] , **A : List[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , **A : Tuple) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Union[str, Any] , **A : List[str]) -> Optional[int]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A) def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , A) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , A) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A) def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx']) with self.assertRaisesRegex(A , 'include'): WavaVecaProcessorWithLM( tokenizer=A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = floats_list((3, 10_00)) _UpperCAmelCase = feature_extractor(A , return_tensors='np') _UpperCAmelCase = processor(A , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = 'This is a test string' _UpperCAmelCase = processor(text=A) _UpperCAmelCase = tokenizer(A) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int]=(2, 10, 16) , A : List[Any]=77) -> int: """simple docstring""" np.random.seed(A) return np.random.rand(*A) def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13) _UpperCAmelCase = processor.decode(A) _UpperCAmelCase = decoder.decode_beams(A)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual('</s> <s> </s>' , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ['fork'], ['spawn']]) def _lowerCamelCase ( self : str , A : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase = processor.batch_decode(A) else: with get_context(A).Pool() as pool: _UpperCAmelCase = processor.batch_decode(A , A) _UpperCAmelCase = list(A) with get_context('fork').Pool() as p: _UpperCAmelCase = decoder.decode_beams_batch(A , A) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(A , decoded_processor.text) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text) self.assertListEqual(A , decoded_processor.logit_score) self.assertListEqual(A , decoded_processor.lm_score) def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = 15 _UpperCAmelCase = -2_0.0 _UpperCAmelCase = -4.0 _UpperCAmelCase = processor.batch_decode( A , beam_width=A , beam_prune_logp=A , token_min_logp=A , ) _UpperCAmelCase = decoded_processor_out.text _UpperCAmelCase = list(A) with get_context('fork').Pool() as pool: _UpperCAmelCase = decoder.decode_beams_batch( A , A , beam_width=A , beam_prune_logp=A , token_min_logp=A , ) _UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A , A) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , A) self.assertTrue(np.array_equal(A , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , A , atol=1E-3)) self.assertTrue(np.array_equal(A , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , A , atol=1E-3)) def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = 2.0 _UpperCAmelCase = 5.0 _UpperCAmelCase = -2_0.0 _UpperCAmelCase = True _UpperCAmelCase = processor.batch_decode( A , alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , ) _UpperCAmelCase = decoded_processor_out.text _UpperCAmelCase = list(A) decoder.reset_params( alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , ) with get_context('fork').Pool() as pool: _UpperCAmelCase = decoder.decode_beams_batch( A , A , ) _UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A , A) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , A) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -2_0.0) self.assertEqual(lm_model.score_boundary , A) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() _UpperCAmelCase = os.listdir(A) _UpperCAmelCase = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A , A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = snapshot_download('hf-internal-testing/processor_with_lm') _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(A) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() _UpperCAmelCase = os.listdir(A) _UpperCAmelCase = os.listdir(A) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A , A) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = floats_list((3, 10_00)) _UpperCAmelCase = processor_wavaveca(A , return_tensors='np') _UpperCAmelCase = processor_auto(A , return_tensors='np') for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = processor_wavaveca.batch_decode(A) _UpperCAmelCase = processor_auto.batch_decode(A) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def _lowerCamelCase ( A : List[str] , A : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = self._get_dummy_logits()[0] _UpperCAmelCase = processor.decode(A , output_word_offsets=A) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(A , A)) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word')) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset') , [1, 3, 5]) def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = processor.batch_decode(A , output_word_offsets=A) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(A , A)) self.assertListEqual( [' '.join(self.get_from_offsets(A , 'word')) for o in outputs['word_offsets']] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset') , [1, 3, 5]) @slow @require_torch @require_torchaudio def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" import torch _UpperCAmelCase = load_dataset('common_voice' , 'en' , split='train' , streaming=A) _UpperCAmelCase = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00)) _UpperCAmelCase = iter(A) _UpperCAmelCase = next(A) _UpperCAmelCase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') _UpperCAmelCase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase = processor(sample['audio']['array'] , return_tensors='pt').input_values with torch.no_grad(): _UpperCAmelCase = model(A).logits.cpu().numpy() _UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=A) _UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _UpperCAmelCase = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(A , 'word')) , A) self.assertEqual(' '.join(self.get_from_offsets(A , 'word')) , output.text) # output times _UpperCAmelCase = torch.tensor(self.get_from_offsets(A , 'start_time')) _UpperCAmelCase = torch.tensor(self.get_from_offsets(A , 'end_time')) # fmt: off _UpperCAmelCase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9]) _UpperCAmelCase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4]) # fmt: on self.assertTrue(torch.allclose(A , A , atol=0.0_1)) self.assertTrue(torch.allclose(A , A , atol=0.0_1))
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
from cva import destroyAllWindows, imread, imshow, waitKey def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' # getting number of pixels in the image _UpperCAmelCase , _UpperCAmelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): _UpperCAmelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase__ = imread("image_data/lena.jpg", 1) # convert to its negative UpperCAmelCase__ = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''open-llama''' def __init__( self : Dict , A : Optional[Any]=10_00_00 , A : Any=40_96 , A : Dict=1_10_08 , A : Optional[Any]=32 , A : List[Any]=32 , A : List[Any]="silu" , A : Optional[Any]=20_48 , A : Dict=0.0_2 , A : Union[str, Any]=1E-6 , A : str=True , A : List[str]=0 , A : Tuple=1 , A : str=2 , A : Dict=False , A : Any=True , A : Any=0.1 , A : Optional[Any]=0.1 , A : int=True , A : Optional[int]=True , A : Optional[int]=None , **A : Optional[Any] , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , A) _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_dropout_prob _UpperCAmelCase = use_stable_embedding _UpperCAmelCase = shared_input_output_embedding _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A , ) def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}") _UpperCAmelCase = self.rope_scaling.get('type' , A) _UpperCAmelCase = self.rope_scaling.get('factor' , A) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(A , A) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp UpperCAmelCase__ = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "RUCAIBox/mvp": 1024, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = MvpTokenizer def __init__( self : Optional[int] , A : Optional[int]=None , A : Any=None , A : Tuple=None , A : Dict="replace" , A : int="<s>" , A : Tuple="</s>" , A : Any="</s>" , A : str="<s>" , A : Optional[int]="<unk>" , A : Dict="<pad>" , A : int="<mask>" , A : Any=False , A : Optional[int]=True , **A : int , ) -> List[Any]: """simple docstring""" super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , A) != add_prefix_space: _UpperCAmelCase = getattr(A , pre_tok_state.pop('type')) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**A) _UpperCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase = 'post_processor' _UpperCAmelCase = getattr(self.backend_tokenizer , A , A) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state['sep']) if "cls" in state: _UpperCAmelCase = tuple(state['cls']) _UpperCAmelCase = False if state.get('add_prefix_space' , A) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get('trim_offsets' , A) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(A , state.pop('type')) _UpperCAmelCase = component_class(**A) setattr(self.backend_tokenizer , A , A) @property def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def _lowerCamelCase ( self : Dict , A : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else value _UpperCAmelCase = value def _lowerCamelCase ( self : List[Any] , *A : Dict , **A : Optional[int]) -> BatchEncoding: """simple docstring""" _UpperCAmelCase = kwargs.get('is_split_into_words' , A) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*A , **A) def _lowerCamelCase ( self : Union[str, Any] , *A : Any , **A : Dict) -> BatchEncoding: """simple docstring""" _UpperCAmelCase = kwargs.get('is_split_into_words' , A) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._encode_plus(*A , **A) def _lowerCamelCase ( self : Any , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(A , name=A) return tuple(A) def _lowerCamelCase ( self : Any , A : str , A : Optional[int]=None) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
from __future__ import annotations def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' _UpperCAmelCase = str(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 9 and set(_UpperCAmelCase ) == set('123456789' ) def A ( ) -> int | None: '''simple docstring''' for base_num in range(9_999 , 4_999 , -1 ): _UpperCAmelCase = 100_002 * base_num if is_9_pandigital(_UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): _UpperCAmelCase = 1_002_003 * base_num if is_9_pandigital(_UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''input_values''', '''padding_mask'''] def __init__( self : Any , A : int = 1 , A : int = 2_40_00 , A : float = 0.0 , A : float = None , A : float = None , **A : Dict , ) -> Dict: """simple docstring""" super().__init__(feature_size=A , sampling_rate=A , padding_value=A , **A) _UpperCAmelCase = chunk_length_s _UpperCAmelCase = overlap @property def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) def __call__( self : Tuple , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : Optional[Union[bool, str, PaddingStrategy]] = None , A : Optional[bool] = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[int] = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.') elif padding is None: # by default let's pad the inputs _UpperCAmelCase = True _UpperCAmelCase = bool( isinstance(A , (list, tuple)) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list)))) if is_batched: _UpperCAmelCase = [np.asarray(A , dtype=np.floataa).T for audio in raw_audio] elif not is_batched and not isinstance(A , np.ndarray): _UpperCAmelCase = np.asarray(A , dtype=np.floataa) elif isinstance(A , np.ndarray) and raw_audio.dtype is np.dtype(np.floataa): _UpperCAmelCase = raw_audio.astype(np.floataa) # always return batch if not is_batched: _UpperCAmelCase = [np.asarray(A).T] # verify inputs are valid for idx, example in enumerate(A): if example.ndim > 2: raise ValueError(F"Expected input shape (channels, length) but got shape {example.shape}") if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"Expected mono audio but example has {example.shape[-1]} channels") if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"Expected stereo audio but example has {example.shape[-1]} channels") _UpperCAmelCase = None _UpperCAmelCase = BatchFeature({'input_values': raw_audio}) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _UpperCAmelCase = min(array.shape[0] for array in raw_audio) _UpperCAmelCase = int(np.floor(max_length / self.chunk_stride)) _UpperCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _UpperCAmelCase = max(array.shape[0] for array in raw_audio) _UpperCAmelCase = int(np.ceil(max_length / self.chunk_stride)) _UpperCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _UpperCAmelCase = 'max_length' else: _UpperCAmelCase = input_values # normal padding on batch if padded_inputs is None: _UpperCAmelCase = self.pad( A , max_length=A , truncation=A , padding=A , return_attention_mask=A , ) if padding: _UpperCAmelCase = padded_inputs.pop('attention_mask') _UpperCAmelCase = [] for example in padded_inputs.pop('input_values'): if self.feature_size == 1: _UpperCAmelCase = example[..., None] input_values.append(example.T) _UpperCAmelCase = input_values if return_tensors is not None: _UpperCAmelCase = padded_inputs.convert_to_tensors(A) return padded_inputs
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = 50 # max width of layer names UpperCAmelCase__ = 70 # max width of quantizer names def A ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_UpperCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_UpperCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_UpperCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_UpperCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_UpperCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_UpperCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def A ( _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _UpperCAmelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _UpperCAmelCase = 'histogram' elif args.calibrator == "mse": _UpperCAmelCase = 'histogram' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) _UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_UpperCAmelCase ) _UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_UpperCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_UpperCAmelCase , ['embeddings'] , which='weight' , _disabled=_UpperCAmelCase ) if args.quant_disable: set_quantizer_by_name(_UpperCAmelCase , [''] , _disabled=_UpperCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_UpperCAmelCase , args.quant_disable_keyword , _disabled=_UpperCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_UpperCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_UpperCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_UpperCAmelCase ) if args.fuse_qkv: fuse_qkv(_UpperCAmelCase , _UpperCAmelCase ) if args.clip_gelu: clip_gelu(_UpperCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' def fusea(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_UpperCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _UpperCAmelCase = qq._amax.detach().item() _UpperCAmelCase = qk._amax.detach().item() _UpperCAmelCase = qv._amax.detach().item() _UpperCAmelCase = max(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) qq._amax.fill_(_UpperCAmelCase ) qk._amax.fill_(_UpperCAmelCase ) qv._amax.fill_(_UpperCAmelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_UpperCAmelCase ) _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def A ( _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _UpperCAmelCase = mod.weight.shape[0] _UpperCAmelCase = mod._weight_quantizer._amax.detach() _UpperCAmelCase = torch.ones(_UpperCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def A ( _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set _UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_UpperCAmelCase , keepdims=_UpperCAmelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) _UpperCAmelCase = amax def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=25 , _UpperCAmelCase : int=180 , _UpperCAmelCase : int=None ) -> Tuple: '''simple docstring''' if ignore is None: _UpperCAmelCase = [] elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = [ignore] _UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(_UpperCAmelCase , 'weight' ): continue _UpperCAmelCase = max(_UpperCAmelCase , len(_UpperCAmelCase ) ) for name, mod in model.named_modules(): _UpperCAmelCase = getattr(_UpperCAmelCase , '_input_quantizer' , _UpperCAmelCase ) _UpperCAmelCase = getattr(_UpperCAmelCase , '_weight_quantizer' , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , 'weight' ): continue if type(_UpperCAmelCase ) in ignore: continue if [True for s in ignore if type(_UpperCAmelCase ) is str and s in name]: continue _UpperCAmelCase = F"Act:{input_q.extra_repr()}" _UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" _UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(_UpperCAmelCase ) <= line_width: logger.info(_UpperCAmelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(_UpperCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if quantizer_mod is not None: assert hasattr(_UpperCAmelCase , _UpperCAmelCase ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]="both" , **_UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , '_input_quantizer' , _UpperCAmelCase , _UpperCAmelCase ) if which in ["weight", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , '_weight_quantizer' , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_input_quantizer' ) or hasattr(_UpperCAmelCase , '_weight_quantizer' ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): set_quantizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase )
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
class __lowerCAmelCase : def __init__( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = {} def _lowerCamelCase ( self : Union[str, Any] , A : int) -> Dict: """simple docstring""" if vertex not in self.adjacency: _UpperCAmelCase = {} self.num_vertices += 1 def _lowerCamelCase ( self : Optional[int] , A : Dict , A : int , A : int) -> Tuple: """simple docstring""" self.add_vertex(A) self.add_vertex(A) if head == tail: return _UpperCAmelCase = weight _UpperCAmelCase = weight def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_edges() for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = edge edges.remove((tail, head, weight)) for i in range(len(A)): _UpperCAmelCase = list(edges[i]) edges.sort(key=lambda A: e[2]) for i in range(len(A) - 1): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase = edges[i][2] + 1 for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = edge _UpperCAmelCase = weight _UpperCAmelCase = weight def __str__( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = '' for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('\n') def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return self.adjacency.keys() @staticmethod def _lowerCamelCase ( A : Optional[int]=None , A : str=None) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = Graph() if vertices is None: _UpperCAmelCase = [] if edges is None: _UpperCAmelCase = [] for vertex in vertices: g.add_vertex(A) for edge in edges: g.add_edge(*A) return g class __lowerCAmelCase : def __init__( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} def __len__( self : Any) -> int: """simple docstring""" return len(self.parent) def _lowerCamelCase ( self : List[Any] , A : int) -> List[str]: """simple docstring""" if item in self.parent: return self.find(A) _UpperCAmelCase = item _UpperCAmelCase = 0 return item def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> int: """simple docstring""" if item not in self.parent: return self.make_set(A) if item != self.parent[item]: _UpperCAmelCase = self.find(self.parent[item]) return self.parent[item] def _lowerCamelCase ( self : Union[str, Any] , A : Tuple , A : Dict) -> Any: """simple docstring""" _UpperCAmelCase = self.find(A) _UpperCAmelCase = self.find(A) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase = roota return roota return None @staticmethod def _lowerCamelCase ( A : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = graph.num_vertices _UpperCAmelCase = Graph.UnionFind() _UpperCAmelCase = [] while num_components > 1: _UpperCAmelCase = {} for vertex in graph.get_vertices(): _UpperCAmelCase = -1 _UpperCAmelCase = graph.get_edges() for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = edge edges.remove((tail, head, weight)) for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = edge _UpperCAmelCase = union_find.find(A) _UpperCAmelCase = union_find.find(A) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = cheap_edge[vertex] if union_find.find(A) != union_find.find(A): union_find.union(A , A) mst_edges.append(cheap_edge[vertex]) _UpperCAmelCase = num_components - 1 _UpperCAmelCase = Graph.build(edges=A) return mst
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class __lowerCAmelCase ( A ): UpperCamelCase = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''audio''': Audio()} ) UpperCamelCase = Features({'''transcription''': Value('''string''' )} ) UpperCamelCase = "audio" UpperCamelCase = "transcription" def _lowerCamelCase ( self : Union[str, Any] , A : List[Any]) -> List[str]: """simple docstring""" if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , A): raise ValueError(F"Column {self.audio_column} is not an Audio type.") _UpperCAmelCase = copy.deepcopy(self) _UpperCAmelCase = self.input_schema.copy() _UpperCAmelCase = features[self.audio_column] _UpperCAmelCase = input_schema return task_template @property def _lowerCamelCase ( self : str) -> Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = FunnelTokenizer UpperCamelCase = FunnelTokenizerFast UpperCamelCase = True UpperCamelCase = True def _lowerCamelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def _lowerCamelCase ( self : Tuple , **A : Any) -> Dict: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , **A : Optional[int]) -> List[Any]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Tuple , A : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'UNwant\u00E9d,running' _UpperCAmelCase = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file) _UpperCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(A , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , [7, 4, 5, 10, 8, 9]) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: _UpperCAmelCase = tokenizer('UNwant\u00E9d,running') _UpperCAmelCase = len(inputs['input_ids']) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len) _UpperCAmelCase = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running') self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len)
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : Tuple , A : Any=None , **A : Union[str, Any]) -> Union[str, Any]: """simple docstring""" warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , A , ) super().__init__(args=A , **A)
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __lowerCAmelCase ( A ): def __init__( self : str , A : Callable , A : Optional[Features] = None , A : str = None , A : bool = False , A : bool = False , A : Optional[dict] = None , A : Optional[int] = None , **A : Dict , ) -> List[Any]: """simple docstring""" super().__init__( features=A , cache_dir=A , keep_in_memory=A , streaming=A , num_proc=A , **A , ) _UpperCAmelCase = Generator( cache_dir=A , features=A , generator=A , gen_kwargs=A , **A , ) def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split='train') # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split='train' , verification_mode=A , in_memory=self.keep_in_memory) return dataset
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __lowerCAmelCase ( A ): UpperCamelCase = '''vivit''' def __init__( self : Dict , A : Union[str, Any]=2_24 , A : Tuple=32 , A : List[str]=[2, 16, 16] , A : Dict=3 , A : Dict=7_68 , A : Union[str, Any]=12 , A : Dict=12 , A : Union[str, Any]=30_72 , A : Dict="gelu_fast" , A : str=0.0 , A : List[str]=0.0 , A : Optional[int]=0.0_2 , A : Tuple=1E-06 , A : Optional[int]=True , **A : Tuple , ) -> List[str]: """simple docstring""" _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = num_frames _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias super().__init__(**A)
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __lowerCAmelCase : def __init__( self : int , A : Optional[Any]=2 , A : List[str]=3 , A : Optional[int]=64 , A : Union[str, Any]=None) -> Dict: """simple docstring""" _UpperCAmelCase = np.random.default_rng(A) _UpperCAmelCase = length _UpperCAmelCase = rng.normal(size=(length,)).astype(np.floataa) _UpperCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self : Tuple) -> List[Any]: """simple docstring""" return self.length def __getitem__( self : Union[str, Any] , A : Tuple) -> List[Any]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __lowerCAmelCase ( torch.nn.Module ): def __init__( self : int , A : List[str]=0 , A : Any=0 , A : Optional[int]=False) -> Tuple: """simple docstring""" super().__init__() _UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3]).float()) _UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3]).float()) _UpperCAmelCase = True def _lowerCamelCase ( self : int , A : Dict=None) -> int: """simple docstring""" if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _UpperCAmelCase = False return x * self.a[0] + self.b[0] class __lowerCAmelCase ( torch.nn.Module ): def __init__( self : Any , A : Optional[Any]=0 , A : Any=0 , A : List[Any]=False) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = torch.nn.Parameter(torch.tensor(A).float()) _UpperCAmelCase = torch.nn.Parameter(torch.tensor(A).float()) _UpperCAmelCase = True def _lowerCamelCase ( self : Optional[Any] , A : Optional[int]=None) -> str: """simple docstring""" if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _UpperCAmelCase = False return x * self.a + self.b def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : int = 16 ) -> Optional[int]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCAmelCase = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} _UpperCAmelCase = load_dataset('csv' , data_files=_UpperCAmelCase ) _UpperCAmelCase = datasets['train'].unique('label' ) _UpperCAmelCase = {v: i for i, v in enumerate(_UpperCAmelCase )} def tokenize_function(_UpperCAmelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) if "label" in examples: _UpperCAmelCase = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_UpperCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader(tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=2 ) _UpperCAmelCase = DataLoader(tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) _UpperCAmelCase = transform(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) return image def A ( _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' if "visual_encoder" in key: _UpperCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , _UpperCAmelCase ) if "blocks" in key: _UpperCAmelCase = re.sub(R'blocks' , 'layers' , _UpperCAmelCase ) if "attn" in key: _UpperCAmelCase = re.sub(R'attn' , 'self_attn' , _UpperCAmelCase ) if "norm1" in key: _UpperCAmelCase = re.sub(R'norm1' , 'layer_norm1' , _UpperCAmelCase ) if "norm2" in key: _UpperCAmelCase = re.sub(R'norm2' , 'layer_norm2' , _UpperCAmelCase ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , _UpperCAmelCase ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , _UpperCAmelCase ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , _UpperCAmelCase ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , _UpperCAmelCase ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , _UpperCAmelCase ) return key @torch.no_grad() def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None ) -> Tuple: '''simple docstring''' if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(_UpperCAmelCase ).eval() _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCAmelCase = blip_decoder(pretrained=_UpperCAmelCase , image_size=384 , vit='base' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = rename_key(_UpperCAmelCase ) _UpperCAmelCase = value hf_model.load_state_dict(_UpperCAmelCase ) _UpperCAmelCase = 384 _UpperCAmelCase = load_demo_image(image_size=_UpperCAmelCase , device='cpu' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = tokenizer(['a picture of'] ).input_ids _UpperCAmelCase = hf_model.generate(_UpperCAmelCase , _UpperCAmelCase ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] _UpperCAmelCase = hf_model.generate(_UpperCAmelCase ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_UpperCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCAmelCase = blip_vqa(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = rename_key(_UpperCAmelCase ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(_UpperCAmelCase ) hf_vqa_model.load_state_dict(_UpperCAmelCase ) _UpperCAmelCase = ['How many dogs are in this image?'] _UpperCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(_UpperCAmelCase , _UpperCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCAmelCase = blip_itm(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = rename_key(_UpperCAmelCase ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(_UpperCAmelCase ) _UpperCAmelCase = ['A picture of a woman with a dog sitting in a beach'] _UpperCAmelCase = tokenizer( _UpperCAmelCase , return_tensors='pt' , padding='max_length' , truncation=_UpperCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_UpperCAmelCase ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) _UpperCAmelCase = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase__ = "Create a default config file for Accelerate with only a few flags set." def A ( _UpperCAmelCase : Optional[int]="no" , _UpperCAmelCase : str = default_json_config_file , _UpperCAmelCase : bool = False ) -> Tuple: '''simple docstring''' _UpperCAmelCase = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False _UpperCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) _UpperCAmelCase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _UpperCAmelCase = torch.cuda.device_count() _UpperCAmelCase = num_gpus _UpperCAmelCase = False if num_gpus > 1: _UpperCAmelCase = 'MULTI_GPU' else: _UpperCAmelCase = 'NO' elif is_xpu_available() and use_xpu: _UpperCAmelCase = torch.xpu.device_count() _UpperCAmelCase = num_xpus _UpperCAmelCase = False if num_xpus > 1: _UpperCAmelCase = 'MULTI_XPU' else: _UpperCAmelCase = 'NO' elif is_npu_available(): _UpperCAmelCase = torch.npu.device_count() _UpperCAmelCase = num_npus _UpperCAmelCase = False if num_npus > 1: _UpperCAmelCase = 'MULTI_NPU' else: _UpperCAmelCase = 'NO' else: _UpperCAmelCase = 0 _UpperCAmelCase = True _UpperCAmelCase = 1 _UpperCAmelCase = 'NO' _UpperCAmelCase = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = parser.add_parser('default' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_UpperCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def A ( _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"accelerate configuration saved at {config_file}" )
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A , 'embed_dim')) self.parent.assertTrue(hasattr(A , 'num_heads')) class __lowerCAmelCase : def __init__( self : Optional[int] , A : int , A : int=13 , A : Optional[Any]=64 , A : Union[str, Any]=3 , A : Tuple=[16, 48, 96] , A : int=[1, 3, 6] , A : Any=[1, 2, 10] , A : Any=[7, 3, 3] , A : List[str]=[4, 2, 2] , A : Dict=[2, 1, 1] , A : str=[2, 2, 2] , A : Union[str, Any]=[False, False, True] , A : int=[0.0, 0.0, 0.0] , A : int=0.0_2 , A : Optional[int]=1E-12 , A : Optional[int]=True , A : Tuple=True , A : Dict=2 , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : List[Any] , A : str , A : List[str] , A : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = TFCvtModel(config=A) _UpperCAmelCase = model(A , training=A) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth)): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def _lowerCamelCase ( self : Tuple , A : Optional[int] , A : int , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFCvtForImageClassification(A) _UpperCAmelCase = model(A , labels=A , training=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = TFCvtModelTester(self) _UpperCAmelCase = TFCvtConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions') def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds') def _lowerCamelCase ( self : Any) -> int: """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings') def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU')) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU')) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8') def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = tf.keras.mixed_precision.Policy('mixed_float16') tf.keras.mixed_precision.set_global_policy(A) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32') def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" def check_hidden_states_output(A : int , A : Optional[int] , A : List[str]): _UpperCAmelCase = model_class(A) _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth) self.assertEqual(len(A) , A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) @slow def _lowerCamelCase ( self : int) -> int: """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFCvtModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='tf') # forward pass _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A , atol=1E-4))
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=A ): UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : Optional[Any] , *A : str , **A : int) -> Tuple: """simple docstring""" requires_backends(self , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Dict , *A : Tuple , **A : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : List[str] , *A : Dict , **A : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) class __lowerCAmelCase ( metaclass=A ): UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : Tuple , *A : Tuple , **A : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *A : Dict , **A : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Dict , *A : int , **A : str) -> Optional[int]: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) class __lowerCAmelCase ( metaclass=A ): UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : Dict , *A : int , **A : List[str]) -> str: """simple docstring""" requires_backends(self , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Dict , *A : Any , **A : Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Optional[int] , *A : str , **A : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) class __lowerCAmelCase ( metaclass=A ): UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : Dict , *A : Tuple , **A : Any) -> List[Any]: """simple docstring""" requires_backends(self , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Dict , *A : Tuple , **A : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ['flax', 'transformers']) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *A : Tuple , **A : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ['flax', 'transformers'])
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def A ( _UpperCAmelCase : str ) -> Dict: '''simple docstring''' _UpperCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __lowerCAmelCase ( A , A , A , unittest.TestCase ): UpperCamelCase = StableDiffusionLatentUpscalePipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase = frozenset([] ) UpperCamelCase = True @property def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = 4 _UpperCAmelCase = (16, 16) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(A) return image def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=A , only_cross_attention=A , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _UpperCAmelCase = EulerDiscreteScheduler(prediction_type='sample') _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _UpperCAmelCase = CLIPTextModel(A) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCAmelCase = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCamelCase ( self : List[Any] , A : Union[str, Any] , A : List[Any]=0) -> List[str]: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = self.get_dummy_inputs(A) _UpperCAmelCase = pipe(**A).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3)) _UpperCAmelCase = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5]) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(A , 1E-3) def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def _lowerCamelCase ( self : Any) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3) def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3) def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=A) pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = self.get_dummy_inputs(A) _UpperCAmelCase = 2 _UpperCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCAmelCase = getattr(A , scheduler_enum.name) _UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config) _UpperCAmelCase = pipe(**A)[0] outputs.append(A) assert check_same_shape(A) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = torch.manual_seed(33) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa) pipe.to('cuda') _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') _UpperCAmelCase = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _UpperCAmelCase = pipe(A , generator=A , output_type='latent').images _UpperCAmelCase = upscaler( prompt=A , image=A , num_inference_steps=20 , guidance_scale=0 , generator=A , output_type='np' , ).images[0] _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5E-2 def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = torch.manual_seed(33) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') _UpperCAmelCase = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') _UpperCAmelCase = upscaler( prompt=A , image=A , num_inference_steps=20 , guidance_scale=0 , generator=A , output_type='np' , ).images[0] _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5E-2
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
import numpy as np def A ( _UpperCAmelCase : np.array ) -> np.array: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( _UpperCAmelCase : np.array ) -> np.array: '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : int , A : float) -> float: """simple docstring""" return 0.0 def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int ) -> tuple[int | float, int | float]: '''simple docstring''' _UpperCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _UpperCAmelCase : FilterType , _UpperCAmelCase : int ) -> None: '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_UpperCAmelCase ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.abs(np.fft.fft(_UpperCAmelCase ) ) _UpperCAmelCase = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _UpperCAmelCase = get_bounds(_UpperCAmelCase , _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(_UpperCAmelCase ) plt.show() def A ( _UpperCAmelCase : FilterType , _UpperCAmelCase : int ) -> None: '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_UpperCAmelCase ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(_UpperCAmelCase , -2 * pi ) ) plt.show()
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: '''simple docstring''' # Format the message. if name is None: _UpperCAmelCase = None else: _UpperCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _UpperCAmelCase = fmt.format(_UpperCAmelCase ) # Print and recurse (if needed). if isinstance(_UpperCAmelCase , _UpperCAmelCase ): if msg is not None: print(_UpperCAmelCase ) for k in val.keys(): recursive_print(_UpperCAmelCase , val[k] , spaces + 2 ) elif isinstance(_UpperCAmelCase , torch.Tensor ): print(_UpperCAmelCase , ':' , val.size() ) else: print(_UpperCAmelCase , ':' , _UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _UpperCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _UpperCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] _UpperCAmelCase = param.view(*_UpperCAmelCase ) _UpperCAmelCase = param.transpose(0 , 2 ) _UpperCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _UpperCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] _UpperCAmelCase = param.view(*_UpperCAmelCase ) _UpperCAmelCase = param.transpose(0 , 1 ).contiguous() _UpperCAmelCase = param.view(*_UpperCAmelCase ) return param def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' # The converted output model. _UpperCAmelCase = {} # old versions did not store training args _UpperCAmelCase = input_state_dict.get('args' , _UpperCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _UpperCAmelCase = ds_args.padded_vocab_size _UpperCAmelCase = ds_args.max_position_embeddings _UpperCAmelCase = ds_args.hidden_size _UpperCAmelCase = ds_args.num_layers _UpperCAmelCase = ds_args.num_attention_heads _UpperCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _UpperCAmelCase = config.n_head # The hidden_size per head. _UpperCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _UpperCAmelCase = input_state_dict['checkpoint_version'] else: _UpperCAmelCase = 0.0 # The model. _UpperCAmelCase = input_state_dict['model'] # The language model. _UpperCAmelCase = model['language_model'] # The embeddings. _UpperCAmelCase = lm['embedding'] # The word embeddings. _UpperCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _UpperCAmelCase = word_embeddings[: config.vocab_size, :] _UpperCAmelCase = word_embeddings # The position embeddings. _UpperCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _UpperCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _UpperCAmelCase = pos_embeddings # The transformer. _UpperCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _UpperCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _UpperCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _UpperCAmelCase = layer_re.match(_UpperCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _UpperCAmelCase = int(m.group(1 ) ) # The name of the operation. _UpperCAmelCase = m.group(2 ) # Is it a weight or a bias? _UpperCAmelCase = m.group(3 ) # The name of the layer. _UpperCAmelCase = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _UpperCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _UpperCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _UpperCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. _UpperCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa ) _UpperCAmelCase = masked_bias _UpperCAmelCase = fix_query_key_value_ordering(_UpperCAmelCase , _UpperCAmelCase , 3 , _UpperCAmelCase , _UpperCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _UpperCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. _UpperCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _UpperCAmelCase = fix_query_key_value_ordering(_UpperCAmelCase , _UpperCAmelCase , 3 , _UpperCAmelCase , _UpperCAmelCase ) # Store. No change of shape. _UpperCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": _UpperCAmelCase = megatron_to_transformers[op_name] _UpperCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _UpperCAmelCase = megatron_to_transformers[op_name] _UpperCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _UpperCAmelCase = transformer['final_layernorm.weight'] _UpperCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _UpperCAmelCase = word_embeddings # It should be done! return output_state_dict def A ( ) -> Dict: '''simple docstring''' # Create the argument parser. _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_UpperCAmelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_UpperCAmelCase , help='An optional config json file describing the pre-trained model.' , ) _UpperCAmelCase = parser.parse_args() # Extract the basename. _UpperCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) else: _UpperCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) _UpperCAmelCase = input_state_dict.get('args' , _UpperCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _UpperCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: _UpperCAmelCase = 'gelu_new' else: _UpperCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" _UpperCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. _UpperCAmelCase = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_UpperCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_UpperCAmelCase , summary_activation=_UpperCAmelCase , summary_proj_to_labels=_UpperCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=_UpperCAmelCase , use_cache=_UpperCAmelCase , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _UpperCAmelCase = GPTaConfig.from_json_file(args.config_file ) _UpperCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _UpperCAmelCase = convert_megatron_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_UpperCAmelCase , _UpperCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _UpperCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _UpperCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _UpperCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: _UpperCAmelCase = 'gpt2' _UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = type(_UpperCAmelCase ).__name__ _UpperCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_UpperCAmelCase ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_UpperCAmelCase ) # Store the state_dict to file. _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" super().tearDown() gc.collect() def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase = 'xvjiarui/stable-diffusion-2-inpainting' _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(A , safety_checker=A) _UpperCAmelCase = 'Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase = jax.random.PRNGKey(0) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = num_samples * [init_image] _UpperCAmelCase = num_samples * [mask_image] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = pipeline.prepare_inputs(A , A , A) # shard inputs and rng _UpperCAmelCase = replicate(A) _UpperCAmelCase = jax.random.split(A , jax.device_count()) _UpperCAmelCase = shard(A) _UpperCAmelCase = shard(A) _UpperCAmelCase = shard(A) _UpperCAmelCase = pipeline( A , A , A , A , A , A , jit=A) _UpperCAmelCase = output.images.reshape(A , 5_12 , 5_12 , 3) _UpperCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten())) _UpperCAmelCase = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4]) print(F"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1E-2
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=1 ) -> int: '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [] for old_item in old_list: _UpperCAmelCase = old_item.replace('in_layers.0' , 'norm1' ) _UpperCAmelCase = new_item.replace('in_layers.2' , 'conv1' ) _UpperCAmelCase = new_item.replace('out_layers.0' , 'norm2' ) _UpperCAmelCase = new_item.replace('out_layers.3' , 'conv2' ) _UpperCAmelCase = new_item.replace('emb_layers.1' , 'time_emb_proj' ) _UpperCAmelCase = new_item.replace('skip_connection' , 'conv_shortcut' ) _UpperCAmelCase = shave_segments(_UpperCAmelCase , n_shave_prefix_segments=_UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str]=0 ) -> int: '''simple docstring''' _UpperCAmelCase = [] for old_item in old_list: _UpperCAmelCase = old_item _UpperCAmelCase = new_item.replace('norm.weight' , 'group_norm.weight' ) _UpperCAmelCase = new_item.replace('norm.bias' , 'group_norm.bias' ) _UpperCAmelCase = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) _UpperCAmelCase = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) _UpperCAmelCase = shave_segments(_UpperCAmelCase , n_shave_prefix_segments=_UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[int]=None ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _UpperCAmelCase = old_checkpoint[path] _UpperCAmelCase = old_tensor.shape[0] // 3 _UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _UpperCAmelCase = old_tensor.shape[0] // config['num_head_channels'] // 3 _UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) _UpperCAmelCase = query.reshape(_UpperCAmelCase ) _UpperCAmelCase = key.reshape(_UpperCAmelCase ) _UpperCAmelCase = value.reshape(_UpperCAmelCase ) for path in paths: _UpperCAmelCase = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _UpperCAmelCase = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) _UpperCAmelCase = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) _UpperCAmelCase = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: _UpperCAmelCase = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _UpperCAmelCase = old_checkpoint[path['old']][:, :, 0] else: _UpperCAmelCase = old_checkpoint[path['old']] def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = checkpoint['time_embed.0.weight'] _UpperCAmelCase = checkpoint['time_embed.0.bias'] _UpperCAmelCase = checkpoint['time_embed.2.weight'] _UpperCAmelCase = checkpoint['time_embed.2.bias'] _UpperCAmelCase = checkpoint['input_blocks.0.0.weight'] _UpperCAmelCase = checkpoint['input_blocks.0.0.bias'] _UpperCAmelCase = checkpoint['out.0.weight'] _UpperCAmelCase = checkpoint['out.0.bias'] _UpperCAmelCase = checkpoint['out.2.weight'] _UpperCAmelCase = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only _UpperCAmelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) _UpperCAmelCase = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the middle blocks only _UpperCAmelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) _UpperCAmelCase = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the output blocks only _UpperCAmelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) _UpperCAmelCase = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } for i in range(1 , _UpperCAmelCase ): _UpperCAmelCase = (i - 1) // (config['num_res_blocks'] + 1) _UpperCAmelCase = (i - 1) % (config['num_res_blocks'] + 1) _UpperCAmelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _UpperCAmelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _UpperCAmelCase = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _UpperCAmelCase = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) _UpperCAmelCase = {'old': F"input_blocks.{i}.0", 'new': F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _UpperCAmelCase = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=_UpperCAmelCase ) if len(_UpperCAmelCase ): _UpperCAmelCase = renew_attention_paths(_UpperCAmelCase ) _UpperCAmelCase = { 'old': F"input_blocks.{i}.1", 'new': F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _UpperCAmelCase = { F"input_blocks.{i}.1.qkv.bias": { 'key': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", 'query': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", 'value': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { 'key': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", 'query': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", 'value': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=_UpperCAmelCase , config=_UpperCAmelCase , ) _UpperCAmelCase = middle_blocks[0] _UpperCAmelCase = middle_blocks[1] _UpperCAmelCase = middle_blocks[2] _UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , config=_UpperCAmelCase ) _UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , config=_UpperCAmelCase ) _UpperCAmelCase = renew_attention_paths(_UpperCAmelCase ) _UpperCAmelCase = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , attention_paths_to_split=_UpperCAmelCase , config=_UpperCAmelCase ) for i in range(_UpperCAmelCase ): _UpperCAmelCase = i // (config['num_res_blocks'] + 1) _UpperCAmelCase = i % (config['num_res_blocks'] + 1) _UpperCAmelCase = [shave_segments(_UpperCAmelCase , 2 ) for name in output_blocks[i]] _UpperCAmelCase = {} for layer in output_block_layers: _UpperCAmelCase , _UpperCAmelCase = layer.split('.' )[0], shave_segments(_UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_UpperCAmelCase ) else: _UpperCAmelCase = [layer_name] if len(_UpperCAmelCase ) > 1: _UpperCAmelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _UpperCAmelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) _UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) _UpperCAmelCase = {'old': F"output_blocks.{i}.0", 'new': F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _UpperCAmelCase = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) _UpperCAmelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _UpperCAmelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(_UpperCAmelCase ) == 2: _UpperCAmelCase = [] if len(_UpperCAmelCase ): _UpperCAmelCase = renew_attention_paths(_UpperCAmelCase ) _UpperCAmelCase = { 'old': F"output_blocks.{i}.1", 'new': F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _UpperCAmelCase = { F"output_blocks.{i}.1.qkv.bias": { 'key': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", 'query': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", 'value': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { 'key': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", 'query': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", 'value': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=_UpperCAmelCase , ) else: _UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _UpperCAmelCase = '.'.join(['output_blocks', str(_UpperCAmelCase ), path['old']] ) _UpperCAmelCase = '.'.join(['up_blocks', str(_UpperCAmelCase ), 'resnets', str(_UpperCAmelCase ), path['new']] ) _UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCAmelCase__ = json.loads(f.read()) UpperCAmelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCAmelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCAmelCase__ = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) UpperCAmelCase__ = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) UpperCAmelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
from __future__ import annotations UpperCAmelCase__ = "#" class __lowerCAmelCase : def __init__( self : Union[str, Any]) -> None: """simple docstring""" _UpperCAmelCase = {} def _lowerCamelCase ( self : List[Any] , A : str) -> None: """simple docstring""" _UpperCAmelCase = self._trie for char in text: if char not in trie: _UpperCAmelCase = {} _UpperCAmelCase = trie[char] _UpperCAmelCase = True def _lowerCamelCase ( self : Tuple , A : str) -> tuple | list: """simple docstring""" _UpperCAmelCase = self._trie for char in prefix: if char in trie: _UpperCAmelCase = trie[char] else: return [] return self._elements(A) def _lowerCamelCase ( self : List[str] , A : dict) -> tuple: """simple docstring""" _UpperCAmelCase = [] for c, v in d.items(): _UpperCAmelCase = [' '] if c == END else [(c + s) for s in self._elements(A)] result.extend(A) return tuple(A) UpperCAmelCase__ = Trie() UpperCAmelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def A ( _UpperCAmelCase : str ) -> tuple: '''simple docstring''' _UpperCAmelCase = trie.find_word(_UpperCAmelCase ) return tuple(string + word for word in suffixes ) def A ( ) -> None: '''simple docstring''' print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } UpperCAmelCase__ = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } UpperCAmelCase__ = "</w>" UpperCAmelCase__ = "@@ " def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs # Speech2Text2 has no max input length UpperCAmelCase__ = {"facebook/s2t-wav2vec2-large-en-de": 1024} class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , A : List[Any] , A : Tuple="<s>" , A : List[Any]="<pad>" , A : Optional[Any]="</s>" , A : Optional[int]="<unk>" , A : Tuple=False , A : int=None , **A : Optional[Any] , ) -> str: """simple docstring""" super().__init__( unk_token=A , bos_token=A , eos_token=A , pad_token=A , do_lower_case=A , **A , ) _UpperCAmelCase = do_lower_case with open(A , encoding='utf-8') as vocab_handle: _UpperCAmelCase = json.load(A) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _UpperCAmelCase = None _UpperCAmelCase = None else: with open(A , encoding='utf-8') as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n')[:-1] _UpperCAmelCase = [tuple(merge.split()[:2]) for merge in merges] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = {} @property def _lowerCamelCase ( self : str) -> int: """simple docstring""" return len(self.decoder) def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self : str , A : Optional[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _UpperCAmelCase = get_pairs(A) if not pairs: return token while True: _UpperCAmelCase = min(A , key=lambda A: self.bpe_ranks.get(A , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(A): try: _UpperCAmelCase = word.index(A , A) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCAmelCase = j if word[i] == first and i < len(A) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCAmelCase = tuple(A) _UpperCAmelCase = new_word if len(A) == 1: break else: _UpperCAmelCase = get_pairs(A) _UpperCAmelCase = ' '.join(A) if word == "\n " + BPE_TOKEN_MERGES: _UpperCAmelCase = '\n' + BPE_TOKEN_MERGES if word.endswith(A): _UpperCAmelCase = word.replace(A , '') _UpperCAmelCase = word.replace(' ' , A) _UpperCAmelCase = word return word def _lowerCamelCase ( self : Any , A : Dict) -> Union[str, Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: _UpperCAmelCase = text.lower() _UpperCAmelCase = text.split() _UpperCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(A).split(' '))) return split_tokens def _lowerCamelCase ( self : Tuple , A : str) -> int: """simple docstring""" return self.encoder.get(A , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self : str , A : int) -> str: """simple docstring""" _UpperCAmelCase = self.decoder.get(A , self.unk_token) return result def _lowerCamelCase ( self : Tuple , A : List[str]) -> str: """simple docstring""" _UpperCAmelCase = ' '.join(A) # make sure @@ tokens are concatenated _UpperCAmelCase = ''.join(string.split(A)) return string def _lowerCamelCase ( self : Any , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A) + '\n') _UpperCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(A , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!') _UpperCAmelCase = token_index writer.write(' '.join(A) + '\n') index += 1 return (vocab_file, merges_file)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __lowerCAmelCase ( A ): def __init__( self : int , A : int = 1_01) -> Optional[int]: """simple docstring""" _UpperCAmelCase = length def __len__( self : Union[str, Any]) -> List[str]: """simple docstring""" return self.length def __getitem__( self : Tuple , A : Union[str, Any]) -> int: """simple docstring""" return i class __lowerCAmelCase : def __call__( self : Optional[Any] , A : str) -> Union[str, Any]: """simple docstring""" return {"input_ids": torch.tensor(A), "labels": torch.tensor(A)} class __lowerCAmelCase ( nn.Module ): def __init__( self : int) -> Tuple: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase = nn.Linear(1_20 , 80) def _lowerCamelCase ( self : int , A : str , A : Tuple=None) -> List[str]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class __lowerCAmelCase ( A ): @require_torch_neuroncore def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"--output_dir {output_dir}".split() _UpperCAmelCase = ['torchrun'] + distributed_args + args execute_subprocess_async(A , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class __lowerCAmelCase ( A ): @require_torch_multi_gpu def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"--output_dir {output_dir}".split() _UpperCAmelCase = ['torchrun'] + distributed_args + args execute_subprocess_async(A , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase__ = HfArgumentParser((TrainingArguments,)) UpperCAmelCase__ = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: UpperCAmelCase__ = DummyDataset(dataset_length) def A ( _UpperCAmelCase : EvalPrediction ) -> Dict: '''simple docstring''' _UpperCAmelCase = list(range(len(_UpperCAmelCase ) ) ) _UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} UpperCAmelCase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase__ = 2 UpperCAmelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase__ = None
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = get_activation('swish') self.assertIsInstance(A , nn.SiLU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = get_activation('silu') self.assertIsInstance(A , nn.SiLU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = get_activation('mish') self.assertIsInstance(A , nn.Mish) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = get_activation('gelu') self.assertIsInstance(A , nn.GELU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : def __init__( self : Any , A : Any , A : Any=3 , A : Optional[Any]=32 , A : str=3 , A : Optional[Any]=10 , A : str=[10, 20, 30, 40] , A : int=[1, 1, 2, 1] , A : Optional[Any]=True , A : Tuple=True , A : Any="relu" , A : Union[str, Any]=3 , A : List[str]=None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCamelCase ( self : Optional[int] , A : int , A : Tuple , A : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = RegNetModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self : Optional[Any] , A : Union[str, Any] , A : Any , A : Any) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = RegNetForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" _UpperCAmelCase = RegNetModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , has_text_modality=A) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds') def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings') def _lowerCamelCase ( self : int) -> str: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=A) for name, module in model.named_modules(): if isinstance(A , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" def check_hidden_states_output(A : Optional[Any] , A : int , A : Union[str, Any]): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(A) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = RegNetModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> Any: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4))
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def A ( _UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [False] * len(_UpperCAmelCase ) _UpperCAmelCase = [-1] * len(_UpperCAmelCase ) def dfs(_UpperCAmelCase : Dict , _UpperCAmelCase : int ): _UpperCAmelCase = True _UpperCAmelCase = c for u in graph[v]: if not visited[u]: dfs(_UpperCAmelCase , 1 - c ) for i in range(len(_UpperCAmelCase ) ): if not visited[i]: dfs(_UpperCAmelCase , 0 ) for i in range(len(_UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
from collections.abc import Sequence from queue import Queue class __lowerCAmelCase : def __init__( self : List[str] , A : List[str] , A : Optional[Any] , A : int , A : Dict=None , A : Optional[Any]=None) -> Optional[int]: """simple docstring""" _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = val _UpperCAmelCase = (start + end) // 2 _UpperCAmelCase = left _UpperCAmelCase = right def __repr__( self : str) -> Tuple: """simple docstring""" return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class __lowerCAmelCase : def __init__( self : List[Any] , A : Sequence , A : Any) -> List[str]: """simple docstring""" _UpperCAmelCase = collection _UpperCAmelCase = function if self.collection: _UpperCAmelCase = self._build_tree(0 , len(A) - 1) def _lowerCamelCase ( self : Dict , A : Union[str, Any] , A : List[str]) -> Optional[Any]: """simple docstring""" self._update_tree(self.root , A , A) def _lowerCamelCase ( self : Optional[Any] , A : List[str] , A : List[str]) -> List[str]: """simple docstring""" return self._query_range(self.root , A , A) def _lowerCamelCase ( self : Any , A : Optional[Any] , A : List[Any]) -> List[str]: """simple docstring""" if start == end: return SegmentTreeNode(A , A , self.collection[start]) _UpperCAmelCase = (start + end) // 2 _UpperCAmelCase = self._build_tree(A , A) _UpperCAmelCase = self._build_tree(mid + 1 , A) return SegmentTreeNode(A , A , self.fn(left.val , right.val) , A , A) def _lowerCamelCase ( self : Dict , A : Any , A : Optional[int] , A : Union[str, Any]) -> Dict: """simple docstring""" if node.start == i and node.end == i: _UpperCAmelCase = val return if i <= node.mid: self._update_tree(node.left , A , A) else: self._update_tree(node.right , A , A) _UpperCAmelCase = self.fn(node.left.val , node.right.val) def _lowerCamelCase ( self : List[str] , A : Any , A : Tuple , A : Union[str, Any]) -> Tuple: """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , A , A) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , A , node.mid) , self._query_range(node.right , node.mid + 1 , A) , ) else: # range in right child tree return self._query_range(node.right , A , A) def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" if self.root is not None: _UpperCAmelCase = Queue() queue.put(self.root) while not queue.empty(): _UpperCAmelCase = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) UpperCAmelCase__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger UpperCAmelCase__ = get_logger(__name__) UpperCAmelCase__ = Path(__file__).parent / "model_card_template.md" UpperCAmelCase__ = uuida().hex UpperCAmelCase__ = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES UpperCAmelCase__ = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES UpperCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def A ( _UpperCAmelCase : Union[Dict, str, None] = None ) -> str: '''simple docstring''' _UpperCAmelCase = F"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"; torch/{_torch_version}" if is_flax_available(): ua += F"; jax/{_jax_version}" ua += F"; flax/{_flax_version}" if is_onnx_available(): ua += F"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): ua += "; " + "; ".join(F"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): ua += "; " + user_agent return ua def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None ) -> Optional[Any]: '''simple docstring''' if token is None: _UpperCAmelCase = HfFolder.get_token() if organization is None: _UpperCAmelCase = whoami(_UpperCAmelCase )['name'] return F"{username}/{model_id}" else: return F"{organization}/{model_id}" def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(_UpperCAmelCase , 'local_rank' ) and args.local_rank not in [-1, 0]: return _UpperCAmelCase = args.hub_token if hasattr(_UpperCAmelCase , 'hub_token' ) else None _UpperCAmelCase = get_full_repo_name(_UpperCAmelCase , token=_UpperCAmelCase ) _UpperCAmelCase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_UpperCAmelCase , model_name=_UpperCAmelCase , repo_name=_UpperCAmelCase , dataset_name=args.dataset_name if hasattr(_UpperCAmelCase , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_UpperCAmelCase , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_UpperCAmelCase , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(_UpperCAmelCase , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_UpperCAmelCase , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_UpperCAmelCase , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_UpperCAmelCase , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_UpperCAmelCase , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_UpperCAmelCase , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(_UpperCAmelCase , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_UpperCAmelCase , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) _UpperCAmelCase = os.path.join(args.output_dir , 'README.md' ) model_card.save(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] = None ) -> List[Any]: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash _UpperCAmelCase = str(Path(_UpperCAmelCase ).as_posix() ) _UpperCAmelCase = re.search(R'snapshots/([^/]+)/' , _UpperCAmelCase ) if search is None: return None _UpperCAmelCase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_UpperCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. UpperCAmelCase__ = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) UpperCAmelCase__ = os.path.join(hf_cache_home, "diffusers") def A ( _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None ) -> None: '''simple docstring''' if new_cache_dir is None: _UpperCAmelCase = DIFFUSERS_CACHE if old_cache_dir is None: _UpperCAmelCase = old_diffusers_cache _UpperCAmelCase = Path(_UpperCAmelCase ).expanduser() _UpperCAmelCase = Path(_UpperCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _UpperCAmelCase = new_cache_dir / old_blob_path.relative_to(_UpperCAmelCase ) new_blob_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) os.replace(_UpperCAmelCase , _UpperCAmelCase ) try: os.symlink(_UpperCAmelCase , _UpperCAmelCase ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). UpperCAmelCase__ = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): UpperCAmelCase__ = 0 else: with open(cache_version_file) as f: try: UpperCAmelCase__ = int(f.read()) except ValueError: UpperCAmelCase__ = 0 if cache_version < 1: UpperCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: UpperCAmelCase__ = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ "the directory exists and can be written to." ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if variant is not None: _UpperCAmelCase = weights_name.split('.' ) _UpperCAmelCase = splits[:-1] + [variant] + splits[-1:] _UpperCAmelCase = '.'.join(_UpperCAmelCase ) return weights_name def A ( _UpperCAmelCase : Union[str, Any] , *, _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any=None , ) -> Any: '''simple docstring''' _UpperCAmelCase = str(_UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(_UpperCAmelCase ): if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ): # Load from a PyTorch checkpoint _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ): _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return model_file else: raise EnvironmentError( F"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_UpperCAmelCase ).base_version ) >= version.parse('0.20.0' ) ): try: _UpperCAmelCase = hf_hub_download( _UpperCAmelCase , filename=_add_variant(_UpperCAmelCase , _UpperCAmelCase ) , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , user_agent=_UpperCAmelCase , subfolder=_UpperCAmelCase , revision=revision or commit_hash , ) warnings.warn( F"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _UpperCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( F"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_UpperCAmelCase , _UpperCAmelCase )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_UpperCAmelCase , _UpperCAmelCase )}' so that the correct variant file can be added." , _UpperCAmelCase , ) try: # 2. Load model file as usual _UpperCAmelCase = hf_hub_download( _UpperCAmelCase , filename=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , user_agent=_UpperCAmelCase , subfolder=_UpperCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " 'this model name. Check the model page at ' F"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( F"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( F"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" F" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" F" directory containing a file named {weights_name} or" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " F"containing a file named {weights_name}" )
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase__ = 50_0000 UpperCAmelCase__ , UpperCAmelCase__ = os.path.split(__file__) UpperCAmelCase__ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def A ( _UpperCAmelCase : datasets.Dataset , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = dataset.map(**_UpperCAmelCase ) @get_duration def A ( _UpperCAmelCase : datasets.Dataset , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = dataset.filter(**_UpperCAmelCase ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _UpperCAmelCase = generate_example_dataset( os.path.join(_UpperCAmelCase , 'dataset.arrow' ) , _UpperCAmelCase , num_examples=_UpperCAmelCase ) _UpperCAmelCase = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCAmelCase ) def tokenize(_UpperCAmelCase : List[str] ): return tokenizer(examples['text'] ) _UpperCAmelCase = map(_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , batched=_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='numpy' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='pandas' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='torch' , columns='numbers' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , function=_UpperCAmelCase , batched=_UpperCAmelCase ) _UpperCAmelCase = filter(_UpperCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(_UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class __lowerCAmelCase ( A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({'''summary''': Value('''string''' )} ) UpperCamelCase = "text" UpperCamelCase = "summary" @property def _lowerCamelCase ( self : Optional[Any]) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
639
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __lowerCAmelCase : UpperCamelCase = None UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = None UpperCamelCase = None UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None UpperCamelCase = 1 UpperCamelCase = None UpperCamelCase = False UpperCamelCase = None UpperCamelCase = None def _lowerCamelCase ( self : Optional[int]) -> "DownloadConfig": """simple docstring""" return self.__class__(**{k: copy.deepcopy(A) for k, v in self.__dict__.items()})
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
import pprint import requests UpperCAmelCase__ = "https://zenquotes.io/api" def A ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def A ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCAmelCase__ = random_quotes() pprint.pprint(response)
639
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(A): _UpperCAmelCase = AutoConfig.from_pretrained(A) self.assertIsNotNone(A) self.assertIsInstance(A , A) _UpperCAmelCase = FlaxAutoModel.from_pretrained(A) self.assertIsNotNone(A) self.assertIsInstance(A , A) @slow def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(A): _UpperCAmelCase = AutoConfig.from_pretrained(A) self.assertIsNotNone(A) self.assertIsInstance(A , A) _UpperCAmelCase = FlaxAutoModel.from_pretrained(A) self.assertIsNotNone(A) self.assertIsInstance(A , A) @slow def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: _UpperCAmelCase = AutoTokenizer.from_pretrained(A) _UpperCAmelCase = FlaxBertModel.from_pretrained(A) _UpperCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**A : List[Any]): return model(**A) eval(**A).block_until_ready() @slow def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: _UpperCAmelCase = AutoTokenizer.from_pretrained(A) _UpperCAmelCase = FlaxRobertaModel.from_pretrained(A) _UpperCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**A : List[Any]): return model(**A) eval(**A).block_until_ready() def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( A , 'bert-base is not a local folder and is not a valid model identifier'): _UpperCAmelCase = FlaxAutoModel.from_pretrained('bert-base') def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" with self.assertRaisesRegex( A , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): _UpperCAmelCase = FlaxAutoModel.from_pretrained(A , revision='aaaaaa') def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( A , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _UpperCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model') def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" with self.assertRaisesRegex(A , 'Use `from_pt=True` to load this model'): _UpperCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only')
639
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} UpperCAmelCase__ = [ { "type": "header", "text": { "type": "plain_text", "text": f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", "emoji": True, }, } ] UpperCAmelCase__ = 0 for log in Path().glob("*.log"): UpperCAmelCase__ = 0 with open(log, "r") as f: for line in f: UpperCAmelCase__ = json.loads(line) if line.get("nodeid", "") != "": UpperCAmelCase__ = line["nodeid"] if line.get("duration", None) is not None: UpperCAmelCase__ = f"""{line["duration"]:.4f}""" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase__ = [] log.unlink() UpperCAmelCase__ = "" UpperCAmelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase__ = [] UpperCAmelCase__ = {} for test in failed_tests: UpperCAmelCase__ = test[0].split("::") UpperCAmelCase__ = data[0].split("/")[-1] if data[0] not in filesafailed: UpperCAmelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase__ = [test[0] for test in failed_table] UpperCAmelCase__ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase__ = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCAmelCase__ = "Too many failed tests, please see the full report in the Action results." UpperCAmelCase__ = len(err) + 10 UpperCAmelCase__ = message[: 3000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase__ = "No failed tests! 🤗" print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient UpperCAmelCase__ = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": UpperCAmelCase__ = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) UpperCAmelCase__ = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase__ = { "type": "context", "elements": [ { "type": "plain_text", "text": f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase__ = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) UpperCAmelCase__ = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase__ = "" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase__ = row[0] else: UpperCAmelCase__ = "" UpperCAmelCase__ = { "type": "section", "text": { "type": "mrkdwn", "text": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
def A ( _UpperCAmelCase : list , _UpperCAmelCase : int = 0 ) -> list: '''simple docstring''' _UpperCAmelCase = length or len(_UpperCAmelCase ) _UpperCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _UpperCAmelCase , _UpperCAmelCase = list_data[i + 1], list_data[i] _UpperCAmelCase = True return list_data if not swapped else bubble_sort(_UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __lowerCAmelCase ( A ): UpperCamelCase = '''pix2struct_text_model''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , A : List[Any]=5_02_44 , A : str=7_68 , A : List[Any]=64 , A : Union[str, Any]=20_48 , A : List[Any]=12 , A : Tuple=12 , A : Tuple=32 , A : List[Any]=1_28 , A : List[Any]=0.1 , A : Optional[Any]=1E-6 , A : Tuple=1.0 , A : List[Any]="gelu_new" , A : Optional[int]=0 , A : Any=False , A : List[str]=0 , A : List[Any]=1 , A : Union[str, Any]=False , A : Optional[int]=True , **A : Any , ) -> Dict: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_layers _UpperCAmelCase = num_heads _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = use_cache _UpperCAmelCase = eos_token_id _UpperCAmelCase = decoder_start_token_id # for backwards compatibility _UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=A , eos_token_id=A , decoder_start_token_id=A , tie_word_embeddings=A , is_decoder=A , **A , ) @classmethod def _lowerCamelCase ( cls : List[str] , A : Union[str, os.PathLike] , **A : List[str]) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(A , **A) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": _UpperCAmelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(A , **A) class __lowerCAmelCase ( A ): UpperCamelCase = '''pix2struct_vision_model''' def __init__( self : Tuple , A : str=7_68 , A : Dict=7_68 , A : Optional[Any]=20_48 , A : Any=64 , A : Dict=12 , A : Tuple=12 , A : Tuple="gelu_new" , A : Optional[int]=1E-6 , A : List[str]=0.0 , A : Optional[int]=0.0 , A : Optional[int]=1E-10 , A : Any=1.0 , A : List[str]=40_96 , A : List[str]=32 , A : List[str]=1_28 , **A : Union[str, Any] , ) -> List[str]: """simple docstring""" super().__init__(**A) _UpperCAmelCase = hidden_size _UpperCAmelCase = patch_embed_hidden_size _UpperCAmelCase = d_ff _UpperCAmelCase = dropout_rate _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_factor _UpperCAmelCase = attention_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = dense_act_fn _UpperCAmelCase = seq_len _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = d_kv @classmethod def _lowerCamelCase ( cls : str , A : Union[str, os.PathLike] , **A : Union[str, Any]) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(A , **A) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": _UpperCAmelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(A , **A) class __lowerCAmelCase ( A ): UpperCamelCase = '''pix2struct''' UpperCamelCase = True def __init__( self : Union[str, Any] , A : Union[str, Any]=None , A : Tuple=None , A : Union[str, Any]=1.0 , A : Tuple=0.0_2 , A : Any=False , A : int=False , A : Optional[int]=True , **A : Tuple , ) -> int: """simple docstring""" super().__init__(tie_word_embeddings=A , is_encoder_decoder=A , **A) if text_config is None: _UpperCAmelCase = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.') if vision_config is None: _UpperCAmelCase = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.') _UpperCAmelCase = PixaStructTextConfig(**A) _UpperCAmelCase = PixaStructVisionConfig(**A) _UpperCAmelCase = self.text_config.decoder_start_token_id _UpperCAmelCase = self.text_config.pad_token_id _UpperCAmelCase = self.text_config.eos_token_id _UpperCAmelCase = initializer_factor _UpperCAmelCase = initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = is_vqa @classmethod def _lowerCamelCase ( cls : List[Any] , A : PixaStructTextConfig , A : PixaStructVisionConfig , **A : str) -> str: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = 42 class __lowerCAmelCase ( nn.Module ): UpperCamelCase = 42 UpperCamelCase = (1_6, 3_2, 9_6, 2_5_6) UpperCamelCase = jnp.floataa def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = [] for i in range(len(self.block_out_channels) - 1): _UpperCAmelCase = self.block_out_channels[i] _UpperCAmelCase = self.block_out_channels[i + 1] _UpperCAmelCase = nn.Conv( A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A) _UpperCAmelCase = nn.Conv( A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A) _UpperCAmelCase = blocks _UpperCAmelCase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , A : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.conv_in(A) _UpperCAmelCase = nn.silu(A) for block in self.blocks: _UpperCAmelCase = block(A) _UpperCAmelCase = nn.silu(A) _UpperCAmelCase = self.conv_out(A) return embedding @flax_register_to_config class __lowerCAmelCase ( nn.Module , A , A ): UpperCamelCase = 3_2 UpperCamelCase = 4 UpperCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase = False UpperCamelCase = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) UpperCamelCase = 2 UpperCamelCase = 8 UpperCamelCase = None UpperCamelCase = 1_2_8_0 UpperCamelCase = 0.0 UpperCamelCase = False UpperCamelCase = jnp.floataa UpperCamelCase = True UpperCamelCase = 0 UpperCamelCase = "rgb" UpperCamelCase = (1_6, 3_2, 9_6, 2_5_6) def _lowerCamelCase ( self : str , A : jax.random.KeyArray) -> FrozenDict: """simple docstring""" _UpperCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCAmelCase = jnp.zeros(A , dtype=jnp.floataa) _UpperCAmelCase = jnp.ones((1,) , dtype=jnp.intaa) _UpperCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) _UpperCAmelCase = (1, 3, self.sample_size * 8, self.sample_size * 8) _UpperCAmelCase = jnp.zeros(A , dtype=jnp.floataa) _UpperCAmelCase , _UpperCAmelCase = jax.random.split(A) _UpperCAmelCase = {'params': params_rng, 'dropout': dropout_rng} return self.init(A , A , A , A , A)["params"] def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.block_out_channels _UpperCAmelCase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCAmelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) _UpperCAmelCase = FlaxTimestepEmbedding(A , dtype=self.dtype) _UpperCAmelCase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _UpperCAmelCase = self.only_cross_attention if isinstance(A , A): _UpperCAmelCase = (only_cross_attention,) * len(self.down_block_types) if isinstance(A , A): _UpperCAmelCase = (num_attention_heads,) * len(self.down_block_types) # down _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = block_out_channels[0] _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A) for i, down_block_type in enumerate(self.down_block_types): _UpperCAmelCase = output_channel _UpperCAmelCase = block_out_channels[i] _UpperCAmelCase = i == len(A) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _UpperCAmelCase = FlaxDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A) for _ in range(self.layers_per_block): _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A) if not is_final_block: _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A) _UpperCAmelCase = down_blocks _UpperCAmelCase = controlnet_down_blocks # mid _UpperCAmelCase = block_out_channels[-1] _UpperCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[Any] , A : Any , A : Any , A : Any , A : List[str] , A : float = 1.0 , A : bool = True , A : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" _UpperCAmelCase = self.controlnet_conditioning_channel_order if channel_order == "bgr": _UpperCAmelCase = jnp.flip(A , axis=1) # 1. time if not isinstance(A , jnp.ndarray): _UpperCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(A , jnp.ndarray) and len(timesteps.shape) == 0: _UpperCAmelCase = timesteps.astype(dtype=jnp.floataa) _UpperCAmelCase = jnp.expand_dims(A , 0) _UpperCAmelCase = self.time_proj(A) _UpperCAmelCase = self.time_embedding(A) # 2. pre-process _UpperCAmelCase = jnp.transpose(A , (0, 2, 3, 1)) _UpperCAmelCase = self.conv_in(A) _UpperCAmelCase = jnp.transpose(A , (0, 2, 3, 1)) _UpperCAmelCase = self.controlnet_cond_embedding(A) sample += controlnet_cond # 3. down _UpperCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(A , A): _UpperCAmelCase , _UpperCAmelCase = down_block(A , A , A , deterministic=not train) else: _UpperCAmelCase , _UpperCAmelCase = down_block(A , A , deterministic=not train) down_block_res_samples += res_samples # 4. mid _UpperCAmelCase = self.mid_block(A , A , A , deterministic=not train) # 5. contronet blocks _UpperCAmelCase = () for down_block_res_sample, controlnet_block in zip(A , self.controlnet_down_blocks): _UpperCAmelCase = controlnet_block(A) controlnet_down_block_res_samples += (down_block_res_sample,) _UpperCAmelCase = controlnet_down_block_res_samples _UpperCAmelCase = self.controlnet_mid_block(A) # 6. scaling _UpperCAmelCase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A , mid_block_res_sample=A)
639
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
1
import fire from utils import calculate_rouge, save_json def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' _UpperCAmelCase = [x.strip() for x in open(_UpperCAmelCase ).readlines()] _UpperCAmelCase = [x.strip() for x in open(_UpperCAmelCase ).readlines()][: len(_UpperCAmelCase )] _UpperCAmelCase = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) if save_path is not None: save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''funnel''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Any , A : Any=3_05_22 , A : Tuple=[4, 4, 4] , A : Tuple=None , A : Union[str, Any]=2 , A : int=7_68 , A : Union[str, Any]=12 , A : Any=64 , A : List[str]=30_72 , A : List[str]="gelu_new" , A : List[str]=0.1 , A : Union[str, Any]=0.1 , A : str=0.0 , A : Union[str, Any]=0.1 , A : Tuple=None , A : List[str]=1E-9 , A : Union[str, Any]="mean" , A : List[str]="relative_shift" , A : Dict=True , A : List[str]=True , A : Dict=True , **A : Tuple , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = block_sizes _UpperCAmelCase = [1] * len(A) if block_repeats is None else block_repeats assert len(A) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." _UpperCAmelCase = num_decoder_layers _UpperCAmelCase = d_model _UpperCAmelCase = n_head _UpperCAmelCase = d_head _UpperCAmelCase = d_inner _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_std _UpperCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." _UpperCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." _UpperCAmelCase = attention_type _UpperCAmelCase = separate_cls _UpperCAmelCase = truncate_seq _UpperCAmelCase = pool_q_only super().__init__(**A) @property def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" return sum(self.block_sizes) @num_hidden_layers.setter def _lowerCamelCase ( self : Optional[int] , A : Dict) -> Dict: """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.') @property def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" return len(self.block_sizes) @num_blocks.setter def _lowerCamelCase ( self : Union[str, Any] , A : int) -> List[Any]: """simple docstring""" raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.')
639
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' # Load configuration defined in the metadata file with open(_UpperCAmelCase ) as metadata_file: _UpperCAmelCase = json.load(_UpperCAmelCase ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_UpperCAmelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )['module'] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_UpperCAmelCase ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('<ent>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _UpperCAmelCase = AddedToken('<ent2>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'r' ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) _UpperCAmelCase = 'MLukeTokenizer' with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_UpperCAmelCase ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] _UpperCAmelCase = state_dict['embeddings.word_embeddings.weight'] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = F"encoder.layer.{layer_index}.attention.self." _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['entity_embeddings.entity_embeddings.weight'] _UpperCAmelCase = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['entity_predictions.bias'] _UpperCAmelCase = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_UpperCAmelCase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if set(_UpperCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(_UpperCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_UpperCAmelCase , task='entity_classification' ) _UpperCAmelCase = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_UpperCAmelCase , entity_spans=[span] , return_tensors='pt' ) _UpperCAmelCase = model(**_UpperCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = 'Tokyo is the capital of <mask>.' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_UpperCAmelCase , entity_spans=[span] , return_tensors='pt' ) _UpperCAmelCase = model(**_UpperCAmelCase ) _UpperCAmelCase = encoding['input_ids'][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_UpperCAmelCase ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_UpperCAmelCase ) ) model.save_pretrained(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _UpperCAmelCase = ['[MASK]', '[PAD]', '[UNK]'] _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in open(_UpperCAmelCase )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = F"{language}:{entity_name}" _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) UpperCAmelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
639
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
1
from __future__ import annotations UpperCAmelCase__ = tuple[int, int, int] UpperCAmelCase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCAmelCase__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCAmelCase__ = "EGZWVONAHDCLFQMSIPJBYUKXTR" UpperCAmelCase__ = "FOBHMDKEXQNRAULPGSJVTYICZW" UpperCAmelCase__ = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- UpperCAmelCase__ = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- UpperCAmelCase__ = "RMDJXFUWGISLHVTCQNKYPBEZOA" UpperCAmelCase__ = "SGLCPQWZHKXAREONTFBVIYJUDM" UpperCAmelCase__ = "HVSICLTYKQUBXDWAJZOMFGPREN" UpperCAmelCase__ = "RZWQHFMVDBKICJLNTUXAGYPSOE" UpperCAmelCase__ = "LFKIJODBEGAMQPXVUHYSTCZRWN" UpperCAmelCase__ = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def A ( _UpperCAmelCase : RotorPositionT , _UpperCAmelCase : RotorSelectionT , _UpperCAmelCase : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_UpperCAmelCase ) )) < 3: _UpperCAmelCase = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_UpperCAmelCase ) # Checks if rotor positions are valid _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rotpos if not 0 < rotorposa <= len(_UpperCAmelCase ): _UpperCAmelCase = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): _UpperCAmelCase = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): _UpperCAmelCase = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_UpperCAmelCase ) # Validates string and returns dict _UpperCAmelCase = _plugboard(_UpperCAmelCase ) return rotpos, rotsel, pbdict def A ( _UpperCAmelCase : str ) -> dict[str, str]: '''simple docstring''' # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Plugboard setting isn't type string ({type(_UpperCAmelCase )})" raise TypeError(_UpperCAmelCase ) elif len(_UpperCAmelCase ) % 2 != 0: _UpperCAmelCase = F"Odd number of symbols ({len(_UpperCAmelCase )})" raise Exception(_UpperCAmelCase ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique _UpperCAmelCase = set() for i in pbstring: if i not in abc: _UpperCAmelCase = F"'{i}' not in list of symbols" raise Exception(_UpperCAmelCase ) elif i in tmppbl: _UpperCAmelCase = F"Duplicate symbol ({i})" raise Exception(_UpperCAmelCase ) else: tmppbl.add(_UpperCAmelCase ) del tmppbl # Created the dictionary _UpperCAmelCase = {} for j in range(0 , len(_UpperCAmelCase ) - 1 , 2 ): _UpperCAmelCase = pbstring[j + 1] _UpperCAmelCase = pbstring[j] return pb def A ( _UpperCAmelCase : str , _UpperCAmelCase : RotorPositionT , _UpperCAmelCase : RotorSelectionT = (rotora, rotora, rotora) , _UpperCAmelCase : str = "" , ) -> str: '''simple docstring''' _UpperCAmelCase = text.upper() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _validator( _UpperCAmelCase , _UpperCAmelCase , plugb.upper() ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rotor_position _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCAmelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCAmelCase = plugboard[symbol] # rotor ra -------------------------- _UpperCAmelCase = abc.index(_UpperCAmelCase ) + rotorposa _UpperCAmelCase = rotora[index % len(_UpperCAmelCase )] # rotor rb -------------------------- _UpperCAmelCase = abc.index(_UpperCAmelCase ) + rotorposa _UpperCAmelCase = rotora[index % len(_UpperCAmelCase )] # rotor rc -------------------------- _UpperCAmelCase = abc.index(_UpperCAmelCase ) + rotorposa _UpperCAmelCase = rotora[index % len(_UpperCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCAmelCase = reflector[symbol] # 2nd rotors _UpperCAmelCase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] _UpperCAmelCase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] _UpperCAmelCase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCAmelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): _UpperCAmelCase = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): _UpperCAmelCase = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): _UpperCAmelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = "This is my Python script that emulates the Enigma machine from WWII." UpperCAmelCase__ = (1, 1, 1) UpperCAmelCase__ = "pictures" UpperCAmelCase__ = (rotora, rotora, rotora) UpperCAmelCase__ = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
639
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : Dict , *A : List[Any] , **A : List[Any]) -> None: """simple docstring""" warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , A , ) super().__init__(*A , **A)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
import functools from typing import Any def A ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] ) -> bool: '''simple docstring''' # Validation if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not all( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie _UpperCAmelCase = {} _UpperCAmelCase = 'WORD_KEEPER' for word in words: _UpperCAmelCase = trie for c in word: if c not in trie_node: _UpperCAmelCase = {} _UpperCAmelCase = trie_node[c] _UpperCAmelCase = True _UpperCAmelCase = len(_UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_UpperCAmelCase : int ) -> bool: if index == len_string: return True _UpperCAmelCase = trie for i in range(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = trie_node.get(string[i] , _UpperCAmelCase ) if trie_node is None: return False if trie_node.get(_UpperCAmelCase , _UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
639
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = BigBirdConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: _UpperCAmelCase = BigBirdForQuestionAnswering(_UpperCAmelCase ) else: _UpperCAmelCase = BigBirdForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCAmelCase , _UpperCAmelCase , is_trivia_qa=_UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCAmelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' if isinstance(_UpperCAmelCase , torch.Tensor ): return image elif isinstance(_UpperCAmelCase , PIL.Image.Image ): _UpperCAmelCase = [image] _UpperCAmelCase = [trans(img.convert('RGB' ) ) for img in image] _UpperCAmelCase = torch.stack(_UpperCAmelCase ) return image class __lowerCAmelCase ( A ): def __init__( self : List[Any] , A : Optional[Any] , A : int) -> Optional[Any]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=A , scheduler=A) def _lowerCamelCase ( self : Tuple , A : Any) -> List[str]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}") def _lowerCamelCase ( self : List[str] , A : Any , A : Tuple , A : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = min(int(num_inference_steps * strength) , A) _UpperCAmelCase = max(num_inference_steps - init_timestep , 0) _UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self : Dict , A : List[str] , A : Any , A : List[Any] , A : List[str] , A : str , A : Any=None) -> int: """simple docstring""" if not isinstance(A , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(A)}") _UpperCAmelCase = image.to(device=A , dtype=A) if isinstance(A , A) and len(A) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(A)}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators.") _UpperCAmelCase = init_latents.shape _UpperCAmelCase = randn_tensor(A , generator=A , device=A , dtype=A) # get latents print('add noise to latents at timestep' , A) _UpperCAmelCase = self.scheduler.add_noise(A , A , A) _UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , A : Union[torch.FloatTensor, PIL.Image.Image] = None , A : float = 0.8 , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[bool] = None , A : Optional[str] = "pil" , A : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(A) # 2. Preprocess image _UpperCAmelCase = preprocess(A) # 3. set timesteps self.scheduler.set_timesteps(A , device=self.device) _UpperCAmelCase , _UpperCAmelCase = self.get_timesteps(A , A , self.device) _UpperCAmelCase = timesteps[:1].repeat(A) # 4. Prepare latent variables _UpperCAmelCase = self.prepare_latents(A , A , A , self.unet.dtype , self.device , A) _UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(A): # 1. predict noise model_output _UpperCAmelCase = self.unet(A , A).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step( A , A , A , eta=A , use_clipped_model_output=A , generator=A , ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(A) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=A)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 42 class __lowerCAmelCase ( A , A ): @register_to_config def __init__( self : List[Any] , A : int = 16 , A : int = 88 , A : Optional[int] = None , A : Optional[int] = None , A : int = 1 , A : float = 0.0 , A : int = 32 , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : str = "geglu" , A : bool = True , A : bool = True , ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase = num_attention_heads _UpperCAmelCase = attention_head_dim _UpperCAmelCase = num_attention_heads * attention_head_dim _UpperCAmelCase = in_channels _UpperCAmelCase = torch.nn.GroupNorm(num_groups=A , num_channels=A , eps=1E-6 , affine=A) _UpperCAmelCase = nn.Linear(A , A) # 3. Define transformers blocks _UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock( A , A , A , dropout=A , cross_attention_dim=A , activation_fn=A , attention_bias=A , double_self_attention=A , norm_elementwise_affine=A , ) for d in range(A) ]) _UpperCAmelCase = nn.Linear(A , A) def _lowerCamelCase ( self : List[str] , A : Union[str, Any] , A : Optional[Any]=None , A : Tuple=None , A : Tuple=None , A : List[str]=1 , A : Optional[int]=None , A : bool = True , ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape _UpperCAmelCase = batch_frames // num_frames _UpperCAmelCase = hidden_states _UpperCAmelCase = hidden_states[None, :].reshape(A , A , A , A , A) _UpperCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4) _UpperCAmelCase = self.norm(A) _UpperCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1).reshape(batch_size * height * width , A , A) _UpperCAmelCase = self.proj_in(A) # 2. Blocks for block in self.transformer_blocks: _UpperCAmelCase = block( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , class_labels=A , ) # 3. Output _UpperCAmelCase = self.proj_out(A) _UpperCAmelCase = ( hidden_states[None, None, :] .reshape(A , A , A , A , A) .permute(0 , 3 , 4 , 1 , 2) .contiguous() ) _UpperCAmelCase = hidden_states.reshape(A , A , A , A) _UpperCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A)
639
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
1
UpperCAmelCase__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
639
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
1