code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } UpperCAmelCase__ = {'''allegro/herbert-base-cased''': 514} UpperCAmelCase__ = {} class __lowerCAmelCase ( UpperCAmelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = HerbertTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : Optional[Any]=None , A : Any=None , A : Optional[Any]="<s>" , A : Optional[Any]="<unk>" , A : Union[str, Any]="<pad>" , A : Union[str, Any]="<mask>" , A : str="</s>" , **A : List[Any] , ) -> Any: """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , **__lowerCAmelCase , ) def _lowerCamelCase ( self : str , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : Any , A : List[int] , A : Optional[List[int]] = None , A : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase)) + [1] return [1] + ([0] * len(__lowerCAmelCase)) + [1] + ([0] * len(__lowerCAmelCase)) + [1] def _lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase) return tuple(__lowerCAmelCase)
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCAmelCase ( __UpperCAmelCase ): UpperCamelCase = """EncodecFeatureExtractor""" UpperCamelCase = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Dict , A : Optional[Any] , A : int) -> str: """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def _lowerCamelCase ( self : str , A : Optional[Any]=None , A : Any=None , A : Any=True) -> Optional[int]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=UpperCAmelCase_ , language=UpperCAmelCase_ , no_timestamps=UpperCAmelCase_) def __call__( self : Optional[int] , *A : List[str] , **A : List[Any]) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_) _UpperCAmelCase = kwargs.pop('audio' , UpperCAmelCase_) _UpperCAmelCase = kwargs.pop('sampling_rate' , UpperCAmelCase_) _UpperCAmelCase = kwargs.pop('text' , UpperCAmelCase_) if len(UpperCAmelCase_) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if text is not None: _UpperCAmelCase = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_) if audio is not None: _UpperCAmelCase = self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCAmelCase = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _UpperCAmelCase = audio_inputs['padding_mask'] return inputs def _lowerCamelCase ( self : List[str] , *A : List[Any] , **A : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = kwargs.pop('audio' , UpperCAmelCase_) _UpperCAmelCase = kwargs.pop('padding_mask' , UpperCAmelCase_) if len(UpperCAmelCase_) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(UpperCAmelCase_ , padding_mask=UpperCAmelCase_) else: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def _lowerCamelCase ( self : int , *A : Union[str, Any] , **A : Dict) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) def _lowerCamelCase ( self : int , A : Tuple , A : List[str] = None) -> str: """simple docstring""" _UpperCAmelCase = to_numpy(UpperCAmelCase_) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = audio_values.shape if padding_mask is None: return list(UpperCAmelCase_) _UpperCAmelCase = to_numpy(UpperCAmelCase_) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCAmelCase = seq_len - padding_mask.shape[-1] _UpperCAmelCase = 1 - self.feature_extractor.padding_value _UpperCAmelCase = np.pad(UpperCAmelCase_ , ((0, 0), (0, difference)) , 'constant' , constant_values=UpperCAmelCase_) _UpperCAmelCase = audio_values.tolist() for i in range(UpperCAmelCase_): _UpperCAmelCase = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCAmelCase = sliced_audio.reshape(UpperCAmelCase_ , -1) return audio_values
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCAmelCase ( UpperCamelCase_ ): UpperCamelCase = '''biogpt''' def __init__( self : List[str] , A : Union[str, Any]=4_23_84 , A : List[Any]=10_24 , A : Optional[int]=24 , A : List[Any]=16 , A : List[str]=40_96 , A : str="gelu" , A : str=0.1 , A : Optional[Any]=0.1 , A : Union[str, Any]=10_24 , A : List[str]=0.0_2 , A : Tuple=1E-12 , A : Optional[Any]=True , A : List[Any]=True , A : str=0.0 , A : Any=0.0 , A : str=1 , A : List[str]=0 , A : Dict=2 , **A : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__)
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : def __init__( self : Dict , A : Dict , A : List[str]=13 , A : Optional[int]=3 , A : Dict=True , A : Dict=True , A : Any=0.1 , A : List[str]=0.1 , A : Any=2_24 , A : Tuple=10_00 , A : Union[str, Any]=[3, 3, 6, 4] , A : Union[str, Any]=[48, 56, 1_12, 2_20] , ) -> Any: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = num_labels _UpperCAmelCase = image_size _UpperCAmelCase = layer_depths _UpperCAmelCase = embed_dims def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_SCREAMING_SNAKE_CASE , layer_scale_init_value=1E-5 , ) def _lowerCamelCase ( self : int , A : Union[str, Any] , A : Dict , A : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = SwiftFormerModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7)) def _lowerCamelCase ( self : Optional[int] , A : List[str] , A : int , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = self.prepare_config_and_inputs() _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" _UpperCAmelCase = SwiftFormerModelTester(self) _UpperCAmelCase = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds') def _lowerCamelCase ( self : Any) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear)) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SwiftFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) @unittest.skip(reason='SwiftFormer does not output attentions') def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" pass def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" def check_hidden_states_output(A : Optional[Any] , A : Optional[int] , A : Union[str, Any]): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 8 self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_SCREAMING_SNAKE_CASE)): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ]) , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" def _config_zero_init(A : int): _UpperCAmelCase = copy.deepcopy(_SCREAMING_SNAKE_CASE) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1E-10) if isinstance(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE): _UpperCAmelCase = _config_zero_init(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return configs_no_init _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_SCREAMING_SNAKE_CASE) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_SCREAMING_SNAKE_CASE) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" pass def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : int) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs') if is_vision_available() else None @slow def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs').to(_SCREAMING_SNAKE_CASE) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt').to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) _UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4))
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCAmelCase__ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase__ = "bert" else: raise ValueError("args.model_type should be \"bert\".") UpperCAmelCase__ = model.state_dict() UpperCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase__ = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCAmelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCAmelCase__ = state_dict["cls.predictions.decoder.weight"] UpperCAmelCase__ = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[f"""cls.predictions.transform.dense.{w}"""] UpperCAmelCase__ = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
def _A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def _A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '0' + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '1' + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class __lowerCAmelCase ( __snake_case ): UpperCamelCase = 'retribert' def __init__( self : str , A : Any=3_05_22 , A : Any=7_68 , A : str=8 , A : Union[str, Any]=12 , A : int=30_72 , A : Tuple="gelu" , A : Optional[int]=0.1 , A : List[str]=0.1 , A : Any=5_12 , A : str=2 , A : List[str]=0.0_2 , A : Dict=1E-12 , A : str=True , A : Any=1_28 , A : List[str]=0 , **A : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=A_ , **A_) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = share_encoders _UpperCAmelCase = projection_dim
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py UpperCAmelCase__ : str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Dict = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ : Dict = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") UpperCAmelCase__ : int = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ : Dict = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) UpperCAmelCase__ : Optional[Any] = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def A ( _UpperCAmelCase : int ) -> Dict: '''simple docstring''' _UpperCAmelCase = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _UpperCAmelCase ) return [m.group(0 ) for m in matches] def A ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _UpperCAmelCase = collections.defaultdict(_UpperCAmelCase ) _UpperCAmelCase = collections.defaultdict(_UpperCAmelCase ) _UpperCAmelCase = collections.defaultdict(_UpperCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_UpperCAmelCase ): _UpperCAmelCase = None if _re_tf_models.match(_UpperCAmelCase ) is not None: _UpperCAmelCase = tf_models _UpperCAmelCase = _re_tf_models.match(_UpperCAmelCase ).groups()[0] elif _re_flax_models.match(_UpperCAmelCase ) is not None: _UpperCAmelCase = flax_models _UpperCAmelCase = _re_flax_models.match(_UpperCAmelCase ).groups()[0] elif _re_pt_models.match(_UpperCAmelCase ) is not None: _UpperCAmelCase = pt_models _UpperCAmelCase = _re_pt_models.match(_UpperCAmelCase ).groups()[0] if lookup_dict is not None: while len(_UpperCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: _UpperCAmelCase = True break # Try again after removing the last word in the name _UpperCAmelCase = ''.join(camel_case_split(_UpperCAmelCase )[:-1] ) _UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _UpperCAmelCase = list(_UpperCAmelCase ) all_models.sort() _UpperCAmelCase = {'model_type': all_models} _UpperCAmelCase = [pt_models[t] for t in all_models] _UpperCAmelCase = [tf_models[t] for t in all_models] _UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _UpperCAmelCase = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _UpperCAmelCase = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _UpperCAmelCase = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _UpperCAmelCase = 'AutoTokenizer' _UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _UpperCAmelCase = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] _UpperCAmelCase = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(_UpperCAmelCase , _UpperCAmelCase ): continue # First extract all model_names _UpperCAmelCase = [] for name in getattr(_UpperCAmelCase , _UpperCAmelCase ).values(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): model_names.append(_UpperCAmelCase ) else: model_names.extend(list(_UpperCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' _UpperCAmelCase = get_frameworks_table() _UpperCAmelCase = Dataset.from_pandas(_UpperCAmelCase ) _UpperCAmelCase = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=_UpperCAmelCase ) _UpperCAmelCase = Dataset.from_json(_UpperCAmelCase ) _UpperCAmelCase = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(_UpperCAmelCase ) ) } _UpperCAmelCase = update_pipeline_and_auto_class_table(_UpperCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _UpperCAmelCase = sorted(table.keys() ) _UpperCAmelCase = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) _UpperCAmelCase = Dataset.from_pandas(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_UpperCAmelCase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(_UpperCAmelCase , 'pipeline_tags.json' ) ) if commit_sha is not None: _UpperCAmelCase = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: _UpperCAmelCase = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=_UpperCAmelCase , repo_type='dataset' , token=_UpperCAmelCase , commit_message=_UpperCAmelCase , ) def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS _UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: _UpperCAmelCase = pipeline_tasks[key]['pt'] if isinstance(_UpperCAmelCase , (list, tuple) ): _UpperCAmelCase = model[0] _UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = ', '.join(_UpperCAmelCase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") UpperCAmelCase__ : int = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self : Tuple , A : List[Any] , A : Union[str, Any] , A : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset') _UpperCAmelCase = VideoClassificationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__ , top_k=2) _UpperCAmelCase = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : Tuple) -> List[Any]: """simple docstring""" for example in examples: _UpperCAmelCase = video_classifier(lowerCamelCase__) self.assertEqual( lowerCamelCase__ , [ {'score': ANY(lowerCamelCase__), 'label': ANY(lowerCamelCase__)}, {'score': ANY(lowerCamelCase__), 'label': ANY(lowerCamelCase__)}, ] , ) @require_torch def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" _UpperCAmelCase = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10}) _UpperCAmelCase = pipeline( 'video-classification' , model=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , frame_sampling_rate=4) _UpperCAmelCase = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset') _UpperCAmelCase = video_classifier(lowerCamelCase__ , top_k=2) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4) , [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}] , ) _UpperCAmelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4) , [ [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], ] , ) @require_tf def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" pass
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = cva.getAffineTransform(UpperCamelCase__ , UpperCamelCase__ ) return cva.warpAffine(UpperCamelCase__ , UpperCamelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase__ = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value UpperCAmelCase__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase__ = gray_img.shape # set different points to rotate image UpperCAmelCase__ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase__ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase__ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase__ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase__ = plt.figure(1) UpperCAmelCase__ = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
from __future__ import annotations from dataclasses import dataclass @dataclass class __lowerCAmelCase : UpperCamelCase = 4_2 UpperCamelCase = None UpperCamelCase = None def A ( _UpperCAmelCase : TreeNode | None ) -> int: '''simple docstring''' def is_valid_tree(_UpperCAmelCase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_UpperCamelCase , _UpperCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_UpperCamelCase ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( _UpperCAmelCase : TreeNode | None , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _UpperCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _UpperCamelCase ) ) return is_binary_search_tree_recursive_check(_UpperCamelCase , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' if number > 0: raise ValueError('input must be a negative integer' ) _UpperCAmelCase = len(bin(_UpperCAmelCase )[3:] ) _UpperCAmelCase = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] _UpperCAmelCase = ( ( '1' + '0' * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False, False, False @dataclass class __lowerCAmelCase : UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase = field(default='''Audio''' , init=A , repr=A ) def __call__( self : Tuple) -> List[Any]: """simple docstring""" return self.pa_type def _lowerCamelCase ( self : Dict , A : Union[str, bytes, dict]) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.') from err if isinstance(A , A): return {"bytes": None, "path": value} elif isinstance(A , A): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _UpperCAmelCase = BytesIO() sf.write(A , value['array'] , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm'): # "PCM" only has raw audio bytes if value.get('sampling_rate') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object') if value.get('bytes'): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _UpperCAmelCase = np.frombuffer(value['bytes'] , dtype=np.intaa).astype(np.floataa) / 3_27_67 else: _UpperCAmelCase = np.memmap(value['path'] , dtype='h' , mode='r').astype(np.floataa) / 3_27_67 _UpperCAmelCase = BytesIO(bytes()) sf.write(A , A , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def _lowerCamelCase ( self : Dict , A : dict , A : Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.') _UpperCAmelCase , _UpperCAmelCase = (value['path'], BytesIO(value['bytes'])) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.') from err _UpperCAmelCase = xsplitext(A)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') if file is None: _UpperCAmelCase = token_per_repo_id or {} _UpperCAmelCase = path.split('::')[-1] try: _UpperCAmelCase = string_to_dict(A , config.HUB_DATASETS_URL)['repo_id'] _UpperCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _UpperCAmelCase = None with xopen(A , 'rb' , use_auth_token=A) as f: _UpperCAmelCase , _UpperCAmelCase = sf.read(A) else: _UpperCAmelCase , _UpperCAmelCase = sf.read(A) _UpperCAmelCase = array.T if self.mono: _UpperCAmelCase = librosa.to_mono(A) if self.sampling_rate and self.sampling_rate != sampling_rate: _UpperCAmelCase = librosa.resample(A , orig_sr=A , target_sr=self.sampling_rate) _UpperCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCamelCase ( self : int) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.') return { "bytes": Value('binary'), "path": Value('string'), } def _lowerCamelCase ( self : Dict , A : Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type): _UpperCAmelCase = pa.array([None] * len(A) , type=pa.binary()) _UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): _UpperCAmelCase = pa.array([None] * len(A) , type=pa.string()) _UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('array'): _UpperCAmelCase = pa.array([Audio().encode_example(A) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: _UpperCAmelCase = storage.field('bytes') else: _UpperCAmelCase = pa.array([None] * len(A) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: _UpperCAmelCase = storage.field('path') else: _UpperCAmelCase = pa.array([None] * len(A) , type=pa.string()) _UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) return array_cast(A , self.pa_type) def _lowerCamelCase ( self : Any , A : pa.StructArray) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(A : Any): with xopen(A , 'rb') as f: _UpperCAmelCase = f.read() return bytes_ _UpperCAmelCase = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _UpperCAmelCase = pa.array( [os.path.basename(A) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) _UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(A , self.pa_type)
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , A : str , A : Dict=7 , A : List[Any]=3 , A : Any=30 , A : Tuple=4_00 , A : Optional[Any]=True , A : Optional[int]=None , A : str=0.9 , A : Optional[Any]=None , A : Optional[Any]=True , A : Optional[int]=[0.5, 0.5, 0.5] , A : Tuple=[0.5, 0.5, 0.5] , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowerCAmelCase ( __snake_case , unittest.TestCase ): UpperCamelCase = PoolFormerImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self) @property def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize_and_center_crop')) self.assertTrue(hasattr(__UpperCamelCase , 'size')) self.assertTrue(hasattr(__UpperCamelCase , 'crop_pct')) self.assertTrue(hasattr(__UpperCamelCase , 'do_normalize')) self.assertTrue(hasattr(__UpperCamelCase , 'image_mean')) self.assertTrue(hasattr(__UpperCamelCase , 'image_std')) def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 30}) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30}) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = 'Hello world! cécé herlolip' def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = FairseqRobertaModel.from_pretrained(lowerCAmelCase_ ) roberta.eval() # disable dropout _UpperCAmelCase = roberta.model.encoder.sentence_encoder _UpperCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: _UpperCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowerCAmelCase_ ) _UpperCAmelCase = XLMRobertaXLForSequenceClassification(lowerCAmelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings _UpperCAmelCase = roberta_sent_encoder.embed_tokens.weight _UpperCAmelCase = roberta_sent_encoder.embed_positions.weight _UpperCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _UpperCAmelCase = roberta_sent_encoder.layer_norm.weight _UpperCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _UpperCAmelCase = model.roberta.encoder.layer[i] _UpperCAmelCase = roberta_sent_encoder.layers[i] _UpperCAmelCase = layer.attention _UpperCAmelCase = roberta_layer.self_attn_layer_norm.weight _UpperCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _UpperCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _UpperCAmelCase = roberta_layer.self_attn.q_proj.weight _UpperCAmelCase = roberta_layer.self_attn.q_proj.bias _UpperCAmelCase = roberta_layer.self_attn.k_proj.weight _UpperCAmelCase = roberta_layer.self_attn.k_proj.bias _UpperCAmelCase = roberta_layer.self_attn.v_proj.weight _UpperCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _UpperCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _UpperCAmelCase = roberta_layer.self_attn.out_proj.weight _UpperCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _UpperCAmelCase = roberta_layer.final_layer_norm.weight _UpperCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _UpperCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _UpperCAmelCase = roberta_layer.fca.weight _UpperCAmelCase = roberta_layer.fca.bias # output _UpperCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _UpperCAmelCase = roberta_layer.fca.weight _UpperCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _UpperCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _UpperCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _UpperCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _UpperCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _UpperCAmelCase = roberta.model.encoder.lm_head.dense.weight _UpperCAmelCase = roberta.model.encoder.lm_head.dense.bias _UpperCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _UpperCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _UpperCAmelCase = roberta.model.encoder.lm_head.weight _UpperCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _UpperCAmelCase = roberta.encode(lowerCAmelCase_ ).unsqueeze(0 ) # batch of size 1 _UpperCAmelCase = model(lowerCAmelCase_ )[0] if classification_head: _UpperCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(lowerCAmelCase_ ) ) else: _UpperCAmelCase = roberta.model(lowerCAmelCase_ )[0] print(our_output.shape , their_output.shape ) _UpperCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 _UpperCAmelCase = torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowerCAmelCase_ ).mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase__ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
from manim import * class __lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = Rectangle(height=0.5 , width=0.5) _UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = VGroup(*lowercase__).arrange(lowercase__ , buff=0) _UpperCAmelCase = VGroup(*lowercase__).arrange(lowercase__ , buff=0) _UpperCAmelCase = VGroup(lowercase__ , lowercase__).arrange(lowercase__ , buff=0) _UpperCAmelCase = Text('CPU' , font_size=24) _UpperCAmelCase = Group(lowercase__ , lowercase__).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase__) _UpperCAmelCase = [mem.copy() for i in range(4)] _UpperCAmelCase = VGroup(*lowercase__).arrange(lowercase__ , buff=0) _UpperCAmelCase = Text('GPU' , font_size=24) _UpperCAmelCase = Group(lowercase__ , lowercase__).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__) gpu.move_to([-1, -1, 0]) self.add(lowercase__) _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = VGroup(*lowercase__).arrange(lowercase__ , buff=0) _UpperCAmelCase = Text('Model' , font_size=24) _UpperCAmelCase = Group(lowercase__ , lowercase__).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__) model.move_to([3, -1.0, 0]) self.add(lowercase__) _UpperCAmelCase = [] for i, rect in enumerate(lowercase__): rect.set_stroke(lowercase__) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCAmelCase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3).set_stroke(width=0.0).set_fill(lowercase__ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=lowercase__) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0) self.add(lowercase__) cpu_targs.append(lowercase__) _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = VGroup(*lowercase__).arrange(lowercase__ , buff=0) _UpperCAmelCase = Text('Loaded Checkpoint' , font_size=24) _UpperCAmelCase = Group(lowercase__ , lowercase__).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) _UpperCAmelCase = Square(side_length=2.2) key.move_to([-5, 2, 0]) _UpperCAmelCase = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase__ , lowercase__) _UpperCAmelCase = MarkupText( F"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left()) _UpperCAmelCase = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase__) , Write(lowercase__)) self.play(Write(lowercase__ , run_time=1) , Create(lowercase__ , run_time=1)) _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(lowercase__): _UpperCAmelCase = fill.copy().set_fill(lowercase__ , opacity=0.7) target.move_to(lowercase__) first_animations.append(GrowFromCenter(lowercase__ , run_time=1)) _UpperCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5)) self.play(*lowercase__) self.play(*lowercase__) self.wait()
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] UpperCAmelCase__ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str = "AAPL" ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase ).text , 'html.parser' ) _UpperCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModel.from_pretrained(__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModel.from_pretrained(__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelForPreTraining.from_pretrained(__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelForPreTraining.from_pretrained(__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained(__a , from_pt=__a) _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__a , from_tf=__a) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : int) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelForMaskedLM.from_pretrained(__a , from_pt=__a) _UpperCAmelCase = TFAutoModelForMaskedLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained(__a , from_tf=__a) _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(__a , from_pt=__a) _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__a , from_tf=__a) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) @slow def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: _UpperCAmelCase = AutoConfig.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(__a , from_pt=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) _UpperCAmelCase = AutoModelForQuestionAnswering.from_pretrained(__a , from_tf=__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , __a) def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a) self.assertIsInstance(__a , __a) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=__a) , 1_44_10) _UpperCAmelCase = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a) self.assertIsInstance(__a , __a) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=__a) , 1_44_10) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a) self.assertIsInstance(__a , __a) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=__a) , 1_44_10) _UpperCAmelCase = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a) self.assertIsInstance(__a , __a) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=__a) , 1_44_10)
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "▁" UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off UpperCAmelCase__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( UpperCAmelCase_ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = ["input_ids", "attention_mask"] UpperCamelCase = [] UpperCamelCase = [] def __init__( self : Tuple , A : str , A : List[str]="<s>" , A : int="</s>" , A : Optional[Any]="</s>" , A : Union[str, Any]="<s>" , A : Any="<unk>" , A : str="<pad>" , A : Optional[Any]="<mask>" , A : Tuple=None , A : Optional[int]=None , A : Optional[Any]=None , A : Optional[Dict[str, Any]] = None , A : List[str]=None , A : Optional[int]=False , **A : List[str] , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = legacy_behaviour super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , tokenizer_file=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_snake_case , **_snake_case , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_snake_case)) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 _UpperCAmelCase = len(self.sp_model) _UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case) } _UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCAmelCase = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCAmelCase = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) _UpperCAmelCase = src_lang if src_lang is not None else 'eng_Latn' _UpperCAmelCase = self.lang_code_to_id[self._src_lang] _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , A : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCamelCase ( self : str) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False) -> str: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) _UpperCAmelCase = [1] * len(self.prefix_tokens) _UpperCAmelCase = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case)) + suffix_ones return prefix_ones + ([0] * len(_snake_case)) + ([0] * len(_snake_case)) + suffix_ones def _lowerCamelCase ( self : str , A : List[int] , A : Optional[List[int]] = None) -> Optional[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : str , A : List[int] , A : Optional[List[int]] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self : List[Any] , A : Any , A : str , A : Optional[str] , A : Optional[str] , **A : Optional[Any]) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') _UpperCAmelCase = src_lang _UpperCAmelCase = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case) _UpperCAmelCase = self.convert_tokens_to_ids(_snake_case) _UpperCAmelCase = tgt_lang_id return inputs def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case) def _lowerCamelCase ( self : str , A : List[str]) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(_snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self : Optional[Any] , A : List[Any]) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _lowerCamelCase ( self : Optional[int] , A : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = ''.join(_snake_case).replace(_snake_case , ' ').strip() return out_string def _lowerCamelCase ( self : Optional[Any] , A : str , A : Optional[str] = None) -> Dict: """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , 'wb') as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,) def _lowerCamelCase ( self : Tuple , A : List[str] , A : str = "eng_Latn" , A : Optional[List[str]] = None , A : str = "fra_Latn" , **A : Dict , ) -> str: """simple docstring""" _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self : List[str] , A : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCAmelCase = [self.cur_lang_code] _UpperCAmelCase = [self.eos_token_id] def _lowerCamelCase ( self : List[Any] , A : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCAmelCase = [self.cur_lang_code] _UpperCAmelCase = [self.eos_token_id]
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Dict , A : str , A : List[Any] , A : List[str]=False) -> List[Any]: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase) if return_labels: if model_class in get_values(_lowerCAmelCase): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class __lowerCAmelCase ( _lowerCAmelCase ): def __init__( self : int , A : Union[str, Any] , A : Tuple=13 , A : Dict=7 , A : Optional[int]=True , A : List[str]=True , A : Dict=True , A : Tuple=True , A : int=99 , A : Optional[int]=32 , A : Tuple=32 , A : Union[str, Any]=2 , A : Optional[int]=4 , A : int=37 , A : List[Any]="gelu" , A : Any=0.1 , A : Union[str, Any]=0.1 , A : Optional[int]=5_12 , A : List[str]=16 , A : Any=2 , A : List[str]=0.0_2 , A : Dict=3 , A : int=4 , A : str=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[int] , A : Optional[Any] , A : int , A : int , A : Any , A : Tuple , A : List[str] , A : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = TFMobileBertModel(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(_lowerCAmelCase) _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCamelCase ( self : Dict , A : Optional[int] , A : List[Any] , A : Optional[int] , A : Optional[Any] , A : List[str] , A : Tuple , A : str) -> Dict: """simple docstring""" _UpperCAmelCase = TFMobileBertForMaskedLM(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Union[str, Any] , A : str , A : Any , A : str , A : Optional[Any] , A : int , A : List[Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _lowerCamelCase ( self : List[str] , A : Tuple , A : Optional[Any] , A : List[Any] , A : str , A : Dict , A : int , A : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFMobileBertForPreTraining(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _lowerCamelCase ( self : Optional[Any] , A : List[Any] , A : Optional[Any] , A : List[str] , A : List[Any] , A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : List[Any] , A : Tuple , A : Any , A : Optional[Any] , A : Union[str, Any] , A : int , A : Union[str, Any] , A : Dict) -> int: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=_lowerCAmelCase) _UpperCAmelCase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : Dict , A : Dict , A : Optional[int] , A : str , A : Tuple , A : Dict , A : Optional[Any] , A : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : int , A : Union[str, Any] , A : str , A : str , A : List[str] , A : str , A : Any , A : str) -> Any: """simple docstring""" _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(_lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase) def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase) def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase) def _lowerCamelCase ( self : int) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase) def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase) @slow def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]]) _UpperCAmelCase = model(_lowerCAmelCase)[0] _UpperCAmelCase = [1, 6, 3_05_22] self.assertEqual(output.shape , _lowerCAmelCase) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4)
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Any=0.999 , _UpperCAmelCase : Optional[Any]="cosine" , ) -> Any: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(snake_case_ ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ) , snake_case_ ) ) return torch.tensor(snake_case_ , dtype=torch.floataa ) class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = [e.name for e in KarrasDiffusionSchedulers] UpperCamelCase = 2 @register_to_config def __init__( self : str , A : str = 10_00 , A : Dict = 0.0_0_0_8_5 , A : List[str] = 0.0_1_2 , A : str = "linear" , A : List[str] = None , A : List[Any] = "epsilon" , A : Dict = False , A : Tuple = False , A : Optional[int] = 1.0 , A : Union[str, Any] = "linspace" , A : int = 0 , ) -> int: """simple docstring""" if trained_betas is not None: _UpperCAmelCase = torch.tensor(_a , dtype=torch.floataa) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(_a , _a , _a , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(_a , alpha_transform_type='cosine') elif beta_schedule == "exp": _UpperCAmelCase = betas_for_alpha_bar(_a , alpha_transform_type='exp') else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(_a , _a , _a) _UpperCAmelCase = use_karras_sigmas def _lowerCamelCase ( self : Dict , A : Any , A : Optional[Any]=None) -> str: """simple docstring""" if schedule_timesteps is None: _UpperCAmelCase = self.timesteps _UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: _UpperCAmelCase = 1 if len(_a) > 1 else 0 else: _UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(_a) else timestep _UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Optional[Any] , A : Dict , A : Any , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.index_for_timestep(_a) _UpperCAmelCase = self.sigmas[step_index] _UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : str , A : List[str] , A : Tuple = None , A : Any = None , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a)[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , _a) * step_ratio).round()[::-1].copy().astype(_a) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(_a , 0 , -step_ratio)).round().copy().astype(_a) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.") _UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) _UpperCAmelCase = np.log(_a) _UpperCAmelCase = np.interp(_a , np.arange(0 , len(_a)) , _a) if self.config.use_karras_sigmas: _UpperCAmelCase = self._convert_to_karras(in_sigmas=_a , num_inference_steps=self.num_inference_steps) _UpperCAmelCase = np.array([self._sigma_to_t(_a , _a) for sigma in sigmas]) _UpperCAmelCase = np.concatenate([sigmas, [0.0]]).astype(np.floataa) _UpperCAmelCase = torch.from_numpy(_a).to(device=_a) _UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) _UpperCAmelCase = torch.from_numpy(_a) _UpperCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) if str(_a).startswith('mps'): # mps does not support float64 _UpperCAmelCase = timesteps.to(_a , dtype=torch.floataa) else: _UpperCAmelCase = timesteps.to(device=_a) # empty dt and derivative _UpperCAmelCase = None _UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase = defaultdict(_a) def _lowerCamelCase ( self : str , A : int , A : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = np.log(_a) # get distribution _UpperCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _UpperCAmelCase = np.cumsum((dists >= 0) , axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) _UpperCAmelCase = low_idx + 1 _UpperCAmelCase = log_sigmas[low_idx] _UpperCAmelCase = log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase = (low - log_sigma) / (low - high) _UpperCAmelCase = np.clip(_a , 0 , 1) # transform interpolation to time range _UpperCAmelCase = (1 - w) * low_idx + w * high_idx _UpperCAmelCase = t.reshape(sigma.shape) return t def _lowerCamelCase ( self : List[str] , A : Optional[Any] , A : List[Any]) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = in_sigmas[-1].item() _UpperCAmelCase = in_sigmas[0].item() _UpperCAmelCase = 7.0 # 7.0 is the value used in the paper _UpperCAmelCase = np.linspace(0 , 1 , _a) _UpperCAmelCase = sigma_min ** (1 / rho) _UpperCAmelCase = sigma_max ** (1 / rho) _UpperCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" return self.dt is None def _lowerCamelCase ( self : Optional[Any] , A : Tuple , A : str , A : Dict , A : Optional[Any] = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = self.index_for_timestep(_a) # advance index counter by 1 _UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(_a) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase = self.sigmas[step_index] _UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _UpperCAmelCase = self.sigmas[step_index - 1] _UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase = 0 _UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase = sigma_next - sigma_hat # store for 2nd order step _UpperCAmelCase = derivative _UpperCAmelCase = dt _UpperCAmelCase = sample else: # 2. 2nd order / Heun's method _UpperCAmelCase = (sample - pred_original_sample) / sigma_next _UpperCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _UpperCAmelCase = self.dt _UpperCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a) def _lowerCamelCase ( self : Dict , A : Any , A : str , A : Union[str, Any] , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(_a): # mps does not support float64 _UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa) _UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa) else: _UpperCAmelCase = self.timesteps.to(original_samples.device) _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = [self.index_for_timestep(_a , _a) for t in timesteps] _UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): _UpperCAmelCase = sigma.unsqueeze(-1) _UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : int) -> List[str]: """simple docstring""" return self.config.num_train_timesteps
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): UpperCamelCase = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) UpperCamelCase = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) UpperCamelCase = '''question''' UpperCamelCase = '''context''' UpperCamelCase = '''answers''' @property def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self : List[str] , *A : Any , **A : Dict) -> None: """simple docstring""" warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase)
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: '''simple docstring''' _UpperCAmelCase = len(__snake_case ) _UpperCAmelCase = len(__snake_case ) _UpperCAmelCase = ( first_str_length if first_str_length > second_str_length else second_str_length ) _UpperCAmelCase = [] for char_count in range(__snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__snake_case ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowerCAmelCase ( UpperCamelCase__ ): UpperCamelCase = 4_2 UpperCamelCase = jnp.floataa UpperCamelCase = True def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" super().setup() _UpperCAmelCase = nn.Dense(5 , dtype=self.dtype) def __call__( self : Union[str, Any] , *A : Optional[Any] , **A : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = super().__call__(*__A , **__A) _UpperCAmelCase = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __lowerCAmelCase ( UpperCamelCase__ ): UpperCamelCase = FlaxBigBirdForNaturalQuestionsModule def _A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' def cross_entropy(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=None ): _UpperCAmelCase = logits.shape[-1] _UpperCAmelCase = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype('f4' ) _UpperCAmelCase = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) _UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _UpperCAmelCase = reduction(UpperCamelCase__ ) return loss _UpperCAmelCase = partial(UpperCamelCase__ , reduction=jnp.mean ) _UpperCAmelCase = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowerCAmelCase : UpperCamelCase = '''google/bigbird-roberta-base''' UpperCamelCase = 3_0_0_0 UpperCamelCase = 1_0_5_0_0 UpperCamelCase = 1_2_8 UpperCamelCase = 3 UpperCamelCase = 1 UpperCamelCase = 5 # tx_args UpperCamelCase = 3e-5 UpperCamelCase = 0.0 UpperCamelCase = 2_0_0_0_0 UpperCamelCase = 0.0_095 UpperCamelCase = '''bigbird-roberta-natural-questions''' UpperCamelCase = '''training-expt''' UpperCamelCase = '''data/nq-training.jsonl''' UpperCamelCase = '''data/nq-validation.jsonl''' def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A) _UpperCAmelCase = os.path.join(self.base_dir , self.save_dir) _UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class __lowerCAmelCase : UpperCamelCase = 4_2 UpperCamelCase = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : str , A : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.collate_fn(__A) _UpperCAmelCase = jax.tree_util.tree_map(__A , __A) return batch def _lowerCamelCase ( self : List[str] , A : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.fetch_inputs(features['input_ids']) _UpperCAmelCase = { 'input_ids': jnp.array(__A , dtype=jnp.intaa), 'attention_mask': jnp.array(__A , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def _lowerCamelCase ( self : List[Any] , A : list) -> Tuple: """simple docstring""" _UpperCAmelCase = [self._fetch_inputs(__A) for ids in input_ids] return zip(*__A) def _lowerCamelCase ( self : Union[str, Any] , A : list) -> str: """simple docstring""" _UpperCAmelCase = [1 for _ in range(len(__A))] while len(__A) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def _A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int=None ) -> Dict: '''simple docstring''' if seed is not None: _UpperCAmelCase = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): _UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name='batch' ) def _A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , **_UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' def loss_fn(_UpperCAmelCase : Any ): _UpperCAmelCase = model_inputs.pop('start_labels' ) _UpperCAmelCase = model_inputs.pop('end_labels' ) _UpperCAmelCase = model_inputs.pop('pooled_labels' ) _UpperCAmelCase = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _UpperCAmelCase , _UpperCAmelCase = jax.random.split(UpperCamelCase__ ) _UpperCAmelCase = jax.value_and_grad(UpperCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase = grad_fn(state.params ) _UpperCAmelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) _UpperCAmelCase = jax.lax.pmean(UpperCamelCase__ , 'batch' ) _UpperCAmelCase = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _A ( _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = model_inputs.pop('start_labels' ) _UpperCAmelCase = model_inputs.pop('end_labels' ) _UpperCAmelCase = model_inputs.pop('pooled_labels' ) _UpperCAmelCase = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = outputs _UpperCAmelCase = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __lowerCAmelCase ( train_state.TrainState ): UpperCamelCase = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class __lowerCAmelCase : UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = None def _lowerCamelCase ( self : Dict , A : int , A : str , A : Optional[Any] , A : Union[str, Any]=None) -> str: """simple docstring""" _UpperCAmelCase = model.params _UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = restore_checkpoint(__A , __A) _UpperCAmelCase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } _UpperCAmelCase , _UpperCAmelCase = build_tx(**__A) _UpperCAmelCase = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) _UpperCAmelCase = args _UpperCAmelCase = data_collator _UpperCAmelCase = lr _UpperCAmelCase = params _UpperCAmelCase = jax_utils.replicate(__A) return state def _lowerCamelCase ( self : Union[str, Any] , A : Any , A : Optional[Any] , A : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.args _UpperCAmelCase = len(__A) // args.batch_size _UpperCAmelCase = jax.random.PRNGKey(0) _UpperCAmelCase = jax.random.split(__A , jax.device_count()) for epoch in range(args.max_epochs): _UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa) _UpperCAmelCase = get_batched_dataset(__A , args.batch_size , seed=__A) _UpperCAmelCase = 0 for batch in tqdm(__A , total=__A , desc=F"Running EPOCH-{epoch}"): _UpperCAmelCase = self.data_collator(__A) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.train_step_fn(__A , __A , **__A) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: _UpperCAmelCase = jax_utils.unreplicate(state.step) _UpperCAmelCase = running_loss.item() / i _UpperCAmelCase = self.scheduler_fn(state_step - 1) _UpperCAmelCase = self.evaluate(__A , __A) _UpperCAmelCase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(__A)) self.logger.log(__A , commit=__A) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" , state=__A) def _lowerCamelCase ( self : str , A : Union[str, Any] , A : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = get_batched_dataset(__A , self.args.batch_size) _UpperCAmelCase = len(__A) // self.args.batch_size _UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa) _UpperCAmelCase = 0 for batch in tqdm(__A , total=__A , desc='Evaluating ... '): _UpperCAmelCase = self.data_collator(__A) _UpperCAmelCase = self.val_step_fn(__A , **__A) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def _lowerCamelCase ( self : int , A : int , A : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = jax_utils.unreplicate(__A) print(F"SAVING CHECKPOINT IN {save_dir}" , end=' ... ') self.model_save_fn(__A , params=state.params) with open(os.path.join(__A , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(__A , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(__A , 'data_collator.joblib')) with open(os.path.join(__A , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , __A) print('DONE') def _A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=' ... ' ) with open(os.path.join(UpperCamelCase__ , 'flax_model.msgpack' ) , 'rb' ) as f: _UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , 'opt_state.msgpack' ) , 'rb' ) as f: _UpperCAmelCase = from_bytes(state.opt_state , f.read() ) _UpperCAmelCase = joblib.load(os.path.join(UpperCamelCase__ , 'args.joblib' ) ) _UpperCAmelCase = joblib.load(os.path.join(UpperCamelCase__ , 'data_collator.joblib' ) ) with open(os.path.join(UpperCamelCase__ , 'training_state.json' ) , 'r' ) as f: _UpperCAmelCase = json.load(UpperCamelCase__ ) _UpperCAmelCase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _A ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = num_train_steps - warmup_steps _UpperCAmelCase = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) _UpperCAmelCase = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1E-7 , transition_steps=UpperCamelCase__ ) _UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' def weight_decay_mask(_UpperCAmelCase : Optional[Any] ): _UpperCAmelCase = traverse_util.flatten_dict(UpperCamelCase__ ) _UpperCAmelCase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) _UpperCAmelCase = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''ViTFeatureExtractor'''] UpperCAmelCase__ = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = 0 for ch in input_str: _UpperCAmelCase = ord(_UpperCAmelCase ) _UpperCAmelCase = pow(2 , _UpperCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = BlenderbotSmallTokenizer UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" super().setUp() _UpperCAmelCase = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _UpperCAmelCase = dict(zip(__A , range(len(__A)))) _UpperCAmelCase = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _UpperCAmelCase = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(__A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(__A)) def _lowerCamelCase ( self : str , **A : Optional[Any]) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__A) def _lowerCamelCase ( self : str , A : List[str]) -> int: """simple docstring""" _UpperCAmelCase = 'adapt act apte' _UpperCAmelCase = 'adapt act apte' return input_text, output_text def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase = 'adapt act apte' _UpperCAmelCase = ['adapt', 'act', 'ap@@', 'te'] _UpperCAmelCase = tokenizer.tokenize(__A) self.assertListEqual(__A , __A) _UpperCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _UpperCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A) , __A) def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" _UpperCAmelCase = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') assert tok('sam').input_ids == [13_84] _UpperCAmelCase = 'I am a small frog.' _UpperCAmelCase = tok([src_text] , padding=__A , truncation=__A)['input_ids'] _UpperCAmelCase = tok.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A)[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') _UpperCAmelCase = 'I am a small frog .' _UpperCAmelCase = '.' _UpperCAmelCase = tok(__A)['input_ids'] _UpperCAmelCase = tok(__A)['input_ids'] assert encoded[-1] == encoded_dot[0]
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __snake_case ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''OwlViTImageProcessor''' UpperCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : str , A : int=None , A : str=None , **A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowercase , ) _UpperCAmelCase = kwargs.pop('feature_extractor') _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_lowercase , _lowercase) def __call__( self : List[str] , A : str=None , A : Tuple=None , A : Any=None , A : str="max_length" , A : Dict="np" , **A : List[Any]) -> Dict: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.') if text is not None: if isinstance(_lowercase , _lowercase) or (isinstance(_lowercase , _lowercase) and not isinstance(text[0] , _lowercase)): _UpperCAmelCase = [self.tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase , **_lowercase)] elif isinstance(_lowercase , _lowercase) and isinstance(text[0] , _lowercase): _UpperCAmelCase = [] # Maximum number of queries across batch _UpperCAmelCase = max([len(_lowercase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(_lowercase) != max_num_queries: _UpperCAmelCase = t + [""" """] * (max_num_queries - len(_lowercase)) _UpperCAmelCase = self.tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase , **_lowercase) encodings.append(_lowercase) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings') if return_tensors == "np": _UpperCAmelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) _UpperCAmelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) _UpperCAmelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0) _UpperCAmelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0) _UpperCAmelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0) else: raise ValueError('Target return tensor type could not be returned') _UpperCAmelCase = BatchEncoding() _UpperCAmelCase = input_ids _UpperCAmelCase = attention_mask if query_images is not None: _UpperCAmelCase = BatchEncoding() _UpperCAmelCase = self.image_processor( _lowercase , return_tensors=_lowercase , **_lowercase).pixel_values _UpperCAmelCase = query_pixel_values if images is not None: _UpperCAmelCase = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase) , tensor_type=_lowercase) def _lowerCamelCase ( self : Union[str, Any] , *A : Union[str, Any] , **A : Tuple) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*_lowercase , **_lowercase) def _lowerCamelCase ( self : Dict , *A : Optional[int] , **A : Optional[int]) -> str: """simple docstring""" return self.image_processor.post_process_object_detection(*_lowercase , **_lowercase) def _lowerCamelCase ( self : Any , *A : Optional[Any] , **A : Any) -> Dict: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowercase , **_lowercase) def _lowerCamelCase ( self : Any , *A : str , **A : Optional[Any]) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def _lowerCamelCase ( self : int , *A : Any , **A : Dict) -> int: """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase) @property def _lowerCamelCase ( self : str) -> int: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowercase , ) return self.image_processor_class @property def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowercase , ) return self.image_processor
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCamelCase = 'vision-encoder-decoder' UpperCamelCase = True def __init__( self : Optional[int] , **A : Optional[Any]) -> Any: """simple docstring""" super().__init__(**_a) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") _UpperCAmelCase = kwargs.pop('encoder') _UpperCAmelCase = encoder_config.pop('model_type') _UpperCAmelCase = kwargs.pop('decoder') _UpperCAmelCase = decoder_config.pop('model_type') _UpperCAmelCase = AutoConfig.for_model(_a , **_a) _UpperCAmelCase = AutoConfig.for_model(_a , **_a) _UpperCAmelCase = True @classmethod def _lowerCamelCase ( cls : Optional[int] , A : Dict , A : List[str] , **A : List[str]) -> List[Any]: """simple docstring""" logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config') _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_a) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCamelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def _lowerCamelCase ( self : str) -> str: """simple docstring""" return 1E-4 @property def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}}) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _lowerCamelCase ( self : Tuple , A : Optional[int] , A : int = -1 , A : List[str] = -1 , A : str = False , A : int = None , ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a) _UpperCAmelCase , _UpperCAmelCase = dummy_input['input_ids'].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop('input_ids') _UpperCAmelCase = dummy_input.pop('attention_mask') _UpperCAmelCase = torch.zeros(_a) return common_inputs class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def _lowerCamelCase ( self : str) -> str: """simple docstring""" pass def _lowerCamelCase ( self : List[Any] , A : Any) -> str: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_a) def _lowerCamelCase ( self : int , A : List[str] , A : List[str] , A : int = "default") -> List[Any]: """simple docstring""" _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_a , _a)
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str = "AAPL" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _UpperCAmelCase = BeautifulSoup(requests.get(_lowerCamelCase ).text , 'html.parser' ) _UpperCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
def A ( _UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_UpperCAmelCase )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_UpperCAmelCase )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import random from .binary_exp_mod import bin_exp_mod def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Dict=1_000 ) -> Any: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _UpperCAmelCase = n - 1 _UpperCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _UpperCAmelCase = 0 while count < prec: _UpperCAmelCase = random.randint(2 , n - 1 ) _UpperCAmelCase = bin_exp_mod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if b != 1: _UpperCAmelCase = True for _ in range(SCREAMING_SNAKE_CASE_ ): if b == n - 1: _UpperCAmelCase = False break _UpperCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase__ : List[Any] = abs(int(input("Enter bound : ").strip())) print("Here\'s the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 _UpperCAmelCase = 1, 1 for _ in range(number_of_steps - 1 ): _UpperCAmelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
def A ( _UpperCAmelCase : list ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = len(__lowercase ) for _ in range(__lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _UpperCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase__ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__lowercase ): UpperCamelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : int , *A : List[str] , **A : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq']) @classmethod def _lowerCamelCase ( cls : List[str] , *A : str , **A : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq']) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *A : List[Any] , **A : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'])
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A ( _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def A ( _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase = np.max(_outputs , axis=-1 , keepdims=lowerCAmelCase__ ) _UpperCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCAmelCase__ ) class __lowerCAmelCase ( __a ): UpperCamelCase = '''sigmoid''' UpperCamelCase = '''softmax''' UpperCamelCase = '''none''' @add_end_docstrings( __a , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class __lowerCAmelCase ( __a ): UpperCamelCase = False UpperCamelCase = ClassificationFunction.NONE def __init__( self : Tuple , **A : int) -> List[Any]: """simple docstring""" super().__init__(**snake_case__) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING) def _lowerCamelCase ( self : Tuple , A : List[str]=None , A : List[str]=None , A : Optional[int]="" , **A : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = tokenizer_kwargs _UpperCAmelCase = {} if hasattr(self.model.config , 'return_all_scores') and return_all_scores is None: _UpperCAmelCase = self.model.config.return_all_scores if isinstance(snake_case__ , snake_case__) or top_k is None: _UpperCAmelCase = top_k _UpperCAmelCase = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , snake_case__ , ) if return_all_scores: _UpperCAmelCase = None else: _UpperCAmelCase = 1 if isinstance(snake_case__ , snake_case__): _UpperCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _UpperCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , *A : Tuple , **A : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = super().__call__(*snake_case__ , **snake_case__) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _UpperCAmelCase = 'top_k' not in kwargs if isinstance(args[0] , snake_case__) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowerCamelCase ( self : str , A : List[str] , **A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.framework if isinstance(snake_case__ , snake_case__): return self.tokenizer(**snake_case__ , return_tensors=snake_case__ , **snake_case__) elif isinstance(snake_case__ , snake_case__) and len(snake_case__) == 1 and isinstance(inputs[0] , snake_case__) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case__ , **snake_case__) elif isinstance(snake_case__ , snake_case__): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.') return self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__) def _lowerCamelCase ( self : Dict , A : List[str]) -> Optional[int]: """simple docstring""" return self.model(**snake_case__) def _lowerCamelCase ( self : Optional[int] , A : Optional[Any] , A : Dict=None , A : Optional[Any]=1 , A : List[Any]=True) -> Tuple: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _UpperCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _UpperCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply') and function_to_apply is None: _UpperCAmelCase = self.model.config.function_to_apply else: _UpperCAmelCase = ClassificationFunction.NONE _UpperCAmelCase = model_outputs['logits'][0] _UpperCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _UpperCAmelCase = sigmoid(snake_case__) elif function_to_apply == ClassificationFunction.SOFTMAX: _UpperCAmelCase = softmax(snake_case__) elif function_to_apply == ClassificationFunction.NONE: _UpperCAmelCase = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _UpperCAmelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(snake_case__) ] if not _legacy: dict_scores.sort(key=lambda A: x["score"] , reverse=snake_case__) if top_k is not None: _UpperCAmelCase = dict_scores[:top_k] return dict_scores
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , A : Optional[int] , A : List[str]=7 , A : List[str]=3 , A : Optional[int]=30 , A : Dict=4_00 , A : Optional[int]=True , A : int=None , A : Dict=True , A : List[Any]=[0.5, 0.5, 0.5] , A : str=[0.5, 0.5, 0.5] , A : Dict=True , A : Tuple=1 / 2_55 , A : Optional[Any]=True , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self : Union[str, Any] , A : Any , A : List[Any]=False) -> Optional[int]: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(a_ , Image.Image): _UpperCAmelCase = image.size else: _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w) _UpperCAmelCase = self.size["shortest_edge"] elif w > h: _UpperCAmelCase = self.size["shortest_edge"] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h) else: _UpperCAmelCase = self.size["shortest_edge"] _UpperCAmelCase = self.size["shortest_edge"] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _UpperCAmelCase = max(a_ , key=lambda A: item[0])[0] _UpperCAmelCase = max(a_ , key=lambda A: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __lowerCamelCase , unittest.TestCase ): UpperCamelCase = DeformableDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self) @property def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a_ , 'image_mean')) self.assertTrue(hasattr(a_ , 'image_std')) self.assertTrue(hasattr(a_ , 'do_normalize')) self.assertTrue(hasattr(a_ , 'do_resize')) self.assertTrue(hasattr(a_ , 'do_rescale')) self.assertTrue(hasattr(a_ , 'do_pad')) self.assertTrue(hasattr(a_ , 'size')) def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad , a_) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a_) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , a_) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_) for image in image_inputs: self.assertIsInstance(a_ , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(a_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ , batched=a_) _UpperCAmelCase = image_processing(a_ , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(a_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(a_ , return_tensors='pt').pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ , batched=a_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(a_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(a_ , return_tensors='pt').pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ , batched=a_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {"image_id": 3_97_69, "annotations": target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=a_ , annotations=a_ , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , a_) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a_ , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a_)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , a_) _UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a_ , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a_)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a_)) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a_)) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a_)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a_)) @slow def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic') _UpperCAmelCase = image_processing(images=a_ , annotations=a_ , masks_path=a_ , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , a_) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a_ , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a_)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , a_) _UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a_ , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a_)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a_)) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a_)) # verify masks _UpperCAmelCase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a_) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a_)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a_))
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''roc_bert''' def __init__( self : List[Any] , A : List[str]=3_05_22 , A : str=7_68 , A : Dict=12 , A : str=12 , A : int=30_72 , A : List[str]="gelu" , A : Union[str, Any]=0.1 , A : List[Any]=0.1 , A : str=5_12 , A : Optional[int]=2 , A : Union[str, Any]=0.0_2 , A : Any=1E-12 , A : Any=True , A : List[str]=0 , A : Optional[int]="absolute" , A : Tuple=None , A : Union[str, Any]=True , A : Dict=True , A : Union[str, Any]=7_68 , A : Any=9_10 , A : int=5_12 , A : List[Any]=2_48_58 , A : Union[str, Any]=True , **A : List[str] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = enable_pronunciation _UpperCAmelCase = enable_shape _UpperCAmelCase = pronunciation_embed_dim _UpperCAmelCase = pronunciation_vocab_size _UpperCAmelCase = shape_embed_dim _UpperCAmelCase = shape_vocab_size _UpperCAmelCase = concat_input _UpperCAmelCase = position_embedding_type _UpperCAmelCase = classifier_dropout super().__init__(pad_token_id=A , **A)
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
from random import randint, random def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 5 , ) -> list: '''simple docstring''' _UpperCAmelCase = [[-1] * number_of_cells] # Create a highway without any car _UpperCAmelCase = 0 _UpperCAmelCase = max(_A , 0 ) while i < number_of_cells: _UpperCAmelCase = ( randint(0 , _A ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def A ( _UpperCAmelCase : list , _UpperCAmelCase : int ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = highway_now[car_index + 1 :] for cell in range(len(_A ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_A , -1 ) def A ( _UpperCAmelCase : list , _UpperCAmelCase : float , _UpperCAmelCase : int ) -> list: '''simple docstring''' _UpperCAmelCase = len(_A ) # Beforce calculations, the highway is empty _UpperCAmelCase = [-1] * number_of_cells for car_index in range(_A ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _UpperCAmelCase = min(highway_now[car_index] + 1 , _A ) # Number of empty cell before the next car _UpperCAmelCase = get_distance(_A , _A ) - 1 # We can't have the car causing an accident _UpperCAmelCase = min(next_highway[car_index] , _A ) if random() < probability: # Randomly, a driver will slow down _UpperCAmelCase = max(next_highway[car_index] - 1 , 0 ) return next_highway def A ( _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int ) -> list: '''simple docstring''' _UpperCAmelCase = len(highway[0] ) for i in range(_A ): _UpperCAmelCase = update(highway[i] , _A , _A ) _UpperCAmelCase = [-1] * number_of_cells for car_index in range(_A ): _UpperCAmelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _UpperCAmelCase = (car_index + speed) % number_of_cells # Commit the change of position _UpperCAmelCase = speed highway.append(_A ) return highway if __name__ == "__main__": import doctest doctest.testmod()
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
class __lowerCAmelCase : # Public class to implement a graph def __init__( self : List[Any] , A : int , A : int , A : list[list[bool]]) -> None: """simple docstring""" _UpperCAmelCase = row _UpperCAmelCase = col _UpperCAmelCase = graph def _lowerCamelCase ( self : Tuple , A : int , A : int , A : list[list[bool]]) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _lowerCamelCase ( self : Optional[Any] , A : int , A : int , A : list[list[bool]]) -> None: """simple docstring""" _UpperCAmelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _UpperCAmelCase = [-1, 0, 1, -1, 1, -1, 0, 1] _UpperCAmelCase = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase__): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase__) def _lowerCamelCase ( self : int) -> int: # And finally, count all islands. """simple docstring""" _UpperCAmelCase = [[False for j in range(self.COL)] for i in range(self.ROW)] _UpperCAmelCase = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) count += 1 return count
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
from collections import namedtuple UpperCAmelCase__ = namedtuple("from_to", "from_ to") UpperCAmelCase__ = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0454, 264.172), '''cubicyard''': from_to(0.7_6455, 1.3_0795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.0_0023_6588, 4226.75), } def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ', '.join(_UpperCAmelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ', '.join(_UpperCAmelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
from math import sqrt def A ( _UpperCAmelCase : Optional[int] ) -> bool: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCAmelCase = True # 0 and 1 are none primes. if number <= 1: _UpperCAmelCase = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCAmelCase = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def A ( _UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCAmelCase = list(range(2 , n + 1 ) ) _UpperCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCAmelCase = 0 # filters actual prime numbers. _UpperCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" _UpperCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" _UpperCAmelCase = [] # this list will be returns of the function. # potential prime number factors. _UpperCAmelCase = 2 _UpperCAmelCase = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase = 0 # prime factorization of 'number' _UpperCAmelCase = prime_factorization(__snake_case ) _UpperCAmelCase = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase = 0 # prime factorization of 'number' _UpperCAmelCase = prime_factorization(__snake_case ) _UpperCAmelCase = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def A ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def A ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" _UpperCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCAmelCase = get_prime_numbers(__snake_case ) _UpperCAmelCase = len(__snake_case ) # run variable for while-loops. _UpperCAmelCase = 0 _UpperCAmelCase = None # exit variable. for break up the loops _UpperCAmelCase = True while i < len_pn and loop: _UpperCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A ( _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase = 0 while numbera != 0: _UpperCAmelCase = numbera % numbera _UpperCAmelCase = numbera _UpperCAmelCase = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCAmelCase = prime_factorization(__snake_case ) _UpperCAmelCase = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = max(__snake_case , __snake_case ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCAmelCase = prime_fac_a.count(__snake_case ) _UpperCAmelCase = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: _UpperCAmelCase = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCAmelCase = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" _UpperCAmelCase = 0 _UpperCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCAmelCase = p_number_a + 1 # jump to the next number _UpperCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A ( _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" _UpperCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def A ( _UpperCAmelCase : Any ) -> str: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCAmelCase = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCAmelCase = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" _UpperCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A ( _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 1 # this will be return for _ in range(n - 1 ): _UpperCAmelCase = ans ans += fiba _UpperCAmelCase = tmp return ans
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self : Optional[int] , A : str , A : Optional[Any]=13 , A : Tuple=7 , A : Dict=True , A : Any=True , A : int=False , A : Optional[Any]=True , A : Optional[int]=99 , A : str=32 , A : Tuple=5 , A : Dict=4 , A : List[str]=37 , A : List[str]="gelu" , A : Any=0.1 , A : List[Any]=0.1 , A : Tuple=5_12 , A : Dict=16 , A : List[str]=2 , A : Optional[Any]=0.0_2 , A : str=3 , A : Tuple=4 , A : int=None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : str , A : Optional[Any] , A : int , A : Any , A : List[Any] , A : Tuple , A : List[str] , A : Dict) -> str: """simple docstring""" _UpperCAmelCase = BioGptModel(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_) _UpperCAmelCase = model(lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : List[str] , A : Union[str, Any] , A : int , A : Optional[int] , A : Dict , A : Tuple , A : Union[str, Any] , A : Optional[int] , ) -> int: """simple docstring""" _UpperCAmelCase = BioGptForCausalLM(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Dict , A : str , A : Optional[int] , A : Tuple , A : Dict , A : List[Any] , *A : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = BioGptModel(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() # create attention mask _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCamelCase_) _UpperCAmelCase = self.seq_length // 2 _UpperCAmelCase = 0 # first forward pass _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _UpperCAmelCase = ids_tensor((1,) , lowerCamelCase_).item() + 1 _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCamelCase_)] , dim=1 , ) # get two different outputs _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)["""last_hidden_state"""] _UpperCAmelCase = model(lowerCamelCase_ , past_key_values=lowerCamelCase_ , attention_mask=lowerCamelCase_)["""last_hidden_state"""] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3)) def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : Optional[Any] , A : Any , A : int , A : Tuple , *A : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = BioGptModel(config=lowerCamelCase_).to(lowerCamelCase_).eval() _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCamelCase_) # first forward pass _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_) _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1) _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)["""last_hidden_state"""] _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_)[ """last_hidden_state""" ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3)) def _lowerCamelCase ( self : Optional[int] , A : int , A : Union[str, Any] , A : Union[str, Any] , A : Union[str, Any] , A : Union[str, Any] , *A : Tuple , A : Optional[int]=False) -> Dict: """simple docstring""" _UpperCAmelCase = BioGptForCausalLM(lowerCamelCase_) model.to(lowerCamelCase_) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase = model(lowerCamelCase_ , labels=lowerCamelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def _lowerCamelCase ( self : Optional[int] , A : str , *A : int) -> Any: """simple docstring""" _UpperCAmelCase = BioGptModel(lowerCamelCase_) _UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def _lowerCamelCase ( self : str , A : Union[str, Any] , A : Any , A : str , A : str , A : Any , *A : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = BioGptForTokenClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( _UpperCAmelCase ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = BioGptModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_) def _lowerCamelCase ( self : List[str]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCamelCase_) def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCamelCase_ , gradient_checkpointing=lowerCamelCase_) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCamelCase_) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCamelCase_) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCamelCase_) @slow def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(lowerCamelCase_) _UpperCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt') _UpperCAmelCase = """left""" # Define PAD Token = EOS Token = 50256 _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase = [ """Hello, my dog is a little""", """Today, I""", ] _UpperCAmelCase = tokenizer(lowerCamelCase_ , return_tensors='pt' , padding=lowerCamelCase_) _UpperCAmelCase = inputs["""input_ids"""].to(lowerCamelCase_) _UpperCAmelCase = model.generate( input_ids=lowerCamelCase_ , attention_mask=inputs['attention_mask'].to(lowerCamelCase_) , ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='pt').input_ids.to(lowerCamelCase_) _UpperCAmelCase = model.generate(input_ids=lowerCamelCase_) _UpperCAmelCase = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='pt').input_ids.to(lowerCamelCase_) _UpperCAmelCase = model.generate(input_ids=lowerCamelCase_ , max_length=model.config.max_length - num_paddings) _UpperCAmelCase = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_) _UpperCAmelCase = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence]) @slow def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BioGptModel.from_pretrained(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_) def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict["""input_ids"""] _UpperCAmelCase = input_ids.ne(1).to(lowerCamelCase_) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _UpperCAmelCase = BioGptForSequenceClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = """multi_label_classification""" _UpperCAmelCase = input_dict["""input_ids"""] _UpperCAmelCase = input_ids.ne(1).to(lowerCamelCase_) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _UpperCAmelCase = BioGptForSequenceClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt') _UpperCAmelCase = torch.tensor([[2, 48_05, 9, 6_56, 21]]) _UpperCAmelCase = model(lowerCamelCase_)[0] _UpperCAmelCase = 4_23_84 _UpperCAmelCase = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowerCamelCase_) _UpperCAmelCase = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4)) @slow def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt') _UpperCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(lowerCamelCase_) torch.manual_seed(0) _UpperCAmelCase = tokenizer('COVID-19 is' , return_tensors='pt').to(lowerCamelCase_) _UpperCAmelCase = model.generate( **lowerCamelCase_ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCamelCase_ , ) _UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase_) _UpperCAmelCase = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase__ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] UpperCAmelCase__ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = " Hello world! cécé herlolip" UpperCAmelCase__ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def A ( _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = dct.pop(A__ ) _UpperCAmelCase = val def A ( _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' _UpperCAmelCase = torch.load(A__ , map_location='cpu' ) _UpperCAmelCase = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(A__ , A__ , bias=A__ ) _UpperCAmelCase = emb.weight.data return lin_layer @torch.no_grad() def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=None ) -> str: '''simple docstring''' if not os.path.exists(A__ ): _UpperCAmelCase = torch.hub.load('pytorch/fairseq' , A__ ).eval() else: _UpperCAmelCase = load_xsum_checkpoint(A__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _UpperCAmelCase = checkpoint_path.replace('.' , '-' ) _UpperCAmelCase = BartConfig.from_pretrained(A__ ) _UpperCAmelCase = bart.encode(A__ ).unsqueeze(0 ) _UpperCAmelCase = BartTokenizer.from_pretrained(A__ ).encode(A__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(A__ , A__ ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": _UpperCAmelCase = bart.state_dict() remove_ignore_keys_(A__ ) _UpperCAmelCase = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(A__ , A__ , A__ ) _UpperCAmelCase = BartForSequenceClassification(A__ ).eval() model.load_state_dict(A__ ) _UpperCAmelCase = bart.predict('mnli' , A__ , return_logits=A__ ) _UpperCAmelCase = model(A__ )[0] # logits else: # no classification heads to worry about _UpperCAmelCase = bart.model.state_dict() remove_ignore_keys_(A__ ) _UpperCAmelCase = state_dict['decoder.embed_tokens.weight'] _UpperCAmelCase = bart.extract_features(A__ ) if hf_checkpoint_name == "facebook/bart-large": _UpperCAmelCase = BartModel(A__ ).eval() model.load_state_dict(A__ ) _UpperCAmelCase = model(A__ ).model[0] else: _UpperCAmelCase = BartForConditionalGeneration(A__ ).eval() # an existing summarization ckpt model.model.load_state_dict(A__ ) if hasattr(A__ , 'lm_head' ): _UpperCAmelCase = make_linear_from_emb(model.model.shared ) _UpperCAmelCase = model.model(A__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) UpperCAmelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
def A ( _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' _UpperCAmelCase = [1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 0, 0 _UpperCAmelCase = ugly_nums[ia] * 2 _UpperCAmelCase = ugly_nums[ia] * 3 _UpperCAmelCase = ugly_nums[ia] * 5 for _ in range(1 , a__ ): _UpperCAmelCase = min(a__ , a__ , a__ ) ugly_nums.append(a__ ) if next_num == next_a: ia += 1 _UpperCAmelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _UpperCAmelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _UpperCAmelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase__ : List[str] = "scheduler_config.json" class __lowerCAmelCase ( __lowerCAmelCase ): UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 5 UpperCamelCase = 6 UpperCamelCase = 7 UpperCamelCase = 8 UpperCamelCase = 9 UpperCamelCase = 1_0 UpperCamelCase = 1_1 UpperCamelCase = 1_2 UpperCamelCase = 1_3 UpperCamelCase = 1_4 @dataclass class __lowerCAmelCase ( __lowerCAmelCase ): UpperCamelCase = 42 class __lowerCAmelCase : UpperCamelCase = SCHEDULER_CONFIG_NAME UpperCamelCase = [] UpperCamelCase = True @classmethod def _lowerCamelCase ( cls : str , A : int = None , A : Dict = None , A : Optional[Any]=False , **A : Optional[Any] , ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=lowerCAmelCase_ , subfolder=lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ , return_commit_hash=lowerCAmelCase_ , **lowerCAmelCase_ , ) return cls.from_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ , **lowerCAmelCase_) def _lowerCamelCase ( self : Dict , A : Tuple , A : Dict = False , **A : str) -> List[Any]: """simple docstring""" self.save_config(save_directory=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ , **lowerCAmelCase_) @property def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" return self._get_compatibles() @classmethod def _lowerCamelCase ( cls : int) -> Tuple: """simple docstring""" _UpperCAmelCase = list(set([cls.__name__] + cls._compatibles)) _UpperCAmelCase = importlib.import_module(__name__.split('.')[0]) _UpperCAmelCase = [ getattr(lowerCAmelCase_ , lowerCAmelCase_) for c in compatible_classes_str if hasattr(lowerCAmelCase_ , lowerCAmelCase_) ] return compatible_classes
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '▁' UpperCAmelCase__ = {'vocab_file': 'prophetnet.tokenizer'} UpperCAmelCase__ = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } UpperCAmelCase__ = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } UpperCAmelCase__ = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def A ( _UpperCAmelCase : Any ) -> int: '''simple docstring''' _UpperCAmelCase = collections.OrderedDict() with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as reader: _UpperCAmelCase = reader.readlines() for index, token in enumerate(_UpperCAmelCase ): _UpperCAmelCase = token.rstrip('\n' ) _UpperCAmelCase = index return vocab class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , A : str , A : Optional[int]="[SEP]" , A : Any="[SEP]" , A : Optional[Any]="[SEP]" , A : int="[UNK]" , A : List[str]="[PAD]" , A : Tuple="[CLS]" , A : List[str]="[MASK]" , A : Optional[Dict[str, Any]] = None , **A : int , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece') raise _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase__)) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _UpperCAmelCase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10): _UpperCAmelCase = F"[unused{i}]" _UpperCAmelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _UpperCAmelCase = 12 _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase__) def __getstate__( self : int) -> str: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Dict , A : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece') raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Dict , A : List[int] , A : Optional[List[int]] = None , A : bool = False) -> Any: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__) if token_ids_a is None: return ([0] * len(UpperCAmelCase__)) + [1] return ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) + [1] def _lowerCamelCase ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None) -> Any: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" return len(self.sp_model) + self.fairseq_offset def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self : List[str] , A : str) -> Optional[Any]: """simple docstring""" return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any]) -> Any: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(UpperCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self : int , A : int) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _lowerCamelCase ( self : Optional[Any] , A : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = ''''''.join(UpperCAmelCase__).replace(UpperCAmelCase__ , ' ').strip() return out_string def _lowerCamelCase ( self : int , A : str , A : Optional[str] = None) -> Optional[int]: """simple docstring""" if not os.path.isdir(UpperCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , 'wb') as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,) def _lowerCamelCase ( self : int , A : List[int] , A : Optional[List[int]] = None) -> Tuple: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import string import numpy def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> int: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , _UpperCAmelCase ) class __lowerCAmelCase : UpperCamelCase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCamelCase = numpy.vectorize(lambda A : x % 3_6 ) UpperCamelCase = numpy.vectorize(SCREAMING_SNAKE_CASE__ ) def __init__( self : Dict , A : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.modulus(snake_case__) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _UpperCAmelCase = encrypt_key.shape[0] def _lowerCamelCase ( self : Union[str, Any] , A : str) -> List[Any]: """simple docstring""" return self.key_string.index(snake_case__) def _lowerCamelCase ( self : Tuple , A : Optional[int]) -> str: """simple docstring""" return self.key_string[round(snake_case__)] def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _UpperCAmelCase = det % len(self.key_string) _UpperCAmelCase = len(self.key_string) if greatest_common_divisor(snake_case__ , len(self.key_string)) != 1: _UpperCAmelCase = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(snake_case__) def _lowerCamelCase ( self : Tuple , A : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = [char for char in text.upper() if char in self.key_string] _UpperCAmelCase = chars[-1] while len(snake_case__) % self.break_key != 0: chars.append(snake_case__) return "".join(snake_case__) def _lowerCamelCase ( self : Any , A : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.process_text(text.upper()) _UpperCAmelCase = "" for i in range(0 , len(snake_case__) - self.break_key + 1 , self.break_key): _UpperCAmelCase = text[i : i + self.break_key] _UpperCAmelCase = [self.replace_letters(snake_case__) for char in batch] _UpperCAmelCase = numpy.array([vec]).T _UpperCAmelCase = self.modulus(self.encrypt_key.dot(snake_case__)).T.tolist()[ 0 ] _UpperCAmelCase = "".join( self.replace_digits(snake_case__) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _UpperCAmelCase = det % len(self.key_string) _UpperCAmelCase = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _UpperCAmelCase = i break _UpperCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(snake_case__)) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.make_decrypt_key() _UpperCAmelCase = self.process_text(text.upper()) _UpperCAmelCase = "" for i in range(0 , len(snake_case__) - self.break_key + 1 , self.break_key): _UpperCAmelCase = text[i : i + self.break_key] _UpperCAmelCase = [self.replace_letters(snake_case__) for char in batch] _UpperCAmelCase = numpy.array([vec]).T _UpperCAmelCase = self.modulus(decrypt_key.dot(snake_case__)).T.tolist()[0] _UpperCAmelCase = "".join( self.replace_digits(snake_case__) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def A ( ) -> None: '''simple docstring''' _UpperCAmelCase = int(input('Enter the order of the encryption key: ' ) ) _UpperCAmelCase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(_UpperCAmelCase ): _UpperCAmelCase = [int(_UpperCAmelCase ) for x in input().split()] hill_matrix.append(_UpperCAmelCase ) _UpperCAmelCase = HillCipher(numpy.array(_UpperCAmelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _UpperCAmelCase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _UpperCAmelCase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(_UpperCAmelCase ) ) elif option == "2": _UpperCAmelCase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") UpperCAmelCase__ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } UpperCAmelCase__ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } UpperCAmelCase__ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } UpperCAmelCase__ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } UpperCAmelCase__ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } UpperCAmelCase__ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } UpperCAmelCase__ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } UpperCAmelCase__ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = [] UpperCAmelCase__ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] UpperCAmelCase__ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] UpperCAmelCase__ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] UpperCAmelCase__ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase = getattr(__a , __a ) if weight_type is not None: _UpperCAmelCase = getattr(__a , __a ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "running_mean": _UpperCAmelCase = value elif weight_type == "running_var": _UpperCAmelCase = value elif weight_type == "num_batches_tracked": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase , _UpperCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [] if task == "s2t": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2T _UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _UpperCAmelCase = None _UpperCAmelCase = MAPPING_T2S _UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2S _UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(__a , __a ): logger.info(F"{name} was ignored" ) continue _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _UpperCAmelCase , _UpperCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: _UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(__a )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , __a ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "bias" in name: _UpperCAmelCase = 'bias' elif "weight" in name: _UpperCAmelCase = 'weight' elif "running_mean" in name: _UpperCAmelCase = 'running_mean' elif "running_var" in name: _UpperCAmelCase = 'running_var' elif "num_batches_tracked" in name: _UpperCAmelCase = 'num_batches_tracked' else: _UpperCAmelCase = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__a ) @torch.no_grad() def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Union[str, Any]=None , ) -> str: '''simple docstring''' if config_path is not None: _UpperCAmelCase = SpeechTaConfig.from_pretrained(__a ) else: _UpperCAmelCase = SpeechTaConfig() if task == "s2t": _UpperCAmelCase = config.max_text_positions _UpperCAmelCase = SpeechTaForSpeechToText(__a ) elif task == "t2s": _UpperCAmelCase = 1_876 _UpperCAmelCase = 600 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForTextToSpeech(__a ) elif task == "s2s": _UpperCAmelCase = 1_876 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForSpeechToSpeech(__a ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: _UpperCAmelCase = SpeechTaTokenizer(__a , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken('<mask>' , lstrip=__a , rstrip=__a ) _UpperCAmelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) _UpperCAmelCase = SpeechTaFeatureExtractor() _UpperCAmelCase = SpeechTaProcessor(tokenizer=__a , feature_extractor=__a ) processor.save_pretrained(__a ) _UpperCAmelCase = torch.load(__a ) recursively_load_weights(fairseq_checkpoint['model'] , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase__ = _symbol_database.Default() UpperCAmelCase__ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) UpperCAmelCase__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase__ = None UpperCAmelCase__ = B"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase__ = 45 UpperCAmelCase__ = 1581 UpperCAmelCase__ = 1517 UpperCAmelCase__ = 1570 UpperCAmelCase__ = 1584 UpperCAmelCase__ = 1793 UpperCAmelCase__ = 1795 UpperCAmelCase__ = 1916 UpperCAmelCase__ = 1864 UpperCAmelCase__ = 1905 UpperCAmelCase__ = 1919 UpperCAmelCase__ = 2429 UpperCAmelCase__ = 2208 UpperCAmelCase__ = 2418 UpperCAmelCase__ = 2323 UpperCAmelCase__ = 2407 # @@protoc_insertion_point(module_scope)
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = inspect.getfile(accelerate.test_utils ) UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCamelCase = ['''accelerate''', '''launch'''] UpperCamelCase = Path.home() / '''.cache/huggingface/accelerate''' UpperCamelCase = '''default_config.yaml''' UpperCamelCase = config_folder / config_file UpperCamelCase = config_folder / '''_default_config.yaml''' UpperCamelCase = Path('''tests/test_configs''' ) @classmethod def _lowerCamelCase ( cls : Union[str, Any]) -> Union[str, Any]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def _lowerCamelCase ( cls : Optional[int]) -> int: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" for config in sorted(self.test_config_path.glob('**/*.yaml')): with self.subTest(config_file=UpperCAmelCase__): execute_subprocess_async( self.base_cmd + ['--config_file', str(UpperCAmelCase__), self.test_file_path] , env=os.environ.copy()) def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy()) class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = '''test-tpu''' UpperCamelCase = '''us-central1-a''' UpperCamelCase = '''ls''' UpperCamelCase = ['''accelerate''', '''tpu-config'''] UpperCamelCase = '''cd /usr/share''' UpperCamelCase = '''tests/test_samples/test_command_file.sh''' UpperCamelCase = '''Running gcloud compute tpus tpu-vm ssh''' def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=UpperCAmelCase__) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all" , UpperCAmelCase__ , ) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=UpperCAmelCase__ , ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all" , UpperCAmelCase__ , )
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] _UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False _UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False _UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _UpperCAmelCase = [3, 3, 3, 3] _UpperCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: _UpperCAmelCase = [4, 4, 4, 4] _UpperCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _UpperCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: _UpperCAmelCase = [3, 3, 3, 3] else: _UpperCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: _UpperCAmelCase = 96 elif "small" in model_name: _UpperCAmelCase = 96 elif "base" in model_name: _UpperCAmelCase = 128 elif "large" in model_name: _UpperCAmelCase = 192 elif "xlarge" in model_name: _UpperCAmelCase = 256 elif "huge" in model_name: _UpperCAmelCase = 352 # set label information _UpperCAmelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: _UpperCAmelCase = 'imagenet-22k-id2label.json' else: _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = FocalNetConfig( embed_dim=_lowerCAmelCase , depths=_lowerCAmelCase , focal_levels=_lowerCAmelCase , focal_windows=_lowerCAmelCase , use_conv_embed=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase , use_post_layernorm=_lowerCAmelCase , use_layerscale=_lowerCAmelCase , ) return config def A ( _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _UpperCAmelCase = 'encoder.' + name if "encoder.layers" in name: _UpperCAmelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: _UpperCAmelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: _UpperCAmelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _UpperCAmelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _UpperCAmelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _UpperCAmelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": _UpperCAmelCase = 'layernorm.weight' if name == "norm.bias": _UpperCAmelCase = 'layernorm.bias' if "head" in name: _UpperCAmelCase = name.replace('head' , 'classifier' ) else: _UpperCAmelCase = 'focalnet.' + name return name def A ( _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Any=False ) -> Union[str, Any]: '''simple docstring''' # fmt: off _UpperCAmelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on _UpperCAmelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , _lowerCAmelCase ) _UpperCAmelCase = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val _UpperCAmelCase = get_focalnet_config(_lowerCAmelCase ) _UpperCAmelCase = FocalNetForImageClassification(_lowerCAmelCase ) model.eval() # load state dict model.load_state_dict(_lowerCAmelCase ) # verify conversion _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = BitImageProcessor( do_resize=_lowerCAmelCase , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCAmelCase , crop_size=224 , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , ) _UpperCAmelCase = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) _UpperCAmelCase = processor(images=_lowerCAmelCase , return_tensors='pt' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _UpperCAmelCase = image_transforms(_lowerCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowerCAmelCase , atol=1E-4 ) _UpperCAmelCase = model(**_lowerCAmelCase ) _UpperCAmelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": _UpperCAmelCase = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": _UpperCAmelCase = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": _UpperCAmelCase = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": _UpperCAmelCase = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": _UpperCAmelCase = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(F"{model_name}" ) processor.push_to_hub(F"{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) UpperCAmelCase__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : int = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } UpperCAmelCase__ : Optional[Any] = '</w>' UpperCAmelCase__ : Optional[Any] = '@@ ' def A ( _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs # Speech2Text2 has no max input length UpperCAmelCase__ : Dict = {'facebook/s2t-wav2vec2-large-en-de': 1024} class __lowerCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : str , A : Optional[Any] , A : str="<s>" , A : Optional[Any]="<pad>" , A : Any="</s>" , A : Dict="<unk>" , A : List[str]=False , A : int=None , **A : Any , ) -> str: """simple docstring""" super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _UpperCAmelCase = do_lower_case with open(__lowerCamelCase , encoding='utf-8') as vocab_handle: _UpperCAmelCase = json.load(__lowerCamelCase) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _UpperCAmelCase = None _UpperCAmelCase = None else: with open(__lowerCamelCase , encoding='utf-8') as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n')[:-1] _UpperCAmelCase = [tuple(merge.split()[:2]) for merge in merges] _UpperCAmelCase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _UpperCAmelCase = {} @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return len(self.decoder) def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self : str , A : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _UpperCAmelCase = get_pairs(__lowerCamelCase) if not pairs: return token while True: _UpperCAmelCase = min(__lowerCamelCase , key=lambda A: self.bpe_ranks.get(__lowerCamelCase , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(__lowerCamelCase): try: _UpperCAmelCase = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCAmelCase = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCAmelCase = tuple(__lowerCamelCase) _UpperCAmelCase = new_word if len(__lowerCamelCase) == 1: break else: _UpperCAmelCase = get_pairs(__lowerCamelCase) _UpperCAmelCase = ''' '''.join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _UpperCAmelCase = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _UpperCAmelCase = word.replace(__lowerCamelCase , '') _UpperCAmelCase = word.replace(' ' , __lowerCamelCase) _UpperCAmelCase = word return word def _lowerCamelCase ( self : Union[str, Any] , A : str) -> int: """simple docstring""" if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: _UpperCAmelCase = text.lower() _UpperCAmelCase = text.split() _UpperCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(' '))) return split_tokens def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int]) -> int: """simple docstring""" return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self : str , A : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self : Dict , A : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = ''' '''.join(__lowerCamelCase) # make sure @@ tokens are concatenated _UpperCAmelCase = ''''''.join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self : int , A : int , A : Any = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(__lowerCamelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + '\n') _UpperCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!') _UpperCAmelCase = token_index writer.write(' '.join(__lowerCamelCase) + '\n') index += 1 return (vocab_file, merges_file)
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
import itertools import os import re UpperCAmelCase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") UpperCAmelCase__ = re.compile(r"([a-z\d])([A-Z])") UpperCAmelCase__ = re.compile(r"(?<!_)_(?!_)") UpperCAmelCase__ = re.compile(r"(_{2,})") UpperCAmelCase__ = R"^\w+(\.\w+)*$" UpperCAmelCase__ = R"<>:/\|?*" def A ( _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' _UpperCAmelCase = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCamelCase__ ) _UpperCAmelCase = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCamelCase__ ) return name.lower() def A ( _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = _single_underscore_re.split(UpperCamelCase__ ) _UpperCAmelCase = [_multiple_underscores_re.split(UpperCamelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase__ ) if n != '' ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(UpperCamelCase__ ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , UpperCamelCase__ ): raise ValueError(F"Split name should match \'{_split_re}\'\' but got \'{split}\'." ) return F"{filename_prefix_for_name(UpperCamelCase__ )}-{split}" def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) if filetype_suffix: prefix += F".{filetype_suffix}" _UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) return F"{filepath}*" def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if shard_lengths: _UpperCAmelCase = len(UpperCamelCase__ ) _UpperCAmelCase = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(UpperCamelCase__ )] if filetype_suffix: _UpperCAmelCase = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: _UpperCAmelCase = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPFeatureExtractor"] UpperCAmelCase__ = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
def A ( _UpperCAmelCase : Dict ) -> int: '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(_UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase__ = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: UpperCAmelCase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( __lowercase ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , A : bool = True , A : int = 32 , A : Dict=PILImageResampling.BILINEAR , A : bool = True , **A : Union[str, Any] , ) -> None: """simple docstring""" _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = size_divisor _UpperCAmelCase = resample super().__init__(**A) def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : int , A : str , A : Optional[ChannelDimension] = None , **A : List[str]) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_image_size(A) # Rounds the height and width down to the closest multiple of size_divisor _UpperCAmelCase = height // size_divisor * size_divisor _UpperCAmelCase = width // size_divisor * size_divisor _UpperCAmelCase = resize(A , (new_h, new_w) , resample=A , data_format=A , **A) return image def _lowerCamelCase ( self : str , A : np.ndarray , A : float , A : Optional[ChannelDimension] = None , **A : Union[str, Any]) -> np.ndarray: """simple docstring""" return rescale(image=A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , A : Optional[bool] = None , A : Optional[int] = None , A : Tuple=None , A : Optional[bool] = None , A : Optional[Union[TensorType, str]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Dict , ) -> BatchFeature: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = size_divisor if size_divisor is not None else self.size_divisor _UpperCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing') _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError('Invalid image(s)') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for img in images] if do_resize: _UpperCAmelCase = [self.resize(A , size_divisor=A , resample=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(A , scale=1 / 2_55) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=A , tensor_type=A)
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import random def A ( _UpperCAmelCase : list , _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def A ( _UpperCAmelCase : list , _UpperCAmelCase : int ) -> Dict: '''simple docstring''' if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None _UpperCAmelCase = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [1] for i in range(2 , _UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _UpperCAmelCase = [] _UpperCAmelCase = list(range(_UpperCAmelCase ) ) # Find permutation while factorials: _UpperCAmelCase = factorials.pop() _UpperCAmelCase = divmod(_UpperCAmelCase , _UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
from math import sqrt def A ( _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 0 for i in range(1 , int(sqrt(lowerCAmelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase__ ): total += i + n // i elif i == sqrt(lowerCAmelCase__ ): total += i return total - n def A ( _UpperCAmelCase : int = 10_000 ) -> int: '''simple docstring''' _UpperCAmelCase = sum( i for i in range(1 , lowerCAmelCase__ ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase__ ) ) == i and sum_of_divisors(lowerCAmelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import argparse import struct import unittest class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Optional[int]) -> None: """simple docstring""" _UpperCAmelCase = data # Initialize hash values _UpperCAmelCase = [ 0X6a09e667, 0Xbb67ae85, 0X3c6ef372, 0Xa54ff53a, 0X510e527f, 0X9b05688c, 0X1f83d9ab, 0X5be0cd19, ] # Initialize round constants _UpperCAmelCase = [ 0X428a2f98, 0X71374491, 0Xb5c0fbcf, 0Xe9b5dba5, 0X3956c25b, 0X59f111f1, 0X923f82a4, 0Xab1c5ed5, 0Xd807aa98, 0X12835b01, 0X243185be, 0X550c7dc3, 0X72be5d74, 0X80deb1fe, 0X9bdc06a7, 0Xc19bf174, 0Xe49b69c1, 0Xefbe4786, 0X0fc19dc6, 0X240ca1cc, 0X2de92c6f, 0X4a7484aa, 0X5cb0a9dc, 0X76f988da, 0X983e5152, 0Xa831c66d, 0Xb00327c8, 0Xbf597fc7, 0Xc6e00bf3, 0Xd5a79147, 0X06ca6351, 0X14292967, 0X27b70a85, 0X2e1b2138, 0X4d2c6dfc, 0X53380d13, 0X650a7354, 0X766a0abb, 0X81c2c92e, 0X92722c85, 0Xa2bfe8a1, 0Xa81a664b, 0Xc24b8b70, 0Xc76c51a3, 0Xd192e819, 0Xd6990624, 0Xf40e3585, 0X106aa070, 0X19a4c116, 0X1e376c08, 0X2748774c, 0X34b0bcb5, 0X391c0cb3, 0X4ed8aa4a, 0X5b9cca4f, 0X682e6ff3, 0X748f82ee, 0X78a5636f, 0X84c87814, 0X8cc70208, 0X90befffa, 0Xa4506ceb, 0Xbef9a3f7, 0Xc67178f2, ] _UpperCAmelCase = self.preprocessing(self.data) self.final_hash() @staticmethod def _lowerCamelCase ( A : Tuple) -> bytes: """simple docstring""" _UpperCAmelCase = B'\x80' + (B'\x00' * (63 - (len(lowerCamelCase_) + 8) % 64)) _UpperCAmelCase = struct.pack('>Q' , (len(lowerCamelCase_) * 8)) return data + padding + big_endian_integer def _lowerCamelCase ( self : Optional[Any]) -> None: """simple docstring""" _UpperCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _UpperCAmelCase = list(struct.unpack('>16L' , lowerCamelCase_)) # add 48 0-ed integers words += [0] * 48 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array _UpperCAmelCase = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) _UpperCAmelCase = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) _UpperCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression _UpperCAmelCase = self.ror(lowerCamelCase_ , 6) ^ self.ror(lowerCamelCase_ , 11) ^ self.ror(lowerCamelCase_ , 25) _UpperCAmelCase = (e & f) ^ ((~e & 0Xffffffff) & g) _UpperCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 _UpperCAmelCase = self.ror(lowerCamelCase_ , 2) ^ self.ror(lowerCamelCase_ , 13) ^ self.ror(lowerCamelCase_ , 22) _UpperCAmelCase = (a & b) ^ (a & c) ^ (b & c) _UpperCAmelCase = (sa + maj) % 0X100000000 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) _UpperCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values _UpperCAmelCase = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes) ] _UpperCAmelCase = ''.join([hex(lowerCamelCase_)[2:].zfill(8) for value in self.hashes]) def _lowerCamelCase ( self : Union[str, Any] , A : int , A : str) -> int: """simple docstring""" return 0Xffffffff & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> None: """simple docstring""" import hashlib _UpperCAmelCase = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(lowerCamelCase_).hash , hashlib.shaaaa(lowerCamelCase_).hexdigest()) def A ( ) -> None: '''simple docstring''' import doctest doctest.testmod() _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _UpperCAmelCase = f.read() else: _UpperCAmelCase = bytes(_UpperCAmelCase , 'utf-8' ) print(SHAaaa(_UpperCAmelCase ).hash ) if __name__ == "__main__": main()
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = 50 # max width of layer names UpperCAmelCase__ = 70 # max width of quantizer names def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_UpperCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_UpperCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_UpperCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_UpperCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_UpperCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_UpperCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if args.calibrator == "max": _UpperCAmelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _UpperCAmelCase = 'histogram' elif args.calibrator == "mse": _UpperCAmelCase = 'histogram' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) _UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_UpperCAmelCase ) _UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_UpperCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict=False , _UpperCAmelCase : int=False ) -> Optional[Any]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_UpperCAmelCase , ['embeddings'] , which='weight' , _disabled=_UpperCAmelCase ) if args.quant_disable: set_quantizer_by_name(_UpperCAmelCase , [''] , _disabled=_UpperCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_UpperCAmelCase , args.quant_disable_keyword , _disabled=_UpperCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_UpperCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_UpperCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_UpperCAmelCase ) if args.fuse_qkv: fuse_qkv(_UpperCAmelCase , _UpperCAmelCase ) if args.clip_gelu: clip_gelu(_UpperCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' def fusea(_UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): for mod in [qq, qk, qv]: if not hasattr(_UpperCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _UpperCAmelCase = qq._amax.detach().item() _UpperCAmelCase = qk._amax.detach().item() _UpperCAmelCase = qv._amax.detach().item() _UpperCAmelCase = max(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) qq._amax.fill_(_UpperCAmelCase ) qk._amax.fill_(_UpperCAmelCase ) qv._amax.fill_(_UpperCAmelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_UpperCAmelCase ) _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def A ( _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _UpperCAmelCase = mod.weight.shape[0] _UpperCAmelCase = mod._weight_quantizer._amax.detach() _UpperCAmelCase = torch.ones(_UpperCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set _UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_UpperCAmelCase , keepdims=_UpperCAmelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) _UpperCAmelCase = amax def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str=25 , _UpperCAmelCase : List[str]=180 , _UpperCAmelCase : Tuple=None ) -> str: '''simple docstring''' if ignore is None: _UpperCAmelCase = [] elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = [ignore] _UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(_UpperCAmelCase , 'weight' ): continue _UpperCAmelCase = max(_UpperCAmelCase , len(_UpperCAmelCase ) ) for name, mod in model.named_modules(): _UpperCAmelCase = getattr(_UpperCAmelCase , '_input_quantizer' , _UpperCAmelCase ) _UpperCAmelCase = getattr(_UpperCAmelCase , '_weight_quantizer' , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , 'weight' ): continue if type(_UpperCAmelCase ) in ignore: continue if [True for s in ignore if type(_UpperCAmelCase ) is str and s in name]: continue _UpperCAmelCase = F"Act:{input_q.extra_repr()}" _UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" _UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(_UpperCAmelCase ) <= line_width: logger.info(_UpperCAmelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(_UpperCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if quantizer_mod is not None: assert hasattr(_UpperCAmelCase , _UpperCAmelCase ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]="both" , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , '_input_quantizer' , _UpperCAmelCase , _UpperCAmelCase ) if which in ["weight", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , '_weight_quantizer' , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_input_quantizer' ) or hasattr(_UpperCAmelCase , '_weight_quantizer' ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): set_quantizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase )
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' while a != 0: _UpperCAmelCase , _UpperCAmelCase = b % a, a return b def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1: _UpperCAmelCase = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 1, m while va != 0: _UpperCAmelCase = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowerCAmelCase : UpperCamelCase = BlenderbotConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : List[str] , A : Tuple , A : Dict=13 , A : Union[str, Any]=7 , A : Optional[int]=True , A : int=False , A : str=99 , A : Optional[int]=32 , A : Optional[Any]=2 , A : Dict=4 , A : Union[str, Any]=37 , A : Tuple=0.1 , A : Optional[Any]=0.1 , A : List[str]=20 , A : Any=2 , A : Union[str, Any]=1 , A : List[str]=0 , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return config, inputs_dict def _lowerCamelCase ( self : Dict , A : Union[str, Any] , A : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = TFBlenderbotModel(config=_UpperCAmelCase).get_decoder() _UpperCAmelCase = inputs_dict['''input_ids'''] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCAmelCase = inputs_dict['''head_mask'''] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase) _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase)[0] _UpperCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Any=None , ) -> int: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = TFBlenderbotModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase) def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase) @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = ['''My friends are cool but they eat too many carbs.'''] UpperCamelCase = '''facebook/blenderbot-400M-distill''' @cached_property def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer(self.src_text , return_tensors='tf') _UpperCAmelCase = self.model.generate( model_inputs.input_ids , ) _UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : int , **A : Union[str, Any]) -> Optional[Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowerCamelCase ( self : List[str] , A : Optional[Any] , A : Union[str, Any] , A : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection') _UpperCAmelCase = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _lowerCamelCase ( self : Dict , A : Optional[int] , A : str) -> int: """simple docstring""" _UpperCAmelCase = object_detector(examples[0] , threshold=0.0) _UpperCAmelCase = len(_A) self.assertGreater(_A , 0) self.assertEqual( _A , [ { 'score': ANY(_A), 'label': ANY(_A), 'box': {'xmin': ANY(_A), 'ymin': ANY(_A), 'xmax': ANY(_A), 'ymax': ANY(_A)}, } for i in range(_A) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF') def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" pass @require_torch def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection') _UpperCAmelCase = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_A , decimals=4) , [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) _UpperCAmelCase = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_A , decimals=4) , [ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-object-detection') _UpperCAmelCase = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_A , decimals=4) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) _UpperCAmelCase = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_A , decimals=4) , [ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF') def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" pass @require_torch @slow def _lowerCamelCase ( self : int) -> str: """simple docstring""" _UpperCAmelCase = 0.2 _UpperCAmelCase = pipeline('zero-shot-object-detection') _UpperCAmelCase = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_A , ) self.assertEqual( nested_simplify(_A , decimals=4) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = pipeline('zero-shot-object-detection') _UpperCAmelCase = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_A , ) self.assertEqual( nested_simplify(_A , decimals=4) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCAmelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)]) def _lowerCamelCase ( self : Any , A : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCamelCase , config_name=__UpperCamelCase) _UpperCAmelCase = GenerationConfig.from_pretrained(__UpperCamelCase , config_name=__UpperCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __UpperCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , __UpperCamelCase) def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = AutoConfig.from_pretrained('gpt2') _UpperCAmelCase = GenerationConfig.from_model_config(__UpperCamelCase) _UpperCAmelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__UpperCamelCase , __UpperCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = GenerationConfig() _UpperCAmelCase = { 'max_new_tokens': 10_24, 'foo': 'bar', } _UpperCAmelCase = copy.deepcopy(__UpperCamelCase) _UpperCAmelCase = generation_config.update(**__UpperCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__UpperCamelCase , __UpperCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__UpperCamelCase , {'foo': 'bar'}) def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = GenerationConfig() _UpperCAmelCase = 'bar' with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir: generation_config.save_pretrained(__UpperCamelCase) _UpperCAmelCase = GenerationConfig.from_pretrained(__UpperCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar') _UpperCAmelCase = GenerationConfig.from_model_config(__UpperCamelCase) assert not hasattr(__UpperCamelCase , 'foo') # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __UpperCamelCase) self.assertEqual(default_config.num_beams , 1) _UpperCAmelCase = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __UpperCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCamelCase) _UpperCAmelCase = GenerationConfig.from_pretrained(__UpperCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __UpperCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase) @classmethod def _lowerCamelCase ( cls : Dict) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-generation-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org') except HTTPError: pass def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token) _UpperCAmelCase = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase)) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCamelCase , repo_id='test-generation-config' , push_to_hub=__UpperCamelCase , use_auth_token=self._token) _UpperCAmelCase = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase)) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token) _UpperCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCamelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=__UpperCamelCase , use_auth_token=self._token) _UpperCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase))
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A ( _UpperCAmelCase : bool = True , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> int: '''simple docstring''' if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) _UpperCAmelCase = False if main_process_only: _UpperCAmelCase = PartialState().local_process_index == 0 return _tqdm(*_UpperCamelCase , **_UpperCamelCase , disable=_UpperCamelCase )
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
from manim import * class __lowerCAmelCase ( __UpperCAmelCase ): def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = Rectangle(height=0.5 , width=0.5) _UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = VGroup(*A).arrange(A , buff=0) _UpperCAmelCase = VGroup(*A).arrange(A , buff=0) _UpperCAmelCase = VGroup(A , A).arrange(A , buff=0) _UpperCAmelCase = Text('CPU' , font_size=24) _UpperCAmelCase = Group(A , A).arrange(A , buff=0.5 , aligned_edge=A) cpu.move_to([-2.5, -0.5, 0]) self.add(A) _UpperCAmelCase = [mem.copy() for i in range(1)] _UpperCAmelCase = VGroup(*A).arrange(A , buff=0) _UpperCAmelCase = Text('GPU' , font_size=24) _UpperCAmelCase = Group(A , A).arrange(A , buff=0.5 , aligned_edge=A) gpu.align_to(A , A) gpu.set_x(gpu.get_x() - 1) self.add(A) _UpperCAmelCase = [mem.copy() for i in range(6)] _UpperCAmelCase = VGroup(*A).arrange(A , buff=0) _UpperCAmelCase = Text('Model' , font_size=24) _UpperCAmelCase = Group(A , A).arrange(A , buff=0.5 , aligned_edge=A) model.move_to([3, -1.0, 0]) self.play( Create(A , run_time=1) , Create(A , run_time=1) , Create(A , run_time=1) , ) _UpperCAmelCase = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM." , font_size=24 , ) _UpperCAmelCase = Square(side_length=2.2) key.move_to([-5, 2, 0]) _UpperCAmelCase = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(A , run_time=2.5) , Write(A) , Write(A)) self.add(A) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(A): _UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0.0).set_fill(A , opacity=0.7) cpu_target.move_to(A) cpu_target.generate_target() _UpperCAmelCase = 0.4_6 / 4 _UpperCAmelCase = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=A) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=A , buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=A , buff=0.0) cpu_targs.append(A) first_animations.append(rect.animate(run_time=0.5).set_stroke(A)) second_animations.append(MoveToTarget(A , run_time=1.5)) self.play(*A) self.play(*A) self.wait()
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase = field( default=__lowerCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , _UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _UpperCAmelCase = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = train_dataset.features['''label'''].names if training_args.do_eval: _UpperCAmelCase = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = eval_dataset.features['''label'''].names if training_args.do_predict: _UpperCAmelCase = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = predict_dataset.features['''label'''].names # Labels _UpperCAmelCase = len(_UpperCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , idalabel={str(_UpperCAmelCase ): label for i, label in enumerate(_UpperCAmelCase )} , labelaid={label: i for i, label in enumerate(_UpperCAmelCase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase = False def preprocess_function(_UpperCAmelCase : Optional[int] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=_UpperCAmelCase , max_length=data_args.max_seq_length , truncation=_UpperCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase = min(len(_UpperCAmelCase ) , data_args.max_train_samples ) _UpperCAmelCase = train_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _UpperCAmelCase = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCAmelCase ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase = min(len(_UpperCAmelCase ) , data_args.max_eval_samples ) _UpperCAmelCase = eval_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _UpperCAmelCase = eval_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _UpperCAmelCase = min(len(_UpperCAmelCase ) , data_args.max_predict_samples ) _UpperCAmelCase = predict_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _UpperCAmelCase = predict_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _UpperCAmelCase = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase : EvalPrediction ): _UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _UpperCAmelCase ) else p.predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) return metric.compute(predictions=_UpperCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase = default_data_collator elif training_args.fpaa: _UpperCAmelCase = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase = None # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _UpperCAmelCase ) trainer.save_metrics('train' , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate(eval_dataset=_UpperCAmelCase ) _UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _UpperCAmelCase = trainer.predict(_UpperCAmelCase , metric_key_prefix='predict' ) _UpperCAmelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCAmelCase ) ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics('predict' , _UpperCAmelCase ) trainer.save_metrics('predict' , _UpperCAmelCase ) _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) _UpperCAmelCase = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(_UpperCAmelCase ): _UpperCAmelCase = label_list[item] writer.write(F"{index}\t{item}\n" ) if __name__ == "__main__": main()
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase__ = logging.getLogger(__name__) class __lowerCAmelCase ( UpperCamelCase_ ): def _lowerCamelCase ( self : Dict , A : Optional[Any] , A : List[str] , A : Optional[Any]=None , A : Tuple=None) -> Tuple: """simple docstring""" _UpperCAmelCase = self.layer[current_layer](A , A , head_mask[current_layer]) _UpperCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : str , A : Optional[int]) -> Any: """simple docstring""" super().__init__(A) _UpperCAmelCase = BertEncoderWithPabee(A) self.init_weights() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 def _lowerCamelCase ( self : Union[str, Any] , A : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = threshold def _lowerCamelCase ( self : Optional[Any] , A : List[str]) -> Dict: """simple docstring""" _UpperCAmelCase = patience def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(A) @add_start_docstrings_to_model_forward(A) def _lowerCamelCase ( self : List[Any] , A : List[str]=None , A : Optional[Any]=None , A : Optional[int]=None , A : List[Any]=None , A : List[Any]=None , A : str=None , A : Any=None , A : Union[str, Any]=None , A : Optional[Any]=None , A : int=None , A : Optional[Any]=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') elif input_ids is not None: _UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds') _UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase = torch.ones(A , device=A) if token_type_ids is None: _UpperCAmelCase = torch.zeros(A , dtype=torch.long , device=A) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase = self.get_extended_attention_mask(A , A , A) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase = encoder_hidden_states.size() _UpperCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase = torch.ones(A , device=A) _UpperCAmelCase = self.invert_attention_mask(A) else: _UpperCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase = self.get_head_mask(A , self.config.num_hidden_layers) _UpperCAmelCase = self.embeddings( input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A) _UpperCAmelCase = embedding_output if self.training: _UpperCAmelCase = [] for i in range(self.config.num_hidden_layers): _UpperCAmelCase = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A) _UpperCAmelCase = self.pooler(A) _UpperCAmelCase = output_layers[i](output_dropout(A)) res.append(A) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase = self.encoder( A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _UpperCAmelCase = self.pooler(encoder_outputs[0]) _UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](A)] else: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 _UpperCAmelCase = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A) _UpperCAmelCase = self.pooler(A) _UpperCAmelCase = output_layers[i](A) if regression: _UpperCAmelCase = logits.detach() if patient_result is not None: _UpperCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase = 0 else: _UpperCAmelCase = logits.detach().argmax(dim=1) if patient_result is not None: _UpperCAmelCase = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(A)): patient_counter += 1 else: _UpperCAmelCase = 0 _UpperCAmelCase = logits if patient_counter == self.patience: break _UpperCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : List[Any] , A : Any) -> List[str]: """simple docstring""" super().__init__(A) _UpperCAmelCase = config.num_labels _UpperCAmelCase = BertModelWithPabee(A) _UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob) _UpperCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(A) def _lowerCamelCase ( self : Any , A : str=None , A : Optional[Any]=None , A : Union[str, Any]=None , A : List[str]=None , A : List[str]=None , A : Any=None , A : Optional[Any]=None , ) -> Dict: """simple docstring""" _UpperCAmelCase = self.bert( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase = (logits[-1],) if labels is not None: _UpperCAmelCase = None _UpperCAmelCase = 0 for ix, logits_item in enumerate(A): if self.num_labels == 1: # We are doing regression _UpperCAmelCase = MSELoss() _UpperCAmelCase = loss_fct(logits_item.view(-1) , labels.view(-1)) else: _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: _UpperCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase = (total_loss / total_weights,) + outputs return outputs
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
UpperCAmelCase__ = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : List[str] ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCamelCase__ ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class __lowerCAmelCase ( A ): UpperCamelCase = ["""pixel_values"""] def __init__( self : Dict , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_24} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : Optional[Any] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(A , size['shortest_edge'] , default_to_square=A) elif "height" in size and "width" in size: _UpperCAmelCase = (size['height'], size['width']) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Tuple , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Any , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Dict , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> Union[str, Any]: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Optional[int] , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = to_numpy_array(A) if do_resize: _UpperCAmelCase = self.resize(image=A , size=A , resample=A) if do_center_crop: _UpperCAmelCase = self.center_crop(A , size=A) if do_rescale: _UpperCAmelCase = self.rescale(image=A , scale=A) if do_normalize: _UpperCAmelCase = self.normalize(image=A , mean=A , std=A) _UpperCAmelCase = to_channel_dimension_format(A , A) return image def _lowerCamelCase ( self : Dict , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : str , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') _UpperCAmelCase = make_batched(A) _UpperCAmelCase = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] _UpperCAmelCase = {'pixel_values': videos} return BatchFeature(data=A , tensor_type=A)
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCAmelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' if isinstance(_UpperCAmelCase , torch.Tensor ): return image elif isinstance(_UpperCAmelCase , PIL.Image.Image ): _UpperCAmelCase = [image] _UpperCAmelCase = [trans(img.convert('RGB' ) ) for img in image] _UpperCAmelCase = torch.stack(_UpperCAmelCase ) return image class __lowerCAmelCase ( A ): def __init__( self : List[Any] , A : Optional[Any] , A : int) -> Optional[Any]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=A , scheduler=A) def _lowerCamelCase ( self : Tuple , A : Any) -> List[str]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}") def _lowerCamelCase ( self : List[str] , A : Any , A : Tuple , A : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = min(int(num_inference_steps * strength) , A) _UpperCAmelCase = max(num_inference_steps - init_timestep , 0) _UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self : Dict , A : List[str] , A : Any , A : List[Any] , A : List[str] , A : str , A : Any=None) -> int: """simple docstring""" if not isinstance(A , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(A)}") _UpperCAmelCase = image.to(device=A , dtype=A) if isinstance(A , A) and len(A) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(A)}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators.") _UpperCAmelCase = init_latents.shape _UpperCAmelCase = randn_tensor(A , generator=A , device=A , dtype=A) # get latents print('add noise to latents at timestep' , A) _UpperCAmelCase = self.scheduler.add_noise(A , A , A) _UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , A : Union[torch.FloatTensor, PIL.Image.Image] = None , A : float = 0.8 , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[bool] = None , A : Optional[str] = "pil" , A : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(A) # 2. Preprocess image _UpperCAmelCase = preprocess(A) # 3. set timesteps self.scheduler.set_timesteps(A , device=self.device) _UpperCAmelCase , _UpperCAmelCase = self.get_timesteps(A , A , self.device) _UpperCAmelCase = timesteps[:1].repeat(A) # 4. Prepare latent variables _UpperCAmelCase = self.prepare_latents(A , A , A , self.unet.dtype , self.device , A) _UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(A): # 1. predict noise model_output _UpperCAmelCase = self.unet(A , A).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step( A , A , A , eta=A , use_clipped_model_output=A , generator=A , ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(A) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=A)
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 4_2 UpperCamelCase = 4_2 class __lowerCAmelCase ( A , A ): UpperCamelCase = 1 @register_to_config def __init__( self : List[str] , A : int = 20_00 , A : float = 0.1_5 , A : float = 0.0_1 , A : float = 13_48.0 , A : float = 1E-5 , A : int = 1 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = sigma_max # setable values _UpperCAmelCase = None self.set_sigmas(A , A , A , A) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Union[str, Any] , A : int , A : float = None , A : Union[str, torch.device] = None) -> Any: """simple docstring""" _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps _UpperCAmelCase = torch.linspace(1 , A , A , device=A) def _lowerCamelCase ( self : List[Any] , A : int , A : float = None , A : float = None , A : float = None) -> str: """simple docstring""" _UpperCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min _UpperCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(A , A) _UpperCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _UpperCAmelCase = torch.exp(torch.linspace(math.log(A) , math.log(A) , A)) _UpperCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def _lowerCamelCase ( self : Dict , A : Optional[Any] , A : Union[str, Any]) -> str: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : Optional[torch.Generator] = None , A : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') _UpperCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _UpperCAmelCase = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _UpperCAmelCase = timesteps.to(self.discrete_sigmas.device) _UpperCAmelCase = self.discrete_sigmas[timesteps].to(sample.device) _UpperCAmelCase = self.get_adjacent_sigma(A , A).to(sample.device) _UpperCAmelCase = torch.zeros_like(A) _UpperCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _UpperCAmelCase = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _UpperCAmelCase = diffusion.unsqueeze(-1) _UpperCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _UpperCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=A , device=sample.device , dtype=sample.dtype) _UpperCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _UpperCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=A , prev_sample_mean=A) def _lowerCamelCase ( self : Dict , A : torch.FloatTensor , A : torch.FloatTensor , A : Optional[torch.Generator] = None , A : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _UpperCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=A).to(sample.device) # compute step size from the model_output, the noise, and the snr _UpperCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() _UpperCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() _UpperCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _UpperCAmelCase = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _UpperCAmelCase = step_size.flatten() while len(step_size.shape) < len(sample.shape): _UpperCAmelCase = step_size.unsqueeze(-1) _UpperCAmelCase = sample + step_size * model_output _UpperCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A) def _lowerCamelCase ( self : List[str] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = self.discrete_sigmas.to(original_samples.device)[timesteps] _UpperCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(A) * sigmas[:, None, None, None] ) _UpperCAmelCase = noise + original_samples return noisy_samples def __len__( self : List[Any]) -> str: """simple docstring""" return self.config.num_train_timesteps
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase__ = "Create a default config file for Accelerate with only a few flags set." def A ( _UpperCAmelCase : Optional[int]="no" , _UpperCAmelCase : str = default_json_config_file , _UpperCAmelCase : bool = False ) -> Tuple: '''simple docstring''' _UpperCAmelCase = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False _UpperCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) _UpperCAmelCase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _UpperCAmelCase = torch.cuda.device_count() _UpperCAmelCase = num_gpus _UpperCAmelCase = False if num_gpus > 1: _UpperCAmelCase = 'MULTI_GPU' else: _UpperCAmelCase = 'NO' elif is_xpu_available() and use_xpu: _UpperCAmelCase = torch.xpu.device_count() _UpperCAmelCase = num_xpus _UpperCAmelCase = False if num_xpus > 1: _UpperCAmelCase = 'MULTI_XPU' else: _UpperCAmelCase = 'NO' elif is_npu_available(): _UpperCAmelCase = torch.npu.device_count() _UpperCAmelCase = num_npus _UpperCAmelCase = False if num_npus > 1: _UpperCAmelCase = 'MULTI_NPU' else: _UpperCAmelCase = 'NO' else: _UpperCAmelCase = 0 _UpperCAmelCase = True _UpperCAmelCase = 1 _UpperCAmelCase = 'NO' _UpperCAmelCase = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = parser.add_parser('default' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_UpperCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def A ( _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"accelerate configuration saved at {config_file}" )
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
def A ( _UpperCAmelCase : int = 50 ) -> int: '''simple docstring''' _UpperCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase__ = "\\n\n" UpperCAmelCase__ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" UpperCAmelCase__ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string'), }) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def _lowerCamelCase ( self : Optional[Any] , A : Tuple , A : Union[str, Any] , A : int = 16 , A : bool = True , A : str=None) -> Tuple: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = 'cuda' else: _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(A) _UpperCAmelCase = model.to(A) _UpperCAmelCase = AutoTokenizer.from_pretrained(A) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(A) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( A , add_special_tokens=A , padding=A , truncation=A , max_length=A , return_tensors='pt' , return_attention_mask=A , ).to(A) _UpperCAmelCase = encodings['input_ids'] _UpperCAmelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction='none') for start_index in logging.tqdm(range(0 , len(A) , A)): _UpperCAmelCase = min(start_index + batch_size , len(A)) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(A) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(A), attn_mask] , dim=1) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(A , attention_mask=A).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , A) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A)}
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = CLIPTokenizer UpperCamelCase = CLIPTokenizerFast UpperCamelCase = True UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Dict , **A : Any) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : str , **A : List[Any]) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Optional[Any] , A : int) -> str: """simple docstring""" _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _UpperCAmelCase = tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , A) @require_ftfy def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase = 'xa\u0303y' + ' ' + 'x\xe3y' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F"{text_of_1_token} {text_of_1_token}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (0, len(A))) self.assertEqual( encoding.offset_mapping[1] , (len(A) + 1, len(A) + 1 + len(A)) , ) _UpperCAmelCase = F" {text}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A) + 1, 1 + len(A) + 1 + len(A)) , ) def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" with self.assertRaises(A) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer') self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.')) @require_ftfy def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" super().test_tokenization_python_rust_equals() def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" pass
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Dict , A : List[Any] , A : str=7 , A : Tuple=3 , A : Dict=18 , A : int=30 , A : Optional[Any]=4_00 , A : int=True , A : List[Any]=None , A : int=True , ) -> int: """simple docstring""" _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = apply_ocr def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase = LayoutLMvaImageProcessingTester(self) @property def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'size')) self.assertTrue(hasattr(A , 'apply_ocr')) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A) self.assertIsInstance(encoding.boxes , A) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') _UpperCAmelCase = Image.open(ds[0]['file']).convert('RGB') _UpperCAmelCase = image_processing(A , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _UpperCAmelCase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A) self.assertListEqual(encoding.boxes , A) # with apply_OCR = False _UpperCAmelCase = LayoutLMvaImageProcessor(apply_ocr=A) _UpperCAmelCase = image_processing(A , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24))
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
def A ( _UpperCAmelCase : list , _UpperCAmelCase : int = 0 ) -> list: '''simple docstring''' _UpperCAmelCase = length or len(_UpperCAmelCase ) _UpperCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _UpperCAmelCase , _UpperCAmelCase = list_data[i + 1], list_data[i] _UpperCAmelCase = True return list_data if not swapped else bubble_sort(_UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
from __future__ import annotations UpperCAmelCase__ = tuple[int, int, int] UpperCAmelCase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCAmelCase__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCAmelCase__ = "EGZWVONAHDCLFQMSIPJBYUKXTR" UpperCAmelCase__ = "FOBHMDKEXQNRAULPGSJVTYICZW" UpperCAmelCase__ = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- UpperCAmelCase__ = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- UpperCAmelCase__ = "RMDJXFUWGISLHVTCQNKYPBEZOA" UpperCAmelCase__ = "SGLCPQWZHKXAREONTFBVIYJUDM" UpperCAmelCase__ = "HVSICLTYKQUBXDWAJZOMFGPREN" UpperCAmelCase__ = "RZWQHFMVDBKICJLNTUXAGYPSOE" UpperCAmelCase__ = "LFKIJODBEGAMQPXVUHYSTCZRWN" UpperCAmelCase__ = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def A ( _UpperCAmelCase : RotorPositionT , _UpperCAmelCase : RotorSelectionT , _UpperCAmelCase : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_UpperCAmelCase ) )) < 3: _UpperCAmelCase = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_UpperCAmelCase ) # Checks if rotor positions are valid _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rotpos if not 0 < rotorposa <= len(_UpperCAmelCase ): _UpperCAmelCase = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): _UpperCAmelCase = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): _UpperCAmelCase = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_UpperCAmelCase ) # Validates string and returns dict _UpperCAmelCase = _plugboard(_UpperCAmelCase ) return rotpos, rotsel, pbdict def A ( _UpperCAmelCase : str ) -> dict[str, str]: '''simple docstring''' # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Plugboard setting isn't type string ({type(_UpperCAmelCase )})" raise TypeError(_UpperCAmelCase ) elif len(_UpperCAmelCase ) % 2 != 0: _UpperCAmelCase = F"Odd number of symbols ({len(_UpperCAmelCase )})" raise Exception(_UpperCAmelCase ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique _UpperCAmelCase = set() for i in pbstring: if i not in abc: _UpperCAmelCase = F"'{i}' not in list of symbols" raise Exception(_UpperCAmelCase ) elif i in tmppbl: _UpperCAmelCase = F"Duplicate symbol ({i})" raise Exception(_UpperCAmelCase ) else: tmppbl.add(_UpperCAmelCase ) del tmppbl # Created the dictionary _UpperCAmelCase = {} for j in range(0 , len(_UpperCAmelCase ) - 1 , 2 ): _UpperCAmelCase = pbstring[j + 1] _UpperCAmelCase = pbstring[j] return pb def A ( _UpperCAmelCase : str , _UpperCAmelCase : RotorPositionT , _UpperCAmelCase : RotorSelectionT = (rotora, rotora, rotora) , _UpperCAmelCase : str = "" , ) -> str: '''simple docstring''' _UpperCAmelCase = text.upper() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _validator( _UpperCAmelCase , _UpperCAmelCase , plugb.upper() ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rotor_position _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCAmelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCAmelCase = plugboard[symbol] # rotor ra -------------------------- _UpperCAmelCase = abc.index(_UpperCAmelCase ) + rotorposa _UpperCAmelCase = rotora[index % len(_UpperCAmelCase )] # rotor rb -------------------------- _UpperCAmelCase = abc.index(_UpperCAmelCase ) + rotorposa _UpperCAmelCase = rotora[index % len(_UpperCAmelCase )] # rotor rc -------------------------- _UpperCAmelCase = abc.index(_UpperCAmelCase ) + rotorposa _UpperCAmelCase = rotora[index % len(_UpperCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCAmelCase = reflector[symbol] # 2nd rotors _UpperCAmelCase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] _UpperCAmelCase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] _UpperCAmelCase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCAmelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): _UpperCAmelCase = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): _UpperCAmelCase = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): _UpperCAmelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = "This is my Python script that emulates the Enigma machine from WWII." UpperCAmelCase__ = (1, 1, 1) UpperCAmelCase__ = "pictures" UpperCAmelCase__ = (rotora, rotora, rotora) UpperCAmelCase__ = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
from maths.prime_factors import prime_factors def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Input value of [number={number}] must be an integer" raise TypeError(_UpperCAmelCase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(_UpperCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
from math import factorial def A ( _UpperCAmelCase : int = 20 ) -> int: '''simple docstring''' _UpperCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCAmelCase = n // 2 return int(factorial(_UpperCAmelCase ) / (factorial(_UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> float: '''simple docstring''' def get_matched_characters(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase = int(max(0 , i - limit ) ) _UpperCAmelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) _UpperCAmelCase = F"{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}" return "".join(_UpperCAmelCase ) # matching characters _UpperCAmelCase = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = len(_UpperCAmelCase ) # transposition _UpperCAmelCase = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase = 0.0 else: _UpperCAmelCase = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
def _A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _UpperCAmelCase = mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: _UpperCAmelCase = max( mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) _UpperCAmelCase = val return f[i][j] def _A ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _UpperCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _UpperCAmelCase = dp[i - 1][w_] return dp[n][w_], dp def _A ( _UpperCAmelCase : int , _UpperCAmelCase : list , _UpperCAmelCase : list ) -> Any: '''simple docstring''' if not (isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) _UpperCAmelCase = len(_UpperCAmelCase ) if num_items != len(_UpperCAmelCase ): _UpperCAmelCase = ( 'The number of weights must be the same as the number of values.\n' F"But got {num_items} weights and {len(_UpperCAmelCase )} values" ) raise ValueError(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): if not isinstance(wt[i] , _UpperCAmelCase ): _UpperCAmelCase = ( 'All weights must be integers but got weight of ' F"type {type(wt[i] )} at index {i}" ) raise TypeError(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = set() _construct_solution(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return optimal_val, example_optional_set def _A ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : set ) -> str: '''simple docstring''' # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: optimal_set.add(_UpperCAmelCase ) _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , j - wt[i - 1] , _UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = [3, 2, 4, 4] UpperCAmelCase__ = [4, 3, 2, 3] UpperCAmelCase__ = 4 UpperCAmelCase__ = 6 UpperCAmelCase__ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase__ , UpperCAmelCase__ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase__ , UpperCAmelCase__ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def A ( _UpperCAmelCase : str ) -> Dict: '''simple docstring''' _UpperCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __lowerCAmelCase ( A , A , A , unittest.TestCase ): UpperCamelCase = StableDiffusionLatentUpscalePipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase = frozenset([] ) UpperCamelCase = True @property def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = 4 _UpperCAmelCase = (16, 16) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(A) return image def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=A , only_cross_attention=A , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _UpperCAmelCase = EulerDiscreteScheduler(prediction_type='sample') _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _UpperCAmelCase = CLIPTextModel(A) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCAmelCase = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCamelCase ( self : List[Any] , A : Union[str, Any] , A : List[Any]=0) -> List[str]: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = self.get_dummy_inputs(A) _UpperCAmelCase = pipe(**A).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3)) _UpperCAmelCase = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5]) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(A , 1E-3) def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def _lowerCamelCase ( self : Any) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3) def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3) def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=A) pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = self.get_dummy_inputs(A) _UpperCAmelCase = 2 _UpperCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCAmelCase = getattr(A , scheduler_enum.name) _UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config) _UpperCAmelCase = pipe(**A)[0] outputs.append(A) assert check_same_shape(A) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = torch.manual_seed(33) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa) pipe.to('cuda') _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') _UpperCAmelCase = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _UpperCAmelCase = pipe(A , generator=A , output_type='latent').images _UpperCAmelCase = upscaler( prompt=A , image=A , num_inference_steps=20 , guidance_scale=0 , generator=A , output_type='np' , ).images[0] _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5E-2 def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = torch.manual_seed(33) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') _UpperCAmelCase = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') _UpperCAmelCase = upscaler( prompt=A , image=A , num_inference_steps=20 , guidance_scale=0 , generator=A , output_type='np' , ).images[0] _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5E-2
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = get_activation('swish') self.assertIsInstance(A , nn.SiLU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = get_activation('silu') self.assertIsInstance(A , nn.SiLU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = get_activation('mish') self.assertIsInstance(A , nn.Mish) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = get_activation('gelu') self.assertIsInstance(A , nn.GELU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ = 5 UpperCAmelCase__ = 10 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = SpeechaTextTokenizer UpperCamelCase = False UpperCamelCase = True def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" super().setUp() _UpperCAmelCase = sp.SentencePieceProcessor() spm_model.Load(A) _UpperCAmelCase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(A))] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = Path(self.tmpdirname) save_json(A , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A) , A) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A) , A) def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(A) , 10_01) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCAmelCase = tokenizer.tokenize('This is a test') self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(A) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( A , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) self.assertListEqual(A , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertListEqual( A , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = '''valhalla/s2t_mustc_multilinguial_medium''' UpperCamelCase = '''C\'est trop cool''' UpperCamelCase = '''Esto es genial''' @classmethod def _lowerCamelCase ( cls : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" self.assertIn(A , self.tokenizer.all_special_ids) _UpperCAmelCase = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCAmelCase = self.tokenizer.decode(A , skip_special_tokens=A) _UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A) self.assertEqual(A , A) self.assertNotIn(self.tokenizer.eos_token , A) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'fr' _UpperCAmelCase = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , A) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCAmelCase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
from __future__ import annotations from typing import TypedDict class __lowerCAmelCase ( A ): UpperCamelCase = 4_2 UpperCamelCase = 4_2 def A ( _UpperCAmelCase : str ) -> list[str]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def A ( _UpperCAmelCase : str ) -> BWTTransformDict: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) _UpperCAmelCase = all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCAmelCase = { 'bwt_string': ''.join([word[-1] for word in rotations] ), 'idx_original_string': rotations.index(_UpperCAmelCase ), } return response def A ( _UpperCAmelCase : str , _UpperCAmelCase : int ) -> str: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: _UpperCAmelCase = int(_UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) _UpperCAmelCase = [''] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase__ = "Provide a string that I will generate its BWT transform: " UpperCAmelCase__ = input(entry_msg).strip() UpperCAmelCase__ = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) UpperCAmelCase__ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , A : Tuple , A : int=7 , A : str=3 , A : List[Any]=30 , A : str=4_00 , A : Tuple=True , A : str=None , A : Tuple=True , A : List[str]=[0.5, 0.5, 0.5] , A : int=[0.5, 0.5, 0.5] , A : List[str]=True , A : List[str]=1 / 2_55 , A : List[Any]=True , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self : Tuple , A : int , A : int=False) -> Dict: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(A , Image.Image): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _UpperCAmelCase = max(A , key=lambda A: item[0])[0] _UpperCAmelCase = max(A , key=lambda A: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = DeformableDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self) @property def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'image_mean')) self.assertTrue(hasattr(A , 'image_std')) self.assertTrue(hasattr(A , 'do_normalize')) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'do_rescale')) self.assertTrue(hasattr(A , 'do_pad')) self.assertTrue(hasattr(A , 'size')) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad , A) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , A) def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : List[str]) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {'image_id': 3_97_69, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=A , annotations=A , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , A) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , A) _UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A)) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A)) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A)) @slow def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic') _UpperCAmelCase = image_processing(images=A , annotations=A , masks_path=A , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , A) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , A) _UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A)) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A)) # verify masks _UpperCAmelCase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A))
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0