code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer UpperCAmelCase__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A ) class __lowerCAmelCase : def __call__( self : List[str] , A : Any , A : Optional[str] = None , A : Optional[str] = None , A : Union[bool, str] = False , A : Union[bool, str] = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = None , **A : List[Any] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) _UpperCAmelCase = titles if not isinstance(A , A) else [titles] _UpperCAmelCase = texts if not isinstance(A , A) else [texts] _UpperCAmelCase = len(A) _UpperCAmelCase = questions if not isinstance(A , A) else [questions] * n_passages assert len(A) == len( A), F"There should be as many titles than texts but got {len(A)} titles and {len(A)} texts." _UpperCAmelCase = super().__call__(A , A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = super().__call__(A , add_special_tokens=A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _UpperCAmelCase = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A) def _lowerCamelCase ( self : Dict , A : BatchEncoding , A : DPRReaderOutput , A : int = 16 , A : int = 64 , A : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = reader_input['input_ids'] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(A) _UpperCAmelCase = sorted(range(A) , reverse=A , key=relevance_logits.__getitem__) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id) else: _UpperCAmelCase = len(A) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(A) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : List[int] , A : int , A : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = [] for start_index, start_score in enumerate(A): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _UpperCAmelCase = sorted(A , key=lambda A: x[1] , reverse=A) _UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(A) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class __lowerCAmelCase ( A , A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = DPRReaderTokenizer
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : str , A : int , A : int , A : float , **A : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = feature_size _UpperCAmelCase = sampling_rate _UpperCAmelCase = padding_value _UpperCAmelCase = kwargs.pop('padding_side' , 'right') _UpperCAmelCase = kwargs.pop('return_attention_mask' , A) super().__init__(**A) def _lowerCamelCase ( self : Dict , A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A : Union[bool, str, PaddingStrategy] = True , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: """simple docstring""" if isinstance(A , (list, tuple)) and isinstance(processed_features[0] , (dict, BatchFeature)): _UpperCAmelCase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys())}") _UpperCAmelCase = processed_features[self.model_input_names[0]] _UpperCAmelCase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A) == 0: if return_attention_mask: _UpperCAmelCase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _UpperCAmelCase = required_input[0] if isinstance(A , (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _UpperCAmelCase = 0 while len(required_input[index]) == 0: index += 1 if index < len(A): _UpperCAmelCase = required_input[index][0] if return_tensors is None: if is_tf_tensor(A): _UpperCAmelCase = 'tf' elif is_torch_tensor(A): _UpperCAmelCase = 'pt' elif isinstance(A , (int, float, list, tuple, np.ndarray)): _UpperCAmelCase = 'np' else: raise ValueError( F"type of {first_element} unknown: {type(A)}. " 'Should be one of a python, numpy, pytorch or tensorflow object.') for key, value in processed_features.items(): if isinstance(value[0] , (int, float)): _UpperCAmelCase = to_numpy(A) else: _UpperCAmelCase = [to_numpy(A) for v in value] # Convert padding_strategy in PaddingStrategy _UpperCAmelCase = self._get_padding_strategies(padding=A , max_length=A) _UpperCAmelCase = processed_features[self.model_input_names[0]] _UpperCAmelCase = len(A) if not all(len(A) == batch_size for v in processed_features.values()): raise ValueError('Some items in the output dictionary have a different batch size than others.') _UpperCAmelCase = [] for i in range(A): _UpperCAmelCase = {k: v[i] for k, v in processed_features.items()} # truncation _UpperCAmelCase = self._truncate( A , max_length=A , pad_to_multiple_of=A , truncation=A , ) truncated_inputs.append(A) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _UpperCAmelCase = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) _UpperCAmelCase = PaddingStrategy.MAX_LENGTH _UpperCAmelCase = {} for i in range(A): # padding _UpperCAmelCase = self._pad( truncated_inputs[i] , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) for key, value in outputs.items(): if key not in batch_outputs: _UpperCAmelCase = [] if value.dtype is np.dtype(np.floataa): _UpperCAmelCase = value.astype(np.floataa) batch_outputs[key].append(A) return BatchFeature(A , tensor_type=A) def _lowerCamelCase ( self : Union[str, Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ) -> dict: """simple docstring""" _UpperCAmelCase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _UpperCAmelCase = len(A) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A) < max_length if return_attention_mask and "attention_mask" not in processed_features: _UpperCAmelCase = np.ones(len(A) , dtype=np.intaa) if needs_to_be_padded: _UpperCAmelCase = max_length - len(A) if self.padding_side == "right": if return_attention_mask: _UpperCAmelCase = np.pad( processed_features['attention_mask'] , (0, difference)) _UpperCAmelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _UpperCAmelCase = np.pad( A , A , 'constant' , constant_values=self.padding_value) elif self.padding_side == "left": if return_attention_mask: _UpperCAmelCase = np.pad( processed_features['attention_mask'] , (difference, 0)) _UpperCAmelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _UpperCAmelCase = np.pad( A , A , 'constant' , constant_values=self.padding_value) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return processed_features def _lowerCamelCase ( self : Optional[Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : Optional[int] = None , A : Optional[bool] = None , ) -> Union[str, Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.') _UpperCAmelCase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase = len(A) > max_length if needs_to_be_truncated: _UpperCAmelCase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _UpperCAmelCase = processed_features['attention_mask'][:max_length] return processed_features def _lowerCamelCase ( self : Tuple , A : Tuple=False , A : Tuple=None) -> Optional[int]: """simple docstring""" if padding is not False: if padding is True: _UpperCAmelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A , A): _UpperCAmelCase = PaddingStrategy(A) elif isinstance(A , A): _UpperCAmelCase = padding else: _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined") # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.') return padding_strategy
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase__ : List[Any] = logging.getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 50 # max width of layer names UpperCAmelCase__ : int = 70 # max width of quantizer names def A ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_UpperCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_UpperCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_UpperCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_UpperCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_UpperCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_UpperCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def A ( _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _UpperCAmelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _UpperCAmelCase = 'histogram' elif args.calibrator == "mse": _UpperCAmelCase = 'histogram' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) _UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_UpperCAmelCase ) _UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_UpperCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_UpperCAmelCase , ['embeddings'] , which='weight' , _disabled=_UpperCAmelCase ) if args.quant_disable: set_quantizer_by_name(_UpperCAmelCase , [''] , _disabled=_UpperCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_UpperCAmelCase , args.quant_disable_keyword , _disabled=_UpperCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_UpperCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_UpperCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_UpperCAmelCase ) if args.fuse_qkv: fuse_qkv(_UpperCAmelCase , _UpperCAmelCase ) if args.clip_gelu: clip_gelu(_UpperCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' def fusea(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_UpperCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _UpperCAmelCase = qq._amax.detach().item() _UpperCAmelCase = qk._amax.detach().item() _UpperCAmelCase = qv._amax.detach().item() _UpperCAmelCase = max(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) qq._amax.fill_(_UpperCAmelCase ) qk._amax.fill_(_UpperCAmelCase ) qv._amax.fill_(_UpperCAmelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_UpperCAmelCase ) _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def A ( _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _UpperCAmelCase = mod.weight.shape[0] _UpperCAmelCase = mod._weight_quantizer._amax.detach() _UpperCAmelCase = torch.ones(_UpperCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def A ( _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set _UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_UpperCAmelCase , keepdims=_UpperCAmelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) _UpperCAmelCase = amax def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=25 , _UpperCAmelCase : int=180 , _UpperCAmelCase : int=None ) -> Tuple: '''simple docstring''' if ignore is None: _UpperCAmelCase = [] elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = [ignore] _UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(_UpperCAmelCase , 'weight' ): continue _UpperCAmelCase = max(_UpperCAmelCase , len(_UpperCAmelCase ) ) for name, mod in model.named_modules(): _UpperCAmelCase = getattr(_UpperCAmelCase , '_input_quantizer' , _UpperCAmelCase ) _UpperCAmelCase = getattr(_UpperCAmelCase , '_weight_quantizer' , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , 'weight' ): continue if type(_UpperCAmelCase ) in ignore: continue if [True for s in ignore if type(_UpperCAmelCase ) is str and s in name]: continue _UpperCAmelCase = F"Act:{input_q.extra_repr()}" _UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" _UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(_UpperCAmelCase ) <= line_width: logger.info(_UpperCAmelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(_UpperCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if quantizer_mod is not None: assert hasattr(_UpperCAmelCase , _UpperCAmelCase ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]="both" , **_UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , '_input_quantizer' , _UpperCAmelCase , _UpperCAmelCase ) if which in ["weight", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , '_weight_quantizer' , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , '_input_quantizer' ) or hasattr(_UpperCAmelCase , '_weight_quantizer' ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): set_quantizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase )
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase__ = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): _UpperCAmelCase = True # Deal with multi-line cases elif ( re.search( RF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , _UpperCAmelCase , ) is not None ): _UpperCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _UpperCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _UpperCAmelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _UpperCAmelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _UpperCAmelCase = True if not attribute_used: _UpperCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _UpperCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: _UpperCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _UpperCAmelCase = True elif attribute.endswith('_token_id' ): _UpperCAmelCase = True # configuration class specific cases if not case_allowed: _UpperCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _UpperCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A ( _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) _UpperCAmelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _UpperCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _UpperCAmelCase = {} if len(config_class.attribute_map ) > 0: _UpperCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _UpperCAmelCase = inspect.getsourcefile(_UpperCAmelCase ) _UpperCAmelCase = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _UpperCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _UpperCAmelCase = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) _UpperCAmelCase = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` _UpperCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def A ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _UpperCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _UpperCAmelCase = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = unused_attributes if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
def A ( _UpperCAmelCase : list[list[int | float]] ) -> int: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = len(matrix[0] ) _UpperCAmelCase = min(_UpperCAmelCase , _UpperCAmelCase ) for row in range(_UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _UpperCAmelCase ): _UpperCAmelCase = matrix[col][row] / matrix[row][row] for i in range(_UpperCAmelCase , _UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _UpperCAmelCase = True for i in range(row + 1 , _UpperCAmelCase ): if matrix[i][row] != 0: _UpperCAmelCase , _UpperCAmelCase = matrix[i], matrix[row] _UpperCAmelCase = False break if reduce: rank -= 1 for i in range(_UpperCAmelCase ): _UpperCAmelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
import requests def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = {'Content-Type': 'application/json'} _UpperCAmelCase = requests.post(_UpperCAmelCase , json={'text': message_body} , headers=_UpperCAmelCase ) if response.status_code != 200: _UpperCAmelCase = ( 'Request to slack returned an error ' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) UpperCamelCase = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.') else: _UpperCAmelCase = self.train_file.split('.')[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase = self.validation_file.split('.')[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase = data_args.train_file.split('.' )[-1] _UpperCAmelCase = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _UpperCAmelCase = load_dataset('csv' , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase = load_dataset('json' , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase = raw_datasets['train'].features['label'].names _UpperCAmelCase = len(_UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_UpperCAmelCase , ) _UpperCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase = {'Refused': 0, 'Entailed': 1} _UpperCAmelCase = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_UpperCAmelCase : Union[str, Any] ): # Tokenize the texts def _convert_table_text_to_pandas(_UpperCAmelCase : List[Any] ): _UpperCAmelCase = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _UpperCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase = examples['statement'] _UpperCAmelCase = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _UpperCAmelCase = tokenizer(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ) _UpperCAmelCase = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _UpperCAmelCase = raw_datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCAmelCase = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCAmelCase = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _UpperCAmelCase = raw_datasets['test'] if data_args.max_predict_samples is not None: _UpperCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_UpperCAmelCase ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase : EvalPrediction ): _UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _UpperCAmelCase ) else p.predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase = default_data_collator elif training_args.fpaa: _UpperCAmelCase = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase = None # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _UpperCAmelCase ) trainer.save_metrics('train' , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate(eval_dataset=_UpperCAmelCase ) _UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase = predict_dataset.remove_columns('label' ) _UpperCAmelCase = trainer.predict(_UpperCAmelCase , metric_key_prefix='predict' ).predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) _UpperCAmelCase = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_UpperCAmelCase ): _UpperCAmelCase = label_list[item] writer.write(F"{index}\t{item}\n" ) _UpperCAmelCase = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
from itertools import product def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(_UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCAmelCase , repeat=_UpperCAmelCase ): _UpperCAmelCase = sum(_UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def A ( ) -> float: '''simple docstring''' _UpperCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(_UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(_UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( A ): UpperCamelCase = 4_2 UpperCamelCase = None def A ( _UpperCAmelCase : str , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : Any="cosine" , ) -> Optional[int]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(_UpperCAmelCase ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( A , A ): UpperCamelCase = 1 @register_to_config def __init__( self : Union[str, Any] , A : int = 10_00 , A : float = 0.0_0_0_1 , A : float = 0.0_2 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : bool = True , A : bool = True , A : int = 0 , A : str = "epsilon" , A : float = 1.0 , **A : List[Any] , ) -> str: """simple docstring""" if kwargs.get('set_alpha_to_one' , A) is not None: _UpperCAmelCase = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , A , standard_warn=A) _UpperCAmelCase = kwargs['set_alpha_to_one'] if trained_betas is not None: _UpperCAmelCase = torch.tensor(A , dtype=torch.floataa) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(A , A , A , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(A) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , A).copy().astype(np.intaa)) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Optional[Any] , A : int , A : Union[str, torch.device] = None) -> List[Any]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps.") _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , A) * step_ratio).round().copy().astype(np.intaa) _UpperCAmelCase = torch.from_numpy(A).to(A) self.timesteps += self.config.steps_offset def _lowerCamelCase ( self : str , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : float = 0.0 , A : bool = False , A : Optional[torch.FloatTensor] = None , A : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=A , pred_original_sample=A) def __len__( self : int) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : Dict , *A : List[Any] , **A : List[Any]) -> None: """simple docstring""" warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , A , ) super().__init__(*A , **A)
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase__ = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class __lowerCAmelCase : UpperCamelCase = 4_2 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _str_to_version_tuple(self.version_str) def __repr__( self : List[Any]) -> int: """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" return self.major, self.minor, self.patch def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any]) -> Optional[Any]: """simple docstring""" if isinstance(A , A): return Version(A) elif isinstance(A , A): return other raise TypeError(F"{other} (type {type(A)}) cannot be compared to version.") def __eq__( self : List[str] , A : Optional[int]) -> Tuple: """simple docstring""" try: _UpperCAmelCase = self._validate_operand(A) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : int , A : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self._validate_operand(A) return self.tuple < other.tuple def __hash__( self : Dict) -> int: """simple docstring""" return hash(_version_tuple_to_str(self.tuple)) @classmethod def _lowerCamelCase ( cls : int , A : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return self.version_str def A ( _UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(_UpperCAmelCase ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def A ( _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) _UpperCAmelCase = Vector() def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(A) , '(0,0,0,0,0,1)') def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3, 4]) self.assertEqual(len(A) , 4) def _lowerCamelCase ( self : int) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2]) _UpperCAmelCase = Vector([1, 2, 3, 4, 5]) _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) _UpperCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3) def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _lowerCamelCase ( self : Union[str, Any]) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([2, -1, 4]) # for test of dot product _UpperCAmelCase = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , '(3.0,6.0,9.0)') self.assertEqual((a * b) , 0) def _lowerCamelCase ( self : Optional[Any]) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10)).count('0') , 10) def _lowerCamelCase ( self : Optional[int]) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , '(0,1,0)') def _lowerCamelCase ( self : Dict) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3]) _UpperCAmelCase = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , A , A)) , '(3,4,7)') def _lowerCamelCase ( self : int) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0, 0, 0, 0]) _UpperCAmelCase = x.copy() self.assertEqual(str(A) , str(A)) def _lowerCamelCase ( self : Optional[int]) -> None: """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(A) , '(0,1,0)') def _lowerCamelCase ( self : int) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(A)) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(A , A)) def _lowerCamelCase ( self : Tuple) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(A , A)) def _lowerCamelCase ( self : Optional[int]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) _UpperCAmelCase = Vector([1, 2, 3]) self.assertEqual('(14,32,50)' , str(a * x)) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2)) def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(A)) def _lowerCamelCase ( self : List[Any]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.0_1) def _lowerCamelCase ( self : str) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b)) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b)) def _lowerCamelCase ( self : List[str]) -> None: """simple docstring""" self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import math import sys import cva import numpy as np def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = math.sqrt(_UpperCAmelCase ) _UpperCAmelCase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def A ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): _UpperCAmelCase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = np.zeros(img.shape ) _UpperCAmelCase = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _UpperCAmelCase = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = img_s - img_s[kernel_size // 2, kernel_size // 2] _UpperCAmelCase = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) _UpperCAmelCase = val return imga def A ( _UpperCAmelCase : list ) -> tuple: '''simple docstring''' _UpperCAmelCase = args[1] if args[1:] else '../image_data/lena.jpg' _UpperCAmelCase = float(args[2] ) if args[2:] else 1.0 _UpperCAmelCase = float(args[3] ) if args[3:] else 1.0 if args[4:]: _UpperCAmelCase = int(args[4] ) _UpperCAmelCase = kernel_size + abs(kernel_size % 2 - 1 ) else: _UpperCAmelCase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parse_args(sys.argv) UpperCAmelCase__ = cva.imread(filename, 0) cva.imshow("input image", img) UpperCAmelCase__ = img / 255 UpperCAmelCase__ = out.astype("float32") UpperCAmelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCAmelCase__ = out * 255 UpperCAmelCase__ = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
def _A ( _UpperCAmelCase : int = 4_000_000 ) -> int: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 4_2 UpperCamelCase = 4_2 class __lowerCAmelCase ( nn.Module ): UpperCamelCase = 4_2 UpperCamelCase = (1_6, 3_2, 9_6, 2_5_6) UpperCamelCase = jnp.floataa def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = [] for i in range(len(self.block_out_channels) - 1): _UpperCAmelCase = self.block_out_channels[i] _UpperCAmelCase = self.block_out_channels[i + 1] _UpperCAmelCase = nn.Conv( A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A) _UpperCAmelCase = nn.Conv( A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A) _UpperCAmelCase = blocks _UpperCAmelCase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , A : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.conv_in(A) _UpperCAmelCase = nn.silu(A) for block in self.blocks: _UpperCAmelCase = block(A) _UpperCAmelCase = nn.silu(A) _UpperCAmelCase = self.conv_out(A) return embedding @flax_register_to_config class __lowerCAmelCase ( nn.Module , A , A ): UpperCamelCase = 3_2 UpperCamelCase = 4 UpperCamelCase = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) UpperCamelCase = False UpperCamelCase = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) UpperCamelCase = 2 UpperCamelCase = 8 UpperCamelCase = None UpperCamelCase = 1_2_8_0 UpperCamelCase = 0.0 UpperCamelCase = False UpperCamelCase = jnp.floataa UpperCamelCase = True UpperCamelCase = 0 UpperCamelCase = '''rgb''' UpperCamelCase = (1_6, 3_2, 9_6, 2_5_6) def _lowerCamelCase ( self : str , A : jax.random.KeyArray) -> FrozenDict: """simple docstring""" _UpperCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCAmelCase = jnp.zeros(A , dtype=jnp.floataa) _UpperCAmelCase = jnp.ones((1,) , dtype=jnp.intaa) _UpperCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) _UpperCAmelCase = (1, 3, self.sample_size * 8, self.sample_size * 8) _UpperCAmelCase = jnp.zeros(A , dtype=jnp.floataa) _UpperCAmelCase , _UpperCAmelCase = jax.random.split(A) _UpperCAmelCase = {'params': params_rng, 'dropout': dropout_rng} return self.init(A , A , A , A , A)["params"] def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.block_out_channels _UpperCAmelCase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCAmelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) _UpperCAmelCase = FlaxTimestepEmbedding(A , dtype=self.dtype) _UpperCAmelCase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _UpperCAmelCase = self.only_cross_attention if isinstance(A , A): _UpperCAmelCase = (only_cross_attention,) * len(self.down_block_types) if isinstance(A , A): _UpperCAmelCase = (num_attention_heads,) * len(self.down_block_types) # down _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = block_out_channels[0] _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A) for i, down_block_type in enumerate(self.down_block_types): _UpperCAmelCase = output_channel _UpperCAmelCase = block_out_channels[i] _UpperCAmelCase = i == len(A) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _UpperCAmelCase = FlaxDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A) for _ in range(self.layers_per_block): _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A) if not is_final_block: _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A) _UpperCAmelCase = down_blocks _UpperCAmelCase = controlnet_down_blocks # mid _UpperCAmelCase = block_out_channels[-1] _UpperCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _UpperCAmelCase = nn.Conv( A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[Any] , A : Any , A : Any , A : Any , A : List[str] , A : float = 1.0 , A : bool = True , A : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" _UpperCAmelCase = self.controlnet_conditioning_channel_order if channel_order == "bgr": _UpperCAmelCase = jnp.flip(A , axis=1) # 1. time if not isinstance(A , jnp.ndarray): _UpperCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(A , jnp.ndarray) and len(timesteps.shape) == 0: _UpperCAmelCase = timesteps.astype(dtype=jnp.floataa) _UpperCAmelCase = jnp.expand_dims(A , 0) _UpperCAmelCase = self.time_proj(A) _UpperCAmelCase = self.time_embedding(A) # 2. pre-process _UpperCAmelCase = jnp.transpose(A , (0, 2, 3, 1)) _UpperCAmelCase = self.conv_in(A) _UpperCAmelCase = jnp.transpose(A , (0, 2, 3, 1)) _UpperCAmelCase = self.controlnet_cond_embedding(A) sample += controlnet_cond # 3. down _UpperCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(A , A): _UpperCAmelCase , _UpperCAmelCase = down_block(A , A , A , deterministic=not train) else: _UpperCAmelCase , _UpperCAmelCase = down_block(A , A , deterministic=not train) down_block_res_samples += res_samples # 4. mid _UpperCAmelCase = self.mid_block(A , A , A , deterministic=not train) # 5. contronet blocks _UpperCAmelCase = () for down_block_res_sample, controlnet_block in zip(A , self.controlnet_down_blocks): _UpperCAmelCase = controlnet_block(A) controlnet_down_block_res_samples += (down_block_res_sample,) _UpperCAmelCase = controlnet_down_block_res_samples _UpperCAmelCase = self.controlnet_mid_block(A) # 6. scaling _UpperCAmelCase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A , mid_block_res_sample=A)
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) _UpperCAmelCase = transform(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) return image def A ( _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' if "visual_encoder" in key: _UpperCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , _UpperCAmelCase ) if "blocks" in key: _UpperCAmelCase = re.sub(R'blocks' , 'layers' , _UpperCAmelCase ) if "attn" in key: _UpperCAmelCase = re.sub(R'attn' , 'self_attn' , _UpperCAmelCase ) if "norm1" in key: _UpperCAmelCase = re.sub(R'norm1' , 'layer_norm1' , _UpperCAmelCase ) if "norm2" in key: _UpperCAmelCase = re.sub(R'norm2' , 'layer_norm2' , _UpperCAmelCase ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , _UpperCAmelCase ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , _UpperCAmelCase ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , _UpperCAmelCase ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , _UpperCAmelCase ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , _UpperCAmelCase ) return key @torch.no_grad() def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None ) -> Tuple: '''simple docstring''' if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(_UpperCAmelCase ).eval() _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCAmelCase = blip_decoder(pretrained=_UpperCAmelCase , image_size=384 , vit='base' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = rename_key(_UpperCAmelCase ) _UpperCAmelCase = value hf_model.load_state_dict(_UpperCAmelCase ) _UpperCAmelCase = 384 _UpperCAmelCase = load_demo_image(image_size=_UpperCAmelCase , device='cpu' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = tokenizer(['a picture of'] ).input_ids _UpperCAmelCase = hf_model.generate(_UpperCAmelCase , _UpperCAmelCase ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] _UpperCAmelCase = hf_model.generate(_UpperCAmelCase ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_UpperCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCAmelCase = blip_vqa(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = rename_key(_UpperCAmelCase ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(_UpperCAmelCase ) hf_vqa_model.load_state_dict(_UpperCAmelCase ) _UpperCAmelCase = ['How many dogs are in this image?'] _UpperCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(_UpperCAmelCase , _UpperCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCAmelCase = blip_itm(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase = rename_key(_UpperCAmelCase ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(_UpperCAmelCase ) _UpperCAmelCase = ['A picture of a woman with a dog sitting in a beach'] _UpperCAmelCase = tokenizer( _UpperCAmelCase , return_tensors='pt' , padding='max_length' , truncation=_UpperCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_UpperCAmelCase ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) _UpperCAmelCase = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase__ : Tuple = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def A ( _UpperCAmelCase : Dict=None ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(add_help=_UpperCAmelCase , allow_abbrev=_UpperCAmelCase ) # The main config parser _UpperCAmelCase = config_command_parser(_UpperCAmelCase ) # The subparser to add commands to _UpperCAmelCase = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(_UpperCAmelCase , parents=[parent_parser] ) update_command_parser(_UpperCAmelCase , parents=[parent_parser] ) return config_parser def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = get_config_parser() _UpperCAmelCase = config_parser.parse_args() if not hasattr(_UpperCAmelCase , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(_UpperCAmelCase ) if __name__ == "__main__": main()
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
import fire from utils import calculate_rouge, save_json def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' _UpperCAmelCase = [x.strip() for x in open(_UpperCAmelCase ).readlines()] _UpperCAmelCase = [x.strip() for x in open(_UpperCAmelCase ).readlines()][: len(_UpperCAmelCase )] _UpperCAmelCase = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) if save_path is not None: save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''bloom''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : Dict , A : int=25_08_80 , A : Union[str, Any]=64 , A : Any=2 , A : Any=8 , A : List[str]=1E-5 , A : Optional[Any]=0.0_2 , A : List[Any]=True , A : Any=1 , A : Tuple=2 , A : Optional[int]=False , A : str=0.0 , A : Optional[int]=0.0 , A : str=1 , A : str=False , **A : List[Any] , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('n_embed' , A) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = pretraining_tp _UpperCAmelCase = apply_residual_connection_post_layernorm _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=A , eos_token_id=A , **A) class __lowerCAmelCase ( A ): UpperCamelCase = version.parse('''1.12''' ) def __init__( self : int , A : PretrainedConfig , A : str = "default" , A : List[PatchingSpec] = None , A : bool = False , ) -> Union[str, Any]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A) if not getattr(self._config , 'pad_token_id' , A): # TODO: how to do that better? _UpperCAmelCase = 0 @property def _lowerCamelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _UpperCAmelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A , direction='inputs' , inverted_values_shape=A) _UpperCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" return self._config.n_layer @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return self._config.n_head @property def _lowerCamelCase ( self : Optional[Any]) -> float: """simple docstring""" return 1E-3 def _lowerCamelCase ( self : List[str] , A : "PreTrainedTokenizer" , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase = super(A , self).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = self._config.hidden_size // self.num_attention_heads _UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCAmelCase = [ (torch.zeros(A), torch.zeros(A)) for _ in range(self.num_layers) ] _UpperCAmelCase = common_inputs['attention_mask'] if self.use_past: _UpperCAmelCase = ordered_inputs['attention_mask'].dtype _UpperCAmelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(A , A , dtype=A)] , dim=1) return ordered_inputs @property def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" return 13
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''timesformer''' def __init__( self : Optional[Any] , A : str=2_24 , A : List[str]=16 , A : Any=3 , A : Optional[Any]=8 , A : Optional[Any]=7_68 , A : str=12 , A : int=12 , A : str=30_72 , A : Optional[Any]="gelu" , A : Tuple=0.0 , A : str=0.0 , A : Union[str, Any]=0.0_2 , A : List[Any]=1E-6 , A : Any=True , A : Tuple="divided_space_time" , A : Optional[int]=0 , **A : Tuple , ) -> str: """simple docstring""" super().__init__(**A) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = qkv_bias _UpperCAmelCase = attention_type _UpperCAmelCase = drop_path_rate
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self : Union[str, Any] , A : Union[str, Any] , A : List[str]=13 , A : List[str]=7 , A : List[Any]=True , A : List[Any]=True , A : int=True , A : Union[str, Any]=True , A : Dict=99 , A : int=16 , A : Optional[int]=36 , A : List[Any]=6 , A : int=6 , A : Optional[int]=6 , A : str=37 , A : int="gelu" , A : int=0.1 , A : List[Any]=0.1 , A : str=5_12 , A : str=16 , A : List[Any]=2 , A : Optional[int]=0.0_2 , A : Any=3 , A : List[Any]=4 , A : Optional[int]=None , ) -> str: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_hidden_groups _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self : Optional[int] , A : Optional[int] , A : str , A : int , A : Tuple , A : Union[str, Any] , A : List[Any] , A : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = AlbertModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A) _UpperCAmelCase = model(A , token_type_ids=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCamelCase ( self : List[Any] , A : List[str] , A : Any , A : Tuple , A : List[Any] , A : int , A : List[str] , A : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = AlbertForPreTraining(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def _lowerCamelCase ( self : Optional[Any] , A : Any , A : Any , A : Dict , A : Optional[Any] , A : int , A : int , A : Dict) -> Any: """simple docstring""" _UpperCAmelCase = AlbertForMaskedLM(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Tuple , A : List[str] , A : List[Any] , A : Tuple , A : Any , A : str , A : List[Any] , A : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = AlbertForQuestionAnswering(config=A) model.to(A) model.eval() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : List[Any] , A : List[Any] , A : List[str] , A : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : Any , A : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForSequenceClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : Optional[Any] , A : int , A : Tuple , A : Any , A : Union[str, Any] , A : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForTokenClassification(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A , attention_mask=A , token_type_ids=A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : Optional[int] , A : Union[str, Any] , A : Optional[int] , A : Tuple , A : List[str] , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = AlbertForMultipleChoice(config=A) model.to(A) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : Optional[int] , A : Tuple=False) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(A , A , return_labels=A) if return_labels: if model_class in get_values(A): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A) return inputs_dict def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = AlbertModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A) def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*A) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AlbertModel.from_pretrained(A) self.assertIsNotNone(A) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = AlbertModel.from_pretrained('albert-base-v2') _UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCAmelCase = model(A , attention_mask=A)[0] _UpperCAmelCase = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , A) _UpperCAmelCase = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4))
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''input_values''', '''padding_mask'''] def __init__( self : Any , A : int = 1 , A : int = 2_40_00 , A : float = 0.0 , A : float = None , A : float = None , **A : Dict , ) -> Dict: """simple docstring""" super().__init__(feature_size=A , sampling_rate=A , padding_value=A , **A) _UpperCAmelCase = chunk_length_s _UpperCAmelCase = overlap @property def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) def __call__( self : Tuple , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : Optional[Union[bool, str, PaddingStrategy]] = None , A : Optional[bool] = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[int] = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.') elif padding is None: # by default let's pad the inputs _UpperCAmelCase = True _UpperCAmelCase = bool( isinstance(A , (list, tuple)) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list)))) if is_batched: _UpperCAmelCase = [np.asarray(A , dtype=np.floataa).T for audio in raw_audio] elif not is_batched and not isinstance(A , np.ndarray): _UpperCAmelCase = np.asarray(A , dtype=np.floataa) elif isinstance(A , np.ndarray) and raw_audio.dtype is np.dtype(np.floataa): _UpperCAmelCase = raw_audio.astype(np.floataa) # always return batch if not is_batched: _UpperCAmelCase = [np.asarray(A).T] # verify inputs are valid for idx, example in enumerate(A): if example.ndim > 2: raise ValueError(F"Expected input shape (channels, length) but got shape {example.shape}") if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"Expected mono audio but example has {example.shape[-1]} channels") if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"Expected stereo audio but example has {example.shape[-1]} channels") _UpperCAmelCase = None _UpperCAmelCase = BatchFeature({'input_values': raw_audio}) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _UpperCAmelCase = min(array.shape[0] for array in raw_audio) _UpperCAmelCase = int(np.floor(max_length / self.chunk_stride)) _UpperCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _UpperCAmelCase = max(array.shape[0] for array in raw_audio) _UpperCAmelCase = int(np.ceil(max_length / self.chunk_stride)) _UpperCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _UpperCAmelCase = 'max_length' else: _UpperCAmelCase = input_values # normal padding on batch if padded_inputs is None: _UpperCAmelCase = self.pad( A , max_length=A , truncation=A , padding=A , return_attention_mask=A , ) if padding: _UpperCAmelCase = padded_inputs.pop('attention_mask') _UpperCAmelCase = [] for example in padded_inputs.pop('input_values'): if self.feature_size == 1: _UpperCAmelCase = example[..., None] input_values.append(example.T) _UpperCAmelCase = input_values if return_tensors is not None: _UpperCAmelCase = padded_inputs.convert_to_tensors(A) return padded_inputs
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MvpTokenizer UpperCamelCase = MvpTokenizerFast UpperCamelCase = True UpperCamelCase = filter_roberta_detectors def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Optional[Any] , **A : Optional[int]) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[Any] , **A : Union[str, Any]) -> int: """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp') @cached_property def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp') @require_torch def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , max_length=len(A) , padding=A , return_tensors='pt') self.assertIsInstance(A , A) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(A , A) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , padding=A , return_tensors='pt') # check if input_ids are returned and no labels self.assertIn('input_ids' , A) self.assertIn('attention_mask' , A) self.assertNotIn('labels' , A) self.assertNotIn('decoder_attention_mask' , A) @require_torch def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(text_target=A , max_length=32 , padding='max_length' , return_tensors='pt') self.assertEqual(32 , targets['input_ids'].shape[1]) @require_torch def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=A , truncation=A , return_tensors='pt') self.assertIsInstance(A , A) self.assertEqual(batch.input_ids.shape , (2, 10_24)) @require_torch def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.'] _UpperCAmelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , text_target=A , return_tensors='pt') _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A, <mask> AllenNLP sentence.' _UpperCAmelCase = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A) _UpperCAmelCase = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'])
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCAmelCase__ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCAmelCase__ = "sshleifer/student_marian_en_ro_6_1" UpperCAmelCase__ = "sshleifer/tiny-mbart" @require_torch class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Optional[int] , A : Dict=False , A : str=None , A : Dict=True , A : Tuple=True , A : Tuple=True , A : List[Any]=True , ) -> int: """simple docstring""" _UpperCAmelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A , num_train_epochs=1 , distributed=A , extra_args_str=A , predict_with_generate=A , do_train=A , do_eval=A , do_predict=A , ) _UpperCAmelCase = TrainerState.load_from_json(os.path.join(A , 'trainer_state.json')).log_history if not do_eval: return _UpperCAmelCase = [log for log in logs if 'eval_loss' in log.keys()] _UpperCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _UpperCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] , A) assert not math.isnan(float(last_step_stats['eval_loss'])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=A) @require_torch_multi_gpu def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" self.run_seqaseq_quick(distributed=A) @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--sharded_ddp simple') @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--sharded_ddp simple --fp16') @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--sharded_ddp zero_dp_2' , predict_with_generate=A) @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick( distributed=A , extra_args_str='--sharded_ddp zero_dp_2 --fp16' , predict_with_generate=A) @require_apex @require_torch_gpu def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=A , extra_args_str='--fp16 --fp16_backend=apex') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A , extra_args_str='--fp16 --fp16_backend=apex') @parameterized.expand(['base', 'low', 'high', 'mixed']) @require_torch_multi_gpu def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } _UpperCAmelCase = experiments[experiment_id] _UpperCAmelCase = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} _UpperCAmelCase = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**A , extra_args_str=data['extra_args_str']) _UpperCAmelCase = len(re.findall(A , cl.err)) self.assertEqual(A , data['n_matches']) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A , learning_rate=3E-4 , num_train_epochs=10 , distributed=A , ) # Check metrics _UpperCAmelCase = TrainerState.load_from_json(os.path.join(A , 'trainer_state.json')).log_history _UpperCAmelCase = [log for log in logs if 'eval_loss' in log.keys()] _UpperCAmelCase = eval_metrics[0] _UpperCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] , A) # test if do_predict saves generations and metrics _UpperCAmelCase = os.listdir(A) _UpperCAmelCase = {os.path.basename(A) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(A : str) -> Tuple[int, float]: _UpperCAmelCase = '--skip_memory_metrics 0' _UpperCAmelCase = self.run_trainer( max_len=1_28 , model_name=A , learning_rate=3E-4 , num_train_epochs=1 , optim=A , distributed=A , extra_args_str=A , do_eval=A , do_predict=A , n_gpus_to_use=1 , ) # Check metrics _UpperCAmelCase = TrainerState.load_from_json(Path(A , 'trainer_state.json')).log_history _UpperCAmelCase = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20) _UpperCAmelCase = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20) _UpperCAmelCase = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) _UpperCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _UpperCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig _UpperCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _UpperCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _UpperCAmelCase = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A , A , 'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A , A , 'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A , A , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def _lowerCamelCase ( self : Union[str, Any] , A : int , A : str , A : int , A : float = 3E-3 , A : str = "adafactor" , A : bool = False , A : str = None , A : int = 0 , A : bool = True , A : bool = True , A : bool = True , A : bool = True , A : int = None , ) -> int: """simple docstring""" _UpperCAmelCase = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _UpperCAmelCase = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A)}\n ".split() _UpperCAmelCase = '\n --do_predict\n '.split() _UpperCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _UpperCAmelCase = get_gpu_count() _UpperCAmelCase = get_torch_dist_unique_port() _UpperCAmelCase = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _UpperCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env()) else: _UpperCAmelCase = ['run_translation.py'] + args with patch.object(A , 'argv' , A): main() return output_dir
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase = BigBirdConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: _UpperCAmelCase = BigBirdForQuestionAnswering(_UpperCAmelCase ) else: _UpperCAmelCase = BigBirdForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCAmelCase , _UpperCAmelCase , is_trivia_qa=_UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] UpperCAmelCase__ = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) return sd def A ( _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=rename_keys_prefix ) -> str: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase = key for name_pair in rename_keys_prefix: _UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: _UpperCAmelCase = 'pretraining' if "vcr" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 512} _UpperCAmelCase = 'multichoice' elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048} _UpperCAmelCase = 'vqa_advanced' elif "vqa" in checkpoint_path: _UpperCAmelCase = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} _UpperCAmelCase = 'vqa' elif "nlvr" in checkpoint_path: _UpperCAmelCase = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } _UpperCAmelCase = 'nlvr' _UpperCAmelCase = VisualBertConfig(**_UpperCAmelCase ) # Load State Dict _UpperCAmelCase = load_state_dict(_UpperCAmelCase ) _UpperCAmelCase = get_new_dict(_UpperCAmelCase , _UpperCAmelCase ) if model_type == "pretraining": _UpperCAmelCase = VisualBertForPreTraining(_UpperCAmelCase ) elif model_type == "vqa": _UpperCAmelCase = VisualBertForQuestionAnswering(_UpperCAmelCase ) elif model_type == "nlvr": _UpperCAmelCase = VisualBertForVisualReasoning(_UpperCAmelCase ) elif model_type == "multichoice": _UpperCAmelCase = VisualBertForMultipleChoice(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # Save Checkpoints Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( _UpperCAmelCase : int = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_UpperCAmelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) _UpperCAmelCase = QuantumRegister(_UpperCAmelCase , 'qr' ) _UpperCAmelCase = ClassicalRegister(_UpperCAmelCase , 'cr' ) _UpperCAmelCase = QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = number_of_qubits for i in range(_UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCAmelCase , _UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCAmelCase , _UpperCAmelCase ) # simulate with 10000 shots _UpperCAmelCase = Aer.get_backend('qasm_simulator' ) _UpperCAmelCase = execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_000 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import numpy as np def A ( _UpperCAmelCase : np.array ) -> np.array: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( _UpperCAmelCase : np.array ) -> np.array: '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
def A ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not head: return True # split the list to two parts _UpperCAmelCase , _UpperCAmelCase = head.next, head while fast and fast.next: _UpperCAmelCase = fast.next.next _UpperCAmelCase = slow.next _UpperCAmelCase = slow.next _UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part _UpperCAmelCase = None while second: _UpperCAmelCase = second.next _UpperCAmelCase = node _UpperCAmelCase = second _UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCAmelCase = node.next _UpperCAmelCase = head.next return True def A ( _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = head while fast and fast.next: _UpperCAmelCase , _UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCAmelCase = [slow.val] while slow.next: _UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCAmelCase = cur.next return True def A ( _UpperCAmelCase : Any ) -> Any: '''simple docstring''' if not head or not head.next: return True _UpperCAmelCase = {} _UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(_UpperCAmelCase ) else: _UpperCAmelCase = [pos] _UpperCAmelCase = head.next pos += 1 _UpperCAmelCase = pos - 1 _UpperCAmelCase = 0 for v in d.values(): if len(_UpperCAmelCase ) % 2 != 0: middle += 1 else: _UpperCAmelCase = 0 for i in range(0 , len(_UpperCAmelCase ) ): if v[i] + v[len(_UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , ) assert hasattr(self , 'env') def _lowerCamelCase ( self : Any , A : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = { 'enabled': True, 'processes_per_host': 8, } _UpperCAmelCase = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _UpperCAmelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _UpperCAmelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=A , py_version='py36' , ) def _lowerCamelCase ( self : int , A : str) -> int: """simple docstring""" TrainingJobAnalytics(A).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def _lowerCamelCase ( self : List[str] , A : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.create_estimator(A) # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A)
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
UpperCAmelCase__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCAmelCase__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCAmelCase__ = "UperNetConfig" class __lowerCAmelCase ( nn.Module ): def __init__( self : List[str] , A : int , A : int , A : Union[int, Tuple[int, int]] , A : Union[int, Tuple[int, int], str] = 0 , A : bool = False , A : Union[int, Tuple[int, int]] = 1 , ) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Convad( in_channels=A , out_channels=A , kernel_size=A , padding=A , bias=A , dilation=A , ) _UpperCAmelCase = nn.BatchNormad(A) _UpperCAmelCase = nn.ReLU() def _lowerCamelCase ( self : Union[str, Any] , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = self.conv(A) _UpperCAmelCase = self.batch_norm(A) _UpperCAmelCase = self.activation(A) return output class __lowerCAmelCase ( nn.Module ): def __init__( self : str , A : int , A : int , A : int) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = [ nn.AdaptiveAvgPoolad(A), UperNetConvModule(A , A , kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(A) , A) def _lowerCamelCase ( self : Any , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = input for layer in self.layers: _UpperCAmelCase = layer(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Dict , A : Tuple[int, ...] , A : int , A : int , A : bool) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = pool_scales _UpperCAmelCase = align_corners _UpperCAmelCase = in_channels _UpperCAmelCase = channels _UpperCAmelCase = [] for i, pool_scale in enumerate(A): _UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=A , in_channels=A , channels=A) self.blocks.append(A) self.add_module(str(A) , A) def _lowerCamelCase ( self : str , A : torch.Tensor) -> List[torch.Tensor]: """simple docstring""" _UpperCAmelCase = [] for ppm in self.blocks: _UpperCAmelCase = ppm(A) _UpperCAmelCase = nn.functional.interpolate( A , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners) ppm_outs.append(A) return ppm_outs class __lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , A : Tuple , A : List[str]) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) _UpperCAmelCase = in_channels _UpperCAmelCase = config.hidden_size _UpperCAmelCase = False _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1) # PSP Module _UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _UpperCAmelCase = UperNetConvModule(A , self.channels , kernel_size=1) _UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1) self.lateral_convs.append(A) self.fpn_convs.append(A) _UpperCAmelCase = UperNetConvModule( len(self.in_channels) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self.apply(self._init_weights) def _lowerCamelCase ( self : Optional[Any] , A : Dict) -> Any: """simple docstring""" if isinstance(A , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self : Tuple , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = inputs[-1] _UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(A)) _UpperCAmelCase = torch.cat(A , dim=1) _UpperCAmelCase = self.bottleneck(A) return output def _lowerCamelCase ( self : List[str] , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(A)) # build top-down path _UpperCAmelCase = len(A) for i in range(used_backbone_levels - 1 , 0 , -1): _UpperCAmelCase = laterals[i - 1].shape[2:] _UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=A , mode='bilinear' , align_corners=self.align_corners) # build outputs _UpperCAmelCase = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1 , 0 , -1): _UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners) _UpperCAmelCase = torch.cat(A , dim=1) _UpperCAmelCase = self.fpn_bottleneck(A) _UpperCAmelCase = self.classifier(A) return output class __lowerCAmelCase ( nn.Module ): def __init__( self : Any , A : List[str] , A : int = 2 , A : int = 3 , A : Union[int, Tuple[int, int]] = 1) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.auxiliary_in_channels _UpperCAmelCase = config.auxiliary_channels _UpperCAmelCase = config.auxiliary_num_convs _UpperCAmelCase = config.auxiliary_concat_input _UpperCAmelCase = in_index _UpperCAmelCase = (kernel_size // 2) * dilation _UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=A , padding=A , dilation=A)) for i in range(self.num_convs - 1): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=A , padding=A , dilation=A)) if self.num_convs == 0: _UpperCAmelCase = nn.Identity() else: _UpperCAmelCase = nn.Sequential(*A) if self.concat_input: _UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=A , padding=kernel_size // 2) _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any]) -> Any: """simple docstring""" if isinstance(A , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self : Tuple , A : torch.Tensor) -> torch.Tensor: """simple docstring""" _UpperCAmelCase = encoder_hidden_states[self.in_index] _UpperCAmelCase = self.convs(A) if self.concat_input: _UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1)) _UpperCAmelCase = self.classifier(A) return output class __lowerCAmelCase ( A ): UpperCamelCase = UperNetConfig UpperCamelCase = '''pixel_values''' UpperCamelCase = True def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" if isinstance(A , A): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self : str , A : str , A : int=False) -> Dict: """simple docstring""" if isinstance(A , A): _UpperCAmelCase = value UpperCAmelCase__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , A , ) class __lowerCAmelCase ( A ): def __init__( self : Dict , A : Optional[int]) -> int: """simple docstring""" super().__init__(A) _UpperCAmelCase = AutoBackbone.from_config(config.backbone_config) # Semantic segmentation head(s) _UpperCAmelCase = UperNetHead(A , in_channels=self.backbone.channels) _UpperCAmelCase = UperNetFCNHead(A) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length')) @replace_return_docstrings(output_type=A , config_class=_CONFIG_FOR_DOC) def _lowerCamelCase ( self : List[Any] , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions _UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( A , output_hidden_states=A , output_attentions=A) _UpperCAmelCase = outputs.feature_maps _UpperCAmelCase = self.decode_head(A) _UpperCAmelCase = nn.functional.interpolate(A , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=A) _UpperCAmelCase = None if self.auxiliary_head is not None: _UpperCAmelCase = self.auxiliary_head(A) _UpperCAmelCase = nn.functional.interpolate( A , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=A) _UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one') else: # compute weighted loss _UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) _UpperCAmelCase = loss_fct(A , A) _UpperCAmelCase = loss_fct(A , A) _UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _UpperCAmelCase = (logits,) + outputs[1:] else: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=A , logits=A , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None class __lowerCAmelCase ( A ): def __init__( self : Optional[Any] , A : List[Any]=1 , A : List[Any]=0 , A : Optional[int]=2 , A : str=5_12 , A : List[Any]="cls" , A : int=False , A : Tuple=True , **A : List[str] , ) -> int: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A) _UpperCAmelCase = project_dim _UpperCAmelCase = pooler_fn _UpperCAmelCase = learn_encoder _UpperCAmelCase = use_attention_mask class __lowerCAmelCase ( A ): UpperCamelCase = [R'''pooler''', R'''logit_scale'''] UpperCamelCase = [R'''position_ids''', R'''predictions.decoder.bias'''] UpperCamelCase = '''roberta''' UpperCamelCase = RobertaSeriesConfig def __init__( self : Any , A : Dict) -> Any: """simple docstring""" super().__init__(A) _UpperCAmelCase = XLMRobertaModel(A) _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim) _UpperCAmelCase = getattr(A , 'has_pre_transformation' , A) if self.has_pre_transformation: _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim) _UpperCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def _lowerCamelCase ( self : List[Any] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : Optional[bool] = None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.base_model( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , encoder_hidden_states=A , encoder_attention_mask=A , output_attentions=A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=A , ) if self.has_pre_transformation: _UpperCAmelCase = outputs['hidden_states'][-2] _UpperCAmelCase = self.pre_LN(A) _UpperCAmelCase = self.transformation_pre(A) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __lowerCAmelCase ( A , A ): UpperCamelCase = '''focalnet''' def __init__( self : str , A : Any=2_24 , A : Optional[Any]=4 , A : List[Any]=3 , A : int=96 , A : Any=False , A : Union[str, Any]=[1_92, 3_84, 7_68, 7_68] , A : Optional[int]=[2, 2, 6, 2] , A : Any=[2, 2, 2, 2] , A : Dict=[3, 3, 3, 3] , A : List[str]="gelu" , A : Dict=4.0 , A : List[str]=0.0 , A : List[Any]=0.1 , A : Optional[int]=False , A : Union[str, Any]=1E-4 , A : Any=False , A : Dict=False , A : Dict=False , A : List[Any]=0.0_2 , A : Union[str, Any]=1E-5 , A : Optional[Any]=32 , A : Union[str, Any]=None , A : Dict=None , **A : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**A) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ['stem'] + [F"stage{idx}" for idx in range(1 , len(self.depths) + 1)] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names)
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int] , A : List[Any] , A : Optional[Any]=7 , A : Union[str, Any]=3 , A : Any=18 , A : Union[str, Any]=30 , A : Optional[int]=4_00 , A : Tuple=True , A : Any=None , A : int=True , A : Any=False , A : Any=True , A : Any=True , A : int=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def _lowerCamelCase ( self : str) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self) @property def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'size')) self.assertTrue(hasattr(A , 'do_thumbnail')) self.assertTrue(hasattr(A , 'do_align_long_axis')) self.assertTrue(hasattr(A , 'do_pad')) self.assertTrue(hasattr(A , 'do_normalize')) self.assertTrue(hasattr(A , 'image_mean')) self.assertTrue(hasattr(A , 'image_std')) def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 20}) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84)) self.assertEqual(image_processor.size , {'height': 84, 'width': 42}) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" pass @is_flaky() def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase__ = 50_0000 UpperCAmelCase__ , UpperCAmelCase__ = os.path.split(__file__) UpperCAmelCase__ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def A ( _UpperCAmelCase : datasets.Dataset , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = dataset.map(**_UpperCAmelCase ) @get_duration def A ( _UpperCAmelCase : datasets.Dataset , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = dataset.filter(**_UpperCAmelCase ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _UpperCAmelCase = generate_example_dataset( os.path.join(_UpperCAmelCase , 'dataset.arrow' ) , _UpperCAmelCase , num_examples=_UpperCAmelCase ) _UpperCAmelCase = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCAmelCase ) def tokenize(_UpperCAmelCase : List[str] ): return tokenizer(examples['text'] ) _UpperCAmelCase = map(_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , batched=_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='numpy' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='pandas' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='torch' , columns='numbers' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , function=_UpperCAmelCase , batched=_UpperCAmelCase ) _UpperCAmelCase = filter(_UpperCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(_UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''open-llama''' def __init__( self : Dict , A : Optional[Any]=10_00_00 , A : Any=40_96 , A : Dict=1_10_08 , A : Optional[Any]=32 , A : List[Any]=32 , A : List[Any]="silu" , A : Optional[Any]=20_48 , A : Dict=0.0_2 , A : Union[str, Any]=1E-6 , A : str=True , A : List[str]=0 , A : Tuple=1 , A : str=2 , A : Dict=False , A : Any=True , A : Any=0.1 , A : Optional[Any]=0.1 , A : int=True , A : Optional[int]=True , A : Optional[int]=None , **A : Optional[Any] , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , A) _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_dropout_prob _UpperCAmelCase = use_stable_embedding _UpperCAmelCase = shared_input_output_embedding _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A , ) def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}") _UpperCAmelCase = self.rope_scaling.get('type' , A) _UpperCAmelCase = self.rope_scaling.get('factor' , A) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(A , A) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ = pytest.mark.integration @require_faiss class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(A) for x in np.arange(30).tolist()]}) return dset def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" import faiss _UpperCAmelCase = self._create_dummy_dataset() _UpperCAmelCase = dset.map( lambda A , A: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=A , keep_in_memory=A) _UpperCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" import faiss _UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" import faiss _UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" from elasticsearch import Elasticsearch _UpperCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: _UpperCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30) _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} _UpperCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=A) _UpperCAmelCase , _UpperCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" import faiss _UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 10) # single query _UpperCAmelCase = np.zeros(5 , dtype=np.floataa) _UpperCAmelCase = 1 _UpperCAmelCase , _UpperCAmelCase = index.search(A) self.assertRaises(A , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries _UpperCAmelCase = np.eye(5 , dtype=np.floataa)[::-1] _UpperCAmelCase , _UpperCAmelCase = index.search_batch(A) self.assertRaises(A , index.search_batch , queries[0]) _UpperCAmelCase = [scores[0] for scores in total_scores] _UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A) , 0) self.assertListEqual([4, 3, 2, 1, 0] , A) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" import faiss _UpperCAmelCase = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) _UpperCAmelCase = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(A): _UpperCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" import faiss _UpperCAmelCase = faiss.IndexFlat(5) _UpperCAmelCase = FaissIndex(custom_index=A) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _lowerCamelCase ( self : str) -> int: """simple docstring""" import faiss _UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A) as tmp_file: index.save(tmp_file.name) _UpperCAmelCase = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) _UpperCAmelCase = np.zeros(5 , dtype=np.floataa) _UpperCAmelCase = 1 _UpperCAmelCase , _UpperCAmelCase = index.search(A) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' import faiss _UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _UpperCAmelCase = 'index.faiss' _UpperCAmelCase = F"mock://{index_name}" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) _UpperCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) _UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) _UpperCAmelCase = 1 _UpperCAmelCase , _UpperCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: _UpperCAmelCase = Elasticsearch() _UpperCAmelCase = {'acknowledged': True} _UpperCAmelCase = ElasticSearchIndex(es_client=A) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query _UpperCAmelCase = 'foo' _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _UpperCAmelCase , _UpperCAmelCase = index.search(A) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout _UpperCAmelCase = 'foo' _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _UpperCAmelCase , _UpperCAmelCase = index.search(A , request_timeout=30) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries _UpperCAmelCase = ['foo', 'bar', 'foobar'] _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _UpperCAmelCase , _UpperCAmelCase = index.search_batch(A) _UpperCAmelCase = [scores[0] for scores in total_scores] _UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A) , 0) self.assertListEqual([1, 1, 1] , A) # batched queries with timeout _UpperCAmelCase = ['foo', 'bar', 'foobar'] _UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _UpperCAmelCase , _UpperCAmelCase = index.search_batch(A , request_timeout=30) _UpperCAmelCase = [scores[0] for scores in total_scores] _UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A) , 0) self.assertListEqual([1, 1, 1] , A)
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class __lowerCAmelCase ( A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({'''summary''': Value('''string''' )} ) UpperCamelCase = '''text''' UpperCamelCase = '''summary''' @property def _lowerCamelCase ( self : Optional[Any]) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: '''simple docstring''' # Format the message. if name is None: _UpperCAmelCase = None else: _UpperCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _UpperCAmelCase = fmt.format(_UpperCAmelCase ) # Print and recurse (if needed). if isinstance(_UpperCAmelCase , _UpperCAmelCase ): if msg is not None: print(_UpperCAmelCase ) for k in val.keys(): recursive_print(_UpperCAmelCase , val[k] , spaces + 2 ) elif isinstance(_UpperCAmelCase , torch.Tensor ): print(_UpperCAmelCase , ':' , val.size() ) else: print(_UpperCAmelCase , ':' , _UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _UpperCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] _UpperCAmelCase = param.view(*_UpperCAmelCase ) _UpperCAmelCase = param.transpose(0 , 2 ) _UpperCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _UpperCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] _UpperCAmelCase = param.view(*_UpperCAmelCase ) _UpperCAmelCase = param.transpose(0 , 1 ).contiguous() _UpperCAmelCase = param.view(*_UpperCAmelCase ) return param def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} # old versions did not store training args _UpperCAmelCase = input_state_dict.get('args' , _UpperCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _UpperCAmelCase = ds_args.padded_vocab_size _UpperCAmelCase = ds_args.max_position_embeddings _UpperCAmelCase = ds_args.hidden_size _UpperCAmelCase = ds_args.num_layers _UpperCAmelCase = ds_args.num_attention_heads _UpperCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _UpperCAmelCase = config.n_head # The hidden_size per head. _UpperCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _UpperCAmelCase = input_state_dict['checkpoint_version'] else: _UpperCAmelCase = 0.0 # The model. _UpperCAmelCase = input_state_dict['model'] # The language model. _UpperCAmelCase = model['language_model'] # The embeddings. _UpperCAmelCase = lm['embedding'] # The word embeddings. _UpperCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _UpperCAmelCase = word_embeddings[: config.vocab_size, :] _UpperCAmelCase = word_embeddings # The position embeddings. _UpperCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _UpperCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _UpperCAmelCase = pos_embeddings # The transformer. _UpperCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _UpperCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _UpperCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _UpperCAmelCase = layer_re.match(_UpperCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _UpperCAmelCase = int(m.group(1 ) ) # The name of the operation. _UpperCAmelCase = m.group(2 ) # Is it a weight or a bias? _UpperCAmelCase = m.group(3 ) # The name of the layer. _UpperCAmelCase = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _UpperCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _UpperCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _UpperCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. _UpperCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa ) _UpperCAmelCase = masked_bias _UpperCAmelCase = fix_query_key_value_ordering(_UpperCAmelCase , _UpperCAmelCase , 3 , _UpperCAmelCase , _UpperCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _UpperCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. _UpperCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _UpperCAmelCase = fix_query_key_value_ordering(_UpperCAmelCase , _UpperCAmelCase , 3 , _UpperCAmelCase , _UpperCAmelCase ) # Store. No change of shape. _UpperCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": _UpperCAmelCase = megatron_to_transformers[op_name] _UpperCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _UpperCAmelCase = megatron_to_transformers[op_name] _UpperCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _UpperCAmelCase = transformer['final_layernorm.weight'] _UpperCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _UpperCAmelCase = word_embeddings # It should be done! return output_state_dict def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_UpperCAmelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_UpperCAmelCase , help='An optional config json file describing the pre-trained model.' , ) _UpperCAmelCase = parser.parse_args() # Extract the basename. _UpperCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) else: _UpperCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) _UpperCAmelCase = input_state_dict.get('args' , _UpperCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _UpperCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: _UpperCAmelCase = 'gelu_new' else: _UpperCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" _UpperCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. _UpperCAmelCase = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_UpperCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_UpperCAmelCase , summary_activation=_UpperCAmelCase , summary_proj_to_labels=_UpperCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=_UpperCAmelCase , use_cache=_UpperCAmelCase , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _UpperCAmelCase = GPTaConfig.from_json_file(args.config_file ) _UpperCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _UpperCAmelCase = convert_megatron_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_UpperCAmelCase , _UpperCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _UpperCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _UpperCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _UpperCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: _UpperCAmelCase = 'gpt2' _UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = type(_UpperCAmelCase ).__name__ _UpperCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_UpperCAmelCase ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_UpperCAmelCase ) # Store the state_dict to file. _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase__ = re.compile(r"\b(a|an|the)\b", re.UNICODE) UpperCAmelCase__ = None def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_UpperCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_UpperCAmelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def A ( _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = bool(qa['answers']['text'] ) return qid_to_has_ans def A ( _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : List[str] ): return ARTICLES_REGEX.sub(' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : List[str] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' if not s: return [] return normalize_answer(_UpperCAmelCase ).split() def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' return int(normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = get_tokens(_UpperCAmelCase ) _UpperCAmelCase = get_tokens(_UpperCAmelCase ) _UpperCAmelCase = collections.Counter(_UpperCAmelCase ) & collections.Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = qa['id'] _UpperCAmelCase = [t for t in qa['answers']['text'] if normalize_answer(_UpperCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _UpperCAmelCase = [''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue _UpperCAmelCase = preds[qid] # Take max over all gold answers _UpperCAmelCase = max(compute_exact(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers ) _UpperCAmelCase = max(compute_fa(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} for qid, s in scores.items(): _UpperCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: _UpperCAmelCase = float(not qid_to_has_ans[qid] ) else: _UpperCAmelCase = s return new_scores def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int=None ) -> Any: '''simple docstring''' if not qid_list: _UpperCAmelCase = len(_UpperCAmelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: _UpperCAmelCase = len(_UpperCAmelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' for k in new_eval: _UpperCAmelCase = new_eval[k] def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' plt.step(_UpperCAmelCase , _UpperCAmelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_UpperCAmelCase , _UpperCAmelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_UpperCAmelCase ) plt.savefig(_UpperCAmelCase ) plt.clf() def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.0 _UpperCAmelCase = [1.0] _UpperCAmelCase = [0.0] _UpperCAmelCase = 0.0 for i, qid in enumerate(_UpperCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] _UpperCAmelCase = true_pos / float(i + 1 ) _UpperCAmelCase = true_pos / float(_UpperCAmelCase ) if i == len(_UpperCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCAmelCase ) recalls.append(_UpperCAmelCase ) if out_image: plot_pr_curve(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return {"ap": 100.0 * avg_prec} def A ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' if out_image_dir and not os.path.exists(_UpperCAmelCase ): os.makedirs(_UpperCAmelCase ) _UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _UpperCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) _UpperCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) _UpperCAmelCase = {k: float(_UpperCAmelCase ) for k, v in qid_to_has_ans.items()} _UpperCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_exact' ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_f1' ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_oracle' ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' if not qid_list: return _UpperCAmelCase = [na_probs[k] for k in qid_list] _UpperCAmelCase = np.ones_like(_UpperCAmelCase ) / float(len(_UpperCAmelCase ) ) plt.hist(_UpperCAmelCase , weights=_UpperCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(_UpperCAmelCase , F"na_prob_hist_{name}.png" ) ) plt.clf() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' _UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _UpperCAmelCase = num_no_ans _UpperCAmelCase = cur_score _UpperCAmelCase = 0.0 _UpperCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] ) for i, qid in enumerate(_UpperCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: _UpperCAmelCase = scores[qid] else: if preds[qid]: _UpperCAmelCase = -1 else: _UpperCAmelCase = 0 cur_score += diff if cur_score > best_score: _UpperCAmelCase = cur_score _UpperCAmelCase = na_probs[qid] return 100.0 * best_score / len(_UpperCAmelCase ), best_thresh def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = best_exact _UpperCAmelCase = exact_thresh _UpperCAmelCase = best_fa _UpperCAmelCase = fa_thresh def A ( ) -> Optional[Any]: '''simple docstring''' with open(OPTS.data_file ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) _UpperCAmelCase = dataset_json['data'] with open(OPTS.pred_file ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) else: _UpperCAmelCase = {k: 0.0 for k in preds} _UpperCAmelCase = make_qid_to_has_ans(_UpperCAmelCase ) # maps qid to True/False _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v] _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] _UpperCAmelCase , _UpperCAmelCase = get_raw_scores(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh ) _UpperCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh ) _UpperCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase ) if has_ans_qids: _UpperCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'HasAns' ) if no_ans_qids: _UpperCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) else: print(json.dumps(_UpperCAmelCase , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( A ): def __init__( self : int , A : VQModel , A : UNetaDModel , A : DDIMScheduler) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=A , unet=A , scheduler=A) @torch.no_grad() def __call__( self : Optional[int] , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[str] = "pil" , A : bool = True , **A : Union[str, Any] , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _UpperCAmelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , ) _UpperCAmelCase = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(self.scheduler.timesteps): _UpperCAmelCase = self.scheduler.scale_model_input(A , A) # predict the noise residual _UpperCAmelCase = self.unet(A , A).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(A , A , A , **A).prev_sample # decode the image latents with the VAE _UpperCAmelCase = self.vqvae.decode(A).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(A) if not return_dict: return (image,) return ImagePipelineOutput(images=A)
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_00 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A) as mock_head: _UpperCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_00 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A) as mock_head: _UpperCAmelCase = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" try: _UpperCAmelCase = tempfile.mktemp() with open(A , 'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A) _UpperCAmelCase = AlbertTokenizer.from_pretrained(A) finally: os.remove(A) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A) _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _lowerCamelCase ( cls : List[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = TOKEN HfFolder.save_token(A) @classmethod def _lowerCamelCase ( cls : List[str]) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer') except HTTPError: pass def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = BertTokenizer(A) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A , repo_id='test-tokenizer' , push_to_hub=A , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = BertTokenizer(A) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A , use_auth_token=self._token) _UpperCAmelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def _lowerCamelCase ( self : int) -> int: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = CustomTokenizer(A) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCAmelCase = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=A) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(A , 'vocab.txt') with open(A , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCAmelCase = BertTokenizerFast.from_pretrained(A) bert_tokenizer.save_pretrained(A) _UpperCAmelCase = CustomTokenizerFast.from_pretrained(A) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCAmelCase = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=A) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast') _UpperCAmelCase = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" , use_fast=A , trust_remote_code=A) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = Trie() trie.add('Hello 友達') self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS]', ' This is a ', 'extra_id_100']) def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Trie() trie.add('A') self.assertEqual(trie.split('ABC') , ['A', 'BC']) self.assertEqual(trie.split('BCA') , ['BC', 'A']) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') , ['AB', 'C']) def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCAmelCase = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') , ['ABC', 'D']) def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = Trie() _UpperCAmelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3]) self.assertEqual(A , ['AB', 'C'])
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
import socket def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _UpperCAmelCase = socket.gethostname() _UpperCAmelCase = 12_312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _UpperCAmelCase = sock.recv(1_024 ) if not data: break out_file.write(_UpperCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase ( A ): UpperCamelCase = 4_2 UpperCamelCase = None def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any=0.999 , _UpperCAmelCase : int="cosine" , ) -> str: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(_UpperCAmelCase ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( A , A ): @register_to_config def __init__( self : int , A : int = 10_00 , A : str = "fixed_small_log" , A : bool = True , A : Optional[float] = 1.0 , A : str = "epsilon" , A : str = "squaredcos_cap_v2" , ) -> Any: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'') _UpperCAmelCase = betas_for_alpha_bar(A) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) _UpperCAmelCase = torch.tensor(1.0) # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , A)[::-1].copy()) _UpperCAmelCase = variance_type def _lowerCamelCase ( self : Optional[int] , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Optional[int] , A : int , A : Union[str, torch.device] = None) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _UpperCAmelCase = (np.arange(0 , A) * step_ratio).round()[::-1].copy().astype(np.intaa) _UpperCAmelCase = torch.from_numpy(A).to(A) def _lowerCamelCase ( self : Tuple , A : List[str] , A : Dict=None , A : Optional[Any]=None , A : Union[str, Any]=None) -> List[str]: """simple docstring""" if prev_timestep is None: _UpperCAmelCase = t - 1 _UpperCAmelCase = self.alphas_cumprod[t] _UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _UpperCAmelCase = self.betas[t] else: _UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _UpperCAmelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _UpperCAmelCase = torch.log(torch.clamp(A , min=1E-20)) _UpperCAmelCase = torch.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _UpperCAmelCase = variance.log() _UpperCAmelCase = beta.log() _UpperCAmelCase = (predicted_variance + 1) / 2 _UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : Optional[int] = None , A : Any=None , A : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _UpperCAmelCase , _UpperCAmelCase = torch.split(A , sample.shape[1] , dim=1) else: _UpperCAmelCase = None # 1. compute alphas, betas if prev_timestep is None: _UpperCAmelCase = t - 1 _UpperCAmelCase = self.alphas_cumprod[t] _UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _UpperCAmelCase = self.betas[t] _UpperCAmelCase = self.alphas[t] else: _UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev _UpperCAmelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ' for the UnCLIPScheduler.') # 3. Clip "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = torch.clamp( A , -self.config.clip_sample_range , self.config.clip_sample_range) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _UpperCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase = 0 if t > 0: _UpperCAmelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A , device=model_output.device) _UpperCAmelCase = self._get_variance( A , predicted_variance=A , prev_timestep=A , ) if self.variance_type == "fixed_small_log": _UpperCAmelCase = variance elif self.variance_type == "learned_range": _UpperCAmelCase = (0.5 * variance).exp() else: raise ValueError( F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ' for the UnCLIPScheduler.') _UpperCAmelCase = variance * variance_noise _UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A , pred_original_sample=A) def _lowerCamelCase ( self : Optional[Any] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype) _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5 _UpperCAmelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): _UpperCAmelCase = sqrt_alpha_prod.unsqueeze(-1) _UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): _UpperCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1) _UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class __lowerCAmelCase ( A ): UpperCamelCase = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''audio''': Audio()} ) UpperCamelCase = Features({'''transcription''': Value('''string''' )} ) UpperCamelCase = '''audio''' UpperCamelCase = '''transcription''' def _lowerCamelCase ( self : Union[str, Any] , A : List[Any]) -> List[str]: """simple docstring""" if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , A): raise ValueError(F"Column {self.audio_column} is not an Audio type.") _UpperCAmelCase = copy.deepcopy(self) _UpperCAmelCase = self.input_schema.copy() _UpperCAmelCase = features[self.audio_column] _UpperCAmelCase = input_schema return task_template @property def _lowerCamelCase ( self : str) -> Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A , 'hidden_sizes')) self.parent.assertTrue(hasattr(A , 'num_attention_heads')) self.parent.assertTrue(hasattr(A , 'num_encoder_blocks')) class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Dict , A : List[str]=13 , A : Any=64 , A : Dict=3 , A : Union[str, Any]=4 , A : Optional[int]=[2, 2, 2, 2] , A : Tuple=[8, 4, 2, 1] , A : Union[str, Any]=[16, 32, 64, 1_28] , A : str=[1, 4, 8, 16] , A : List[str]=[1, 2, 4, 8] , A : Tuple=True , A : str=True , A : int="gelu" , A : int=0.1 , A : List[Any]=0.1 , A : Dict=0.0_2 , A : str=3 , A : Dict=None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = sr_ratios _UpperCAmelCase = depths _UpperCAmelCase = hidden_sizes _UpperCAmelCase = downsampling_rates _UpperCAmelCase = num_attention_heads _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , A : Union[str, Any] , A : str , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = SegformerModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) _UpperCAmelCase = _UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _lowerCamelCase ( self : Any , A : Dict , A : int , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = SegformerForSemanticSegmentation(A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : Dict , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = SegformerForSemanticSegmentation(config=A) model.to(A) model.eval() _UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(A) _UpperCAmelCase = model(A , labels=A) self.parent.assertGreater(result.loss , 0.0) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase = SegformerModelTester(self) _UpperCAmelCase = SegformerConfigTester(self , config_class=A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A) @unittest.skip('SegFormer does not use inputs_embeds') def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" pass def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions _UpperCAmelCase = sum(self.model_tester.depths) self.assertEqual(len(A) , A) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) # verify the first attentions (first block, first layer) _UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _UpperCAmelCase = (self.model_tester.image_size // 32) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _UpperCAmelCase = len(A) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) self.assertEqual(out_len + 1 , len(A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) # verify the first attentions (first block, first layer) _UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" def check_hidden_states_output(A : str , A : List[Any] , A : str): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(A) , A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(A): continue _UpperCAmelCase = model_class(A) model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) _UpperCAmelCase = model(**A).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" pass @slow def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SegformerModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A , align=A , do_random_crop=A) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( A) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = encoded_inputs.pixel_values.to(A) with torch.no_grad(): _UpperCAmelCase = model(A) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A , align=A , do_random_crop=A) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(A) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = encoded_inputs.pixel_values.to(A) with torch.no_grad(): _UpperCAmelCase = model(A) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-1)) @slow def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A , align=A , do_random_crop=A) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( A) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = encoded_inputs.pixel_values.to(A) with torch.no_grad(): _UpperCAmelCase = model(A) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_00, 3_00)]) _UpperCAmelCase = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , A) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A) _UpperCAmelCase = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , A)
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: _UpperCAmelCase = [int(_UpperCAmelCase ) for i in num_string] _UpperCAmelCase = 1 for i in range(0 , len(_UpperCAmelCase ) ): total *= numbers[i] _UpperCAmelCase = str(_UpperCAmelCase ) steps += 1 return steps def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: _UpperCAmelCase = [int(_UpperCAmelCase ) for i in num_string] _UpperCAmelCase = 0 for i in range(0 , len(_UpperCAmelCase ) ): total += numbers[i] _UpperCAmelCase = str(_UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
UpperCAmelCase__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' _UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase__ = [None] * 1000_0000 UpperCAmelCase__ = True UpperCAmelCase__ = False def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase = chain(next_number(_UpperCAmelCase ) ) _UpperCAmelCase = number_chain while number < 10_000_000: _UpperCAmelCase = number_chain number *= 10 return number_chain def A ( _UpperCAmelCase : int = 10_000_000 ) -> int: '''simple docstring''' for i in range(1 , _UpperCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __lowerCAmelCase : def __init__( self : int , A : Optional[Any]=2 , A : List[str]=3 , A : Optional[int]=64 , A : Union[str, Any]=None) -> Dict: """simple docstring""" _UpperCAmelCase = np.random.default_rng(A) _UpperCAmelCase = length _UpperCAmelCase = rng.normal(size=(length,)).astype(np.floataa) _UpperCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self : Tuple) -> List[Any]: """simple docstring""" return self.length def __getitem__( self : Union[str, Any] , A : Tuple) -> List[Any]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __lowerCAmelCase ( torch.nn.Module ): def __init__( self : int , A : List[str]=0 , A : Any=0 , A : Optional[int]=False) -> Tuple: """simple docstring""" super().__init__() _UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3]).float()) _UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3]).float()) _UpperCAmelCase = True def _lowerCamelCase ( self : int , A : Dict=None) -> int: """simple docstring""" if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _UpperCAmelCase = False return x * self.a[0] + self.b[0] class __lowerCAmelCase ( torch.nn.Module ): def __init__( self : Any , A : Optional[Any]=0 , A : Any=0 , A : List[Any]=False) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = torch.nn.Parameter(torch.tensor(A).float()) _UpperCAmelCase = torch.nn.Parameter(torch.tensor(A).float()) _UpperCAmelCase = True def _lowerCamelCase ( self : Optional[Any] , A : Optional[int]=None) -> str: """simple docstring""" if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _UpperCAmelCase = False return x * self.a + self.b def _A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : int = 16 ) -> Optional[int]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCAmelCase = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} _UpperCAmelCase = load_dataset('csv' , data_files=_UpperCAmelCase ) _UpperCAmelCase = datasets['train'].unique('label' ) _UpperCAmelCase = {v: i for i, v in enumerate(_UpperCAmelCase )} def tokenize_function(_UpperCAmelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) if "label" in examples: _UpperCAmelCase = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_UpperCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader(tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=2 ) _UpperCAmelCase = DataLoader(tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' # Load configuration defined in the metadata file with open(_UpperCAmelCase ) as metadata_file: _UpperCAmelCase = json.load(_UpperCAmelCase ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_UpperCAmelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )['module'] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_UpperCAmelCase ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('<ent>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _UpperCAmelCase = AddedToken('<ent2>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'r' ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) _UpperCAmelCase = 'MLukeTokenizer' with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_UpperCAmelCase ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] _UpperCAmelCase = state_dict['embeddings.word_embeddings.weight'] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = F"encoder.layer.{layer_index}.attention.self." _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['entity_embeddings.entity_embeddings.weight'] _UpperCAmelCase = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['entity_predictions.bias'] _UpperCAmelCase = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_UpperCAmelCase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if set(_UpperCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(_UpperCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_UpperCAmelCase , task='entity_classification' ) _UpperCAmelCase = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_UpperCAmelCase , entity_spans=[span] , return_tensors='pt' ) _UpperCAmelCase = model(**_UpperCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = 'Tokyo is the capital of <mask>.' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_UpperCAmelCase , entity_spans=[span] , return_tensors='pt' ) _UpperCAmelCase = model(**_UpperCAmelCase ) _UpperCAmelCase = encoding['input_ids'][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_UpperCAmelCase ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_UpperCAmelCase ) ) model.save_pretrained(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _UpperCAmelCase = ['[MASK]', '[PAD]', '[UNK]'] _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in open(_UpperCAmelCase )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = F"{language}:{entity_name}" _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) UpperCAmelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __lowerCAmelCase ( A ): def __init__( self : int , A : int = 1_01) -> Optional[int]: """simple docstring""" _UpperCAmelCase = length def __len__( self : Union[str, Any]) -> List[str]: """simple docstring""" return self.length def __getitem__( self : Tuple , A : Union[str, Any]) -> int: """simple docstring""" return i class __lowerCAmelCase : def __call__( self : Optional[Any] , A : str) -> Union[str, Any]: """simple docstring""" return {"input_ids": torch.tensor(A), "labels": torch.tensor(A)} class __lowerCAmelCase ( nn.Module ): def __init__( self : int) -> Tuple: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase = nn.Linear(1_20 , 80) def _lowerCamelCase ( self : int , A : str , A : Tuple=None) -> List[str]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class __lowerCAmelCase ( A ): @require_torch_neuroncore def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"--output_dir {output_dir}".split() _UpperCAmelCase = ['torchrun'] + distributed_args + args execute_subprocess_async(A , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class __lowerCAmelCase ( A ): @require_torch_multi_gpu def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"--output_dir {output_dir}".split() _UpperCAmelCase = ['torchrun'] + distributed_args + args execute_subprocess_async(A , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase__ : str = HfArgumentParser((TrainingArguments,)) UpperCAmelCase__ : Dict = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: UpperCAmelCase__ : Any = DummyDataset(dataset_length) def A ( _UpperCAmelCase : EvalPrediction ) -> Dict: '''simple docstring''' _UpperCAmelCase = list(range(len(_UpperCAmelCase ) ) ) _UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} UpperCAmelCase__ : Optional[int] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase__ : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase__ : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase__ : Union[str, Any] = 2 UpperCAmelCase__ : Dict = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase__ : Tuple = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase__ : List[str] = None
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
from __future__ import annotations from random import random from typing import Generic, TypeVar UpperCAmelCase__ = TypeVar("KT") UpperCAmelCase__ = TypeVar("VT") class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : Optional[int] , A : KT | str = "root" , A : VT | None = None) -> str: """simple docstring""" _UpperCAmelCase = key _UpperCAmelCase = value _UpperCAmelCase = [] def __repr__( self : Optional[int]) -> str: """simple docstring""" return F"Node({self.key}: {self.value})" @property def _lowerCamelCase ( self : str) -> int: """simple docstring""" return len(self.forward) class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : Dict , A : float = 0.5 , A : int = 16) -> List[Any]: """simple docstring""" _UpperCAmelCase = Node[KT, VT]() _UpperCAmelCase = 0 _UpperCAmelCase = p _UpperCAmelCase = max_level def __str__( self : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = list(self) if len(A) == 0: return F"SkipList(level={self.level})" _UpperCAmelCase = max((len(str(A)) for item in items) , default=4) _UpperCAmelCase = max(A , 4) + 4 _UpperCAmelCase = self.head _UpperCAmelCase = [] _UpperCAmelCase = node.forward.copy() lines.append(F"[{node.key}]".ljust(A , '-') + '* ' * len(A)) lines.append(' ' * label_size + '| ' * len(A)) while len(node.forward) != 0: _UpperCAmelCase = node.forward[0] lines.append( F"[{node.key}]".ljust(A , '-') + ' '.join(str(n.key) if n.key == node.key else '|' for n in forwards)) lines.append(' ' * label_size + '| ' * len(A)) _UpperCAmelCase = node.forward lines.append('None'.ljust(A) + '* ' * len(A)) return F"SkipList(level={self.level})\n" + "\n".join(A) def __iter__( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.head while len(node.forward) != 0: yield node.forward[0].key _UpperCAmelCase = node.forward[0] def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowerCamelCase ( self : List[str] , A : str) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _UpperCAmelCase = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(A) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowerCamelCase ( self : List[str] , A : KT) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self._locate_node(A) if node is not None: for i, update_node in enumerate(A): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _UpperCAmelCase = node.forward[i] else: _UpperCAmelCase = update_node.forward[:i] def _lowerCamelCase ( self : List[Any] , A : KT , A : VT) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self._locate_node(A) if node is not None: _UpperCAmelCase = value else: _UpperCAmelCase = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , A): update_vector.append(self.head) _UpperCAmelCase = level _UpperCAmelCase = Node(A , A) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(A) else: _UpperCAmelCase = new_node def _lowerCamelCase ( self : List[Any] , A : VT) -> VT | None: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self._locate_node(A) if node is not None: return node.value return None def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) _UpperCAmelCase = skip_list.head _UpperCAmelCase = {} while node.level != 0: _UpperCAmelCase = node.forward[0] _UpperCAmelCase = node.value assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) _UpperCAmelCase = skip_list.head _UpperCAmelCase = {} while node.level != 0: _UpperCAmelCase = node.forward[0] _UpperCAmelCase = node.value if len(_UpperCAmelCase ) != 4: print() assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = SkipList() assert skip_list.find('Some key' ) is None def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def A ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_UpperCAmelCase : Optional[Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def A ( ) -> List[Any]: '''simple docstring''' def is_sorted(_UpperCAmelCase : Union[str, Any] ): return all(next_item >= item for item, next_item in zip(_UpperCAmelCase , lst[1:] ) ) _UpperCAmelCase = SkipList() for i in range(10 ): skip_list.insert(_UpperCAmelCase , _UpperCAmelCase ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCAmelCase ) ) def A ( ) -> int: '''simple docstring''' for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( A ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , A : str , A : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = False super().__init__(A , A) _UpperCAmelCase = self.image_processor def __call__( self : Union[str, Any] , A : ImageInput = None , A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A : bool = True , A : Union[bool, str, PaddingStrategy] = False , A : Union[bool, str, TruncationStrategy] = None , A : Optional[int] = None , A : int = 0 , A : Optional[int] = None , A : Optional[bool] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : Optional[Union[str, TensorType]] = None , **A : int , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_token_type_ids=A , return_length=A , verbose=A , return_tensors=A , **A , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(A , return_tensors=A) if text is not None: _UpperCAmelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_token_type_ids=A , return_length=A , verbose=A , return_tensors=A , **A , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(A) return encoding_image_processor def _lowerCamelCase ( self : Optional[int] , *A : Union[str, Any] , **A : Optional[Any]) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*A , **A) def _lowerCamelCase ( self : str , *A : str , **A : Tuple) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*A , **A) @property def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''funnel''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Any , A : Any=3_05_22 , A : Tuple=[4, 4, 4] , A : Tuple=None , A : Union[str, Any]=2 , A : int=7_68 , A : Union[str, Any]=12 , A : Any=64 , A : List[str]=30_72 , A : List[str]="gelu_new" , A : List[str]=0.1 , A : Union[str, Any]=0.1 , A : str=0.0 , A : Union[str, Any]=0.1 , A : Tuple=None , A : List[str]=1E-9 , A : Union[str, Any]="mean" , A : List[str]="relative_shift" , A : Dict=True , A : List[str]=True , A : Dict=True , **A : Tuple , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = block_sizes _UpperCAmelCase = [1] * len(A) if block_repeats is None else block_repeats assert len(A) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." _UpperCAmelCase = num_decoder_layers _UpperCAmelCase = d_model _UpperCAmelCase = n_head _UpperCAmelCase = d_head _UpperCAmelCase = d_inner _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_std _UpperCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." _UpperCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." _UpperCAmelCase = attention_type _UpperCAmelCase = separate_cls _UpperCAmelCase = truncate_seq _UpperCAmelCase = pool_q_only super().__init__(**A) @property def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" return sum(self.block_sizes) @num_hidden_layers.setter def _lowerCamelCase ( self : Optional[int] , A : Dict) -> Dict: """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.') @property def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" return len(self.block_sizes) @num_blocks.setter def _lowerCamelCase ( self : Union[str, Any] , A : int) -> List[Any]: """simple docstring""" raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.')
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCAmelCase ( A ): UpperCamelCase = '''roformer''' def __init__( self : Dict , A : int=5_00_00 , A : Optional[int]=None , A : Optional[int]=7_68 , A : int=12 , A : Union[str, Any]=12 , A : List[Any]=30_72 , A : str="gelu" , A : List[str]=0.1 , A : str=0.1 , A : Optional[Any]=15_36 , A : Tuple=2 , A : int=0.0_2 , A : List[Any]=1E-12 , A : Dict=0 , A : Tuple=False , A : List[Any]=True , **A : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A , **A) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = rotary_value _UpperCAmelCase = use_cache class __lowerCAmelCase ( A ): @property def _lowerCamelCase ( self : Union[str, Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
700
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple="pt" ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Tuple: '''simple docstring''' _UpperCAmelCase = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( A ): def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str , A : Union[str, Any] , A : int="train" , A : List[Any]=None , A : int=None , A : Tuple=None , A : str="" , ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = Path(A).joinpath(type_path + '.source') _UpperCAmelCase = Path(A).joinpath(type_path + '.target') _UpperCAmelCase = self.get_char_lens(self.src_file) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Tuple) -> Optional[int]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Any , A : Dict) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file) , A).rstrip('\n') _UpperCAmelCase = linecache.getline(str(self.tgt_file) , A).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A) else self.tokenizer _UpperCAmelCase = encode_line(A , A , self.max_source_length , 'right') _UpperCAmelCase = encode_line(A , A , self.max_target_length , 'right') _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCamelCase ( A : str) -> Tuple: """simple docstring""" return [len(A) for x in Path(A).open().readlines()] def _lowerCamelCase ( self : int , A : int) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch]) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch]) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch]) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(A , A) _UpperCAmelCase , _UpperCAmelCase = trim_batch(A , A , attention_mask=A) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ = getLogger(__name__) def A ( _UpperCAmelCase : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'git_log.json' ) ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=4 , **_UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_UpperCAmelCase ) _UpperCAmelCase = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCAmelCase , 'wb' ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase : Optional[int] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Tuple ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = normalize_answer(_UpperCAmelCase ).split() _UpperCAmelCase = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def A ( _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue _UpperCAmelCase = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
639
0
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str = "AAPL" ) -> str: '''simple docstring''' _UpperCAmelCase = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase ).text , 'html.parser' ) _UpperCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } UpperCAmelCase__ : int = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } UpperCAmelCase__ : List[str] = "</w>" UpperCAmelCase__ : Optional[int] = "@@ " def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs # Speech2Text2 has no max input length UpperCAmelCase__ : Optional[Any] = {"facebook/s2t-wav2vec2-large-en-de": 1024} class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , A : List[Any] , A : Tuple="<s>" , A : List[Any]="<pad>" , A : Optional[Any]="</s>" , A : Optional[int]="<unk>" , A : Tuple=False , A : int=None , **A : Optional[Any] , ) -> str: """simple docstring""" super().__init__( unk_token=A , bos_token=A , eos_token=A , pad_token=A , do_lower_case=A , **A , ) _UpperCAmelCase = do_lower_case with open(A , encoding='utf-8') as vocab_handle: _UpperCAmelCase = json.load(A) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _UpperCAmelCase = None _UpperCAmelCase = None else: with open(A , encoding='utf-8') as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n')[:-1] _UpperCAmelCase = [tuple(merge.split()[:2]) for merge in merges] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = {} @property def _lowerCamelCase ( self : str) -> int: """simple docstring""" return len(self.decoder) def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self : str , A : Optional[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _UpperCAmelCase = get_pairs(A) if not pairs: return token while True: _UpperCAmelCase = min(A , key=lambda A: self.bpe_ranks.get(A , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(A): try: _UpperCAmelCase = word.index(A , A) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCAmelCase = j if word[i] == first and i < len(A) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCAmelCase = tuple(A) _UpperCAmelCase = new_word if len(A) == 1: break else: _UpperCAmelCase = get_pairs(A) _UpperCAmelCase = ' '.join(A) if word == "\n " + BPE_TOKEN_MERGES: _UpperCAmelCase = '\n' + BPE_TOKEN_MERGES if word.endswith(A): _UpperCAmelCase = word.replace(A , '') _UpperCAmelCase = word.replace(' ' , A) _UpperCAmelCase = word return word def _lowerCamelCase ( self : Any , A : Dict) -> Union[str, Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: _UpperCAmelCase = text.lower() _UpperCAmelCase = text.split() _UpperCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(A).split(' '))) return split_tokens def _lowerCamelCase ( self : Tuple , A : str) -> int: """simple docstring""" return self.encoder.get(A , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self : str , A : int) -> str: """simple docstring""" _UpperCAmelCase = self.decoder.get(A , self.unk_token) return result def _lowerCamelCase ( self : Tuple , A : List[str]) -> str: """simple docstring""" _UpperCAmelCase = ' '.join(A) # make sure @@ tokens are concatenated _UpperCAmelCase = ''.join(string.split(A)) return string def _lowerCamelCase ( self : Any , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A) + '\n') _UpperCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(A , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!') _UpperCAmelCase = token_index writer.write(' '.join(A) + '\n') index += 1 return (vocab_file, merges_file)
702
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , A : bool = True , A : Dict[str, int] = None , A : float = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 3_84} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = do_resize _UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : str , A : np.ndarray , A : Dict[str, int] , A : float , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Any , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}") _UpperCAmelCase = size['shortest_edge'] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCAmelCase = int(shortest_edge / crop_pct) _UpperCAmelCase = get_resize_output_image_size(A , size=A , default_to_square=A) _UpperCAmelCase = resize(image=A , size=A , resample=A , data_format=A , **A) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A , size=(shortest_edge, shortest_edge) , data_format=A , **A) else: # warping (no cropping) when evaluated at 384 or larger return resize( A , size=(shortest_edge, shortest_edge) , resample=A , data_format=A , **A) def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : int , ) -> Optional[Any]: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : Optional[Any] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Dict , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : float = None , A : PILImageResampling = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , crop_pct=A , resample=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A)
703
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = ['''pixel_values'''] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**A) _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_56} _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A , default_to_square=A) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _UpperCAmelCase = get_resize_output_image_size(A , size=size['shortest_edge'] , default_to_square=A) return resize(A , size=A , resample=A , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(A) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(A , size=(size['height'], size['width']) , data_format=A , **A) def _lowerCamelCase ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict) -> np.ndarray: """simple docstring""" return rescale(A , scale=A , data_format=A , **A) def _lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A) def _lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : int , ) -> Dict: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(A , default_to_square=A) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(A , param_name='crop_size') _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(A) if not valid_images(A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(A) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=A , size=A , resample=A) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=A , size=A) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=A , scale=A) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=A , mean=A , std=A) for image in images] _UpperCAmelCase = [to_channel_dimension_format(A , A) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=A , tensor_type=A) def _lowerCamelCase ( self : str , A : Any , A : List[Tuple] = None) -> Tuple: """simple docstring""" _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A) != len(A): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(A): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(A)): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=A) _UpperCAmelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A) else: _UpperCAmelCase = logits.argmax(dim=1) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
639
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self : Any , A : int , A : Tuple=13 , A : List[str]=32 , A : Union[str, Any]=2 , A : Union[str, Any]=3 , A : Union[str, Any]=16 , A : List[Any]=[1, 2, 1] , A : Union[str, Any]=[2, 2, 4] , A : Optional[Any]=2 , A : List[Any]=2.0 , A : Tuple=True , A : Any=0.0 , A : List[Any]=0.0 , A : Tuple=0.1 , A : str="gelu" , A : int=False , A : List[str]=True , A : Optional[int]=0.0_2 , A : Optional[Any]=1E-5 , A : Optional[Any]=True , A : Dict=None , A : Dict=True , A : Any=10 , A : str=8 , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride def _lowerCamelCase ( self : int) -> str: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : List[Any] , A : List[Any] , A : int , A : List[str]) -> int: """simple docstring""" _UpperCAmelCase = SwinvaModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self : int , A : Optional[Any] , A : Any , A : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = SwinvaForMaskedImageModeling(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = SwinvaForMaskedImageModeling(A) model.to(A) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : Optional[Any] , A : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = SwinvaForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = SwinvaModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , embed_dim=37) def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear)) def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions _UpperCAmelCase = len(self.model_tester.depths) self.assertEqual(len(A) , A) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = config.window_size**2 _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCAmelCase = len(A) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) if hasattr(self.model_tester , 'num_hidden_states_types'): _UpperCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(A)) _UpperCAmelCase = outputs.attentions self.assertEqual(len(A) , A) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowerCamelCase ( self : str , A : str , A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(A) , A) # Swinv2 has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(A) , A) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(A , A , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , A) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width)) def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SwinvaModel.from_pretrained(A) self.assertIsNotNone(A) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(A) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=A) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4))
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [] def parse_line(_UpperCAmelCase : Tuple ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: _UpperCAmelCase = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: _UpperCAmelCase = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def A ( _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def A ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' return values.split(',' ) UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase__ = extract_warnings(args.output_dir, args.targets) UpperCAmelCase__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
705
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCAmelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def A ( _UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {} with open(_UpperCAmelCase , 'r' ) as file: for line_number, line in enumerate(_UpperCAmelCase ): _UpperCAmelCase = line.strip() if line: _UpperCAmelCase = line.split() _UpperCAmelCase = line_number _UpperCAmelCase = words[0] _UpperCAmelCase = value return result def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> str: '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): _UpperCAmelCase = PARAM_MAPPING[full_name.split('.' )[-1]] _UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('.' ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = shape_pointer.shape # let's reduce dimension _UpperCAmelCase = value[0] else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): _UpperCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): _UpperCAmelCase = PARAM_MAPPING[full_name.split('.' )[-1]] _UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": _UpperCAmelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase = '.'.join([key, hf_param_name] ) else: _UpperCAmelCase = key _UpperCAmelCase = value if 'lm_head' in full_key else value[0] UpperCAmelCase__ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Union[str, Any]=None ) -> str: '''simple docstring''' _UpperCAmelCase = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(_UpperCAmelCase )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "bias" in name: _UpperCAmelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = 'weight' else: _UpperCAmelCase = None if hf_dict is not None: rename_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return is_used return is_used def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True else: _UpperCAmelCase = load_wavaveca_layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Union[str, Any]=False ) -> List[str]: '''simple docstring''' if config_path is not None: _UpperCAmelCase = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase = WavaVecaConfig() if is_seq_class: _UpperCAmelCase = read_txt_into_dict(_UpperCAmelCase ) _UpperCAmelCase = idalabel _UpperCAmelCase = WavaVecaForSequenceClassification(_UpperCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) feature_extractor.save_pretrained(_UpperCAmelCase ) elif is_finetuned: if dict_path: _UpperCAmelCase = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.eos_index _UpperCAmelCase = len(target_dict.symbols ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase = 0 _UpperCAmelCase = 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , ) _UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) _UpperCAmelCase = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) _UpperCAmelCase = WavaVecaForCTC(_UpperCAmelCase ) else: _UpperCAmelCase = WavaVecaForPreTraining(_UpperCAmelCase ) if is_finetuned or is_seq_class: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _UpperCAmelCase = argparse.Namespace(task='audio_pretraining' ) _UpperCAmelCase = fairseq.tasks.setup_task(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_UpperCAmelCase ) _UpperCAmelCase = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : def __init__( self : List[str] , A : Any , A : Optional[Any]=99 , A : Tuple=13 , A : Optional[Any]=7 , A : Tuple=9 , A : List[Any]=True , A : Union[str, Any]=True , A : Optional[Any]=False , A : Dict=32 , A : Tuple=5 , A : List[Any]=4 , A : Union[str, Any]=37 , A : Dict=8 , A : List[Any]=0.1 , A : int=0.0_0_2 , A : str=1 , A : Union[str, Any]=0 , A : Dict=0 , A : Union[str, Any]=None , A : Optional[Any]=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base') def _lowerCamelCase ( self : Tuple , A : int , A : Union[str, Any] , A : List[str] , A : Any=None , A : List[Any]=None , A : List[Any]=None , A : int=None , A : Optional[Any]=None , ) -> int: """simple docstring""" if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=A) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=A) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=A) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(A , A , A) return config, input_dict def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCamelCase ( self : str , A : List[Any] , A : Any , A : List[str] , A : str , A : Tuple , A : str , ) -> Dict: """simple docstring""" _UpperCAmelCase = UMTaModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model( input_ids=A , decoder_input_ids=A , attention_mask=A , decoder_attention_mask=A , ) _UpperCAmelCase = model(input_ids=A , decoder_input_ids=A) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(A) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Tuple , A : Optional[Any] , A : List[str] , A : str , A : List[str] , ) -> Any: """simple docstring""" _UpperCAmelCase = UMTaModel(config=A).get_decoder().to(A).eval() # first forward pass _UpperCAmelCase = model(A , use_cache=A) _UpperCAmelCase = model(A) _UpperCAmelCase = model(A , use_cache=A) self.parent.assertTrue(len(A) == len(A)) self.parent.assertTrue(len(A) == len(A) + 1) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCAmelCase = model(A)['last_hidden_state'] _UpperCAmelCase = model(A , past_key_values=A)['last_hidden_state'] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3)) def _lowerCamelCase ( self : Optional[Any] , A : str , A : Optional[Any] , ) -> Tuple: """simple docstring""" _UpperCAmelCase = UMTaModel(config=A).to(A).half().eval() _UpperCAmelCase = model(**A)['last_hidden_state'] self.parent.assertFalse(torch.isnan(A).any().item()) @require_torch class __lowerCAmelCase ( A , A , A , unittest.TestCase ): UpperCamelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCamelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True UpperCamelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCamelCase = [0.8, 0.9] def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = UMTaModelTester(self) @unittest.skip('Test has a segmentation fault on torch 1.8.0') def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0]).to(A) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( A , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=A , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision') def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*A) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(A).eval() model.to(A) _UpperCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=A), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=A), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=A), } for attn_name, (name, mask) in zip(A , head_masking.items()): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=A) _UpperCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=A , return_dict_in_generate=A , **A , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.') def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged') def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=A).to(A) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=A , legacy=A) _UpperCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _UpperCAmelCase = tokenizer(A , return_tensors='pt' , padding=A).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ]) # fmt: on torch.testing.assert_allclose(A , A) _UpperCAmelCase = model.generate(input_ids.to(A)) _UpperCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _UpperCAmelCase = tokenizer.batch_decode(A) self.assertEqual(A , A)
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def A ( _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase = model_type_to_module_name(_UpperCAmelCase ) _UpperCAmelCase = importlib.import_module(F".{module_name}" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def A ( _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Tuple , ) -> str: '''simple docstring''' _UpperCAmelCase = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class __lowerCAmelCase : def __init__( self : Tuple) -> Tuple: """simple docstring""" raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.') @classmethod @replace_list_option_in_docstrings(A) def _lowerCamelCase ( cls : Tuple , A : Union[str, Any] , **A : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = kwargs.pop('config' , A) _UpperCAmelCase = kwargs.pop('trust_remote_code' , A) _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(A , **A) _UpperCAmelCase = config_dict.get('feature_extractor_type' , A) _UpperCAmelCase = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {}): _UpperCAmelCase = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A): _UpperCAmelCase = AutoConfig.from_pretrained(A , **A) # It could be in `config.feature_extractor_type`` _UpperCAmelCase = getattr(A , 'feature_extractor_type' , A) if hasattr(A , 'auto_map') and "AutoFeatureExtractor" in config.auto_map: _UpperCAmelCase = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: _UpperCAmelCase = feature_extractor_class_from_name(A) _UpperCAmelCase = feature_extractor_auto_map is not None _UpperCAmelCase = feature_extractor_class is not None or type(A) in FEATURE_EXTRACTOR_MAPPING _UpperCAmelCase = resolve_trust_remote_code( A , A , A , A) if has_remote_code and trust_remote_code: _UpperCAmelCase = get_class_from_dynamic_module( A , A , **A) _UpperCAmelCase = kwargs.pop('code_revision' , A) if os.path.isdir(A): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A) in FEATURE_EXTRACTOR_MAPPING: _UpperCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(A)] return feature_extractor_class.from_dict(A , **A) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}") @staticmethod def _lowerCamelCase ( A : int , A : Any) -> Union[str, Any]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(A , A)
708
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) _UpperCAmelCase = '' with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
639
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase__ = "src/transformers" UpperCAmelCase__ = "docs/source/en/tasks" def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() # Find the start prompt. _UpperCAmelCase = 0 while not lines[start_index].startswith(_UpperCAmelCase ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index while not lines[end_index].startswith(_UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase__ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase__ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def A ( _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _UpperCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCAmelCase , set() ) _UpperCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=False ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _find_text_in_file( filename=os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _UpperCAmelCase = get_model_list_for_task(_UpperCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" ' to fix this.' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification UpperCAmelCase__ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co UpperCAmelCase__ = "main" # Default branch name UpperCAmelCase__ = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) UpperCAmelCase__ = "aaaaaaa" # This commit does not exist, so we should 404. UpperCAmelCase__ = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes UpperCAmelCase__ = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def A ( ) -> List[Any]: '''simple docstring''' print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def A ( ) -> Any: '''simple docstring''' print('Bonjour!' ) yield print('Au revoir!' ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers') is not None class __lowerCAmelCase ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO) def _lowerCamelCase ( self : Optional[Any] , A : Union[str, Any]) -> List[str]: """simple docstring""" with ContextManagers([]): print('Transformers are awesome!') # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n') @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO) def _lowerCamelCase ( self : int , A : int) -> Optional[Any]: """simple docstring""" with ContextManagers([context_en()]): print('Transformers are awesome!') # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n') @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO) def _lowerCamelCase ( self : str , A : Tuple) -> Union[str, Any]: """simple docstring""" with ContextManagers([context_fr(), context_en()]): print('Transformers are awesome!') # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n') @require_torch def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" self.assertEqual(find_labels(A) , ['labels']) self.assertEqual(find_labels(A) , ['labels', 'next_sentence_label']) self.assertEqual(find_labels(A) , ['start_positions', 'end_positions']) class __lowerCAmelCase ( A ): pass self.assertEqual(find_labels(A) , ['labels']) @require_tf def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" self.assertEqual(find_labels(A) , ['labels']) self.assertEqual(find_labels(A) , ['labels', 'next_sentence_label']) self.assertEqual(find_labels(A) , ['start_positions', 'end_positions']) class __lowerCAmelCase ( A ): pass self.assertEqual(find_labels(A) , ['labels']) @require_flax def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" self.assertEqual(find_labels(A) , []) self.assertEqual(find_labels(A) , []) self.assertEqual(find_labels(A) , []) class __lowerCAmelCase ( A ): pass self.assertEqual(find_labels(A) , [])
710
from collections import Counter from timeit import timeit def A ( _UpperCAmelCase : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( _UpperCAmelCase : str = "" ) -> bool: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return True _UpperCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase = {} for character in lower_case_input_str: _UpperCAmelCase = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 _UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( _UpperCAmelCase : str = "" ) -> None: '''simple docstring''' print('\nFor string = ' , _UpperCAmelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": UpperCAmelCase__ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
639
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __lowerCAmelCase : UpperCamelCase = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) UpperCamelCase = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) UpperCamelCase = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments,) ) ((_UpperCAmelCase ) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_UpperCAmelCase , decoder_config=_UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _UpperCAmelCase = decoder_config.decoder_start_token_id _UpperCAmelCase = decoder_config.pad_token_id if decoder_start_token_id is None: _UpperCAmelCase = decoder_config.bos_token_id if pad_token_id is None: _UpperCAmelCase = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _UpperCAmelCase = decoder_config.eos_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
711
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
639
0
import re from filelock import FileLock try: import nltk UpperCAmelCase__ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' re.sub('<n>' , '' , _UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCAmelCase ) )
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" if self.train_file is not None: _UpperCAmelCase = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCAmelCase = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) _UpperCAmelCase = {c: dataset[c] for c in dataset.column_names} _UpperCAmelCase = refs return Dataset.from_dict(_UpperCAmelCase ) def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: _UpperCAmelCase = {} if data_args.train_file is not None: _UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase = data_args.validation_file _UpperCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": _UpperCAmelCase = 'text' _UpperCAmelCase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCAmelCase = datasets['train'].column_names else: _UpperCAmelCase = datasets['validation'].column_names _UpperCAmelCase = 'text' if 'text' in column_names else column_names[0] _UpperCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase : str ): # Remove empty lines _UpperCAmelCase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) _UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCAmelCase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCAmelCase = model_args.model_name_or_path else: _UpperCAmelCase = None _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = perplexity _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import pprint import requests UpperCAmelCase__ = "https://zenquotes.io/api" def A ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def A ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCAmelCase__ = random_quotes() pprint.pprint(response)
714
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ = re.compile(r"\s+") def A ( _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def A ( _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=5 ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Optional[int]=0.05 ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['unit tests', 'test file', 'configuration file'] _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 _UpperCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCAmelCase = example['content'].count('\n' ) _UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ['def ', 'class ', 'for ', 'while '] _UpperCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=4 ) -> Dict: '''simple docstring''' _UpperCAmelCase = example['content'].splitlines() _UpperCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] _UpperCAmelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def A ( _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings UpperCAmelCase__ = HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ = set(ds.unique("hash")) UpperCAmelCase__ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ = time.time() UpperCAmelCase__ , UpperCAmelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
639
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = StableDiffusionSAGPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = False def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _UpperCAmelCase = CLIPTextModel(A) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : Optional[int] , A : Tuple , A : List[str]=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') _UpperCAmelCase = sag_pipe.to(A) sag_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _UpperCAmelCase = sag_pipe.to(A) sag_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _UpperCAmelCase = sag_pipe.to(A) sag_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) _UpperCAmelCase = output.images assert image.shape == (1, 5_12, 7_68, 3)
715
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
0
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=A ): UpperCamelCase = ['''torch''', '''scipy'''] def __init__( self : Any , *A : Any , **A : str) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch', 'scipy']) @classmethod def _lowerCamelCase ( cls : Dict , *A : int , **A : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ['torch', 'scipy']) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *A : List[Any] , **A : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ['torch', 'scipy'])
716
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _lowerCamelCase ( *A : Union[str, Any] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class __lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @require_tf def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(A) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], [ {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, {'score': 0.3_3_3, 'label': ANY(A)}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCAmelCase = image_classifier(A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(A) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(A) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
639
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) _UpperCAmelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _UpperCAmelCase = os.path.join(self.tmpdirname , A) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(A , A) def _lowerCamelCase ( self : Optional[Any] , **A : Tuple) -> Optional[int]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[Any] , **A : Union[str, Any]) -> str: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Dict , **A : Any) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] _UpperCAmelCase = [Image.fromarray(np.moveaxis(A , 0 , -1)) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) processor_slow.save_pretrained(self.tmpdirname) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A) _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) processor_fast.save_pretrained(self.tmpdirname) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , A) self.assertIsInstance(processor_fast.tokenizer , A) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , A) self.assertIsInstance(processor_fast.image_processor , A) def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') _UpperCAmelCase = self.get_image_processor(do_normalize=A , padding_value=1.0) _UpperCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , A) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , A) def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(A , return_tensors='np') _UpperCAmelCase = processor(images=A , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=A) _UpperCAmelCase = tokenizer(A) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=A , images=A) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(A): processor() def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(images=A , visual_prompt=A) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'conditional_pixel_values']) # test if it raises when no input is passed with pytest.raises(A): processor() def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=A , image_processor=A) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(A) _UpperCAmelCase = tokenizer.batch_decode(A) self.assertListEqual(A , A)
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCAmelCase__ = logging.getLogger() def A ( ) -> Any: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('-f' ) _UpperCAmelCase = parser.parse_args() return args.f class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : Any) -> None: """simple docstring""" _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(A) def _lowerCamelCase ( self : List[Any] , A : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(A , 'argv' , A): _UpperCAmelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(A , 0.6_6_6) @slow @require_torch_non_multi_gpu def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(A) _UpperCAmelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(A) _UpperCAmelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(A)
718
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ = logging.getLogger(__name__) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> str: '''simple docstring''' return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class __lowerCAmelCase ( pl.Callback ): def _lowerCamelCase ( self : Optional[int] , A : List[Any] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(A) @rank_zero_only def _lowerCamelCase ( self : Optional[Any] , A : pl.Trainer , A : pl.LightningModule , A : str , A : int=True) -> None: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=A) generations_file.parent.mkdir(exist_ok=A) with open(A , 'a+') as writer: for key in sorted(A): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(A , torch.Tensor): _UpperCAmelCase = val.item() _UpperCAmelCase = F"{key}: {val:.6f}\n" writer.write(A) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds']) generations_file.open('w+').write(A) @rank_zero_only def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(A) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Dict , A : pl.Trainer , A : pl.LightningModule) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(A , A , 'test') @rank_zero_only def _lowerCamelCase ( self : Tuple , A : pl.Trainer , A : str) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
639
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] , A : Any) -> str: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): _UpperCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A) def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase = 'sgugger/tiny-distilbert-classification' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision') def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(A) # set architectures equal to `None` _UpperCAmelCase = None _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision') def _lowerCamelCase ( self : Any) -> Dict: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tinier_bart' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tinier_bart' _UpperCAmelCase = AutoConfig.from_pretrained(A) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A , configs=[config]) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , 'inf_time.csv') , train_memory_csv_file=os.path.join(A , 'train_mem.csv') , inference_memory_csv_file=os.path.join(A , 'inf_mem.csv') , train_time_csv_file=os.path.join(A , 'train_time.csv') , env_info_csv_file=os.path.join(A , 'env.csv') , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) benchmark.run() self.assertTrue(Path(os.path.join(A , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'train_time.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'train_mem.csv')).exists()) self.assertTrue(Path(os.path.join(A , 'env.csv')).exists()) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A : List[Any]): self.assertTrue(hasattr(A , 'sequential')) self.assertTrue(hasattr(A , 'cumulative')) self.assertTrue(hasattr(A , 'current')) self.assertTrue(hasattr(A , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , 'log.txt') , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) _UpperCAmelCase = PyTorchBenchmark(A) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(A , 'log.txt')).exists())
719
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') def _lowerCamelCase ( self : Dict , **A : List[Any]) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[str] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = 'tester' _UpperCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" pass def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizers(do_lower_case=A) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) _UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A) self.assertEqual(len(A) , 1) _UpperCAmelCase = tokenizer.decode(A , skip_special_tokens=A) self.assertTrue(special_token not in decoded) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(A) _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A) self.assertNotEqual(len(A) , 0) _UpperCAmelCase = tokenizer.decode(A) self.assertIsInstance(A , A) self.assertEqual(text_a.replace(' ' , '') , A) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" pass
639
0
def A ( _UpperCAmelCase : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError('Input must be a positive integer' ) _UpperCAmelCase = [True] * (num + 1) _UpperCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _UpperCAmelCase ): _UpperCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
720
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
0
from functools import reduce UpperCAmelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: str = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def lowerCAmelCase__ ( self : Any , a : Tuple=0 ): '''simple docstring''' lowercase_ : Optional[int] = np.random.RandomState(a ) lowercase_ : Dict = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a ) lowercase_ : List[Any] = self.get_dummy_inputs() lowercase_ : Tuple = pipe(**a ).images lowercase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase_ : str = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowercase_ : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : List[Any] = pipe(**a ).images lowercase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase_ : List[str] = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowercase_ : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Optional[int] = self.get_dummy_inputs() lowercase_ : str = pipe(**a ).images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase_ : Any = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowercase_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = self.get_dummy_inputs() lowercase_ : Optional[Any] = pipe(**a ).images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase_ : int = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowercase_ : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : str = pipe(**a ).images lowercase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase_ : str = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowercase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase_ : List[Any] = self.get_dummy_inputs() lowercase_ : str = pipe(**a ).images lowercase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase_ : List[Any] = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : Dict = 3 * [inputs["prompt"]] # forward lowercase_ : Optional[Any] = pipe(**a ) lowercase_ : Optional[Any] = output.images[0, -3:, -3:, -1] lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : Optional[int] = 3 * [inputs.pop("prompt" )] lowercase_ : Dict = pipe.tokenizer( a , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a , return_tensors="np" , ) lowercase_ : List[str] = text_inputs["input_ids"] lowercase_ : Optional[int] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowercase_ : Dict = prompt_embeds # forward lowercase_ : Dict = pipe(**a ) lowercase_ : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Union[str, Any] = self.get_dummy_inputs() lowercase_ : Any = 3 * ["this is a negative prompt"] lowercase_ : Optional[Any] = negative_prompt lowercase_ : Optional[Any] = 3 * [inputs["prompt"]] # forward lowercase_ : List[str] = pipe(**a ) lowercase_ : Optional[int] = output.images[0, -3:, -3:, -1] lowercase_ : Any = self.get_dummy_inputs() lowercase_ : Optional[int] = 3 * [inputs.pop("prompt" )] lowercase_ : Union[str, Any] = [] for p in [prompt, negative_prompt]: lowercase_ : Dict = pipe.tokenizer( a , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a , return_tensors="np" , ) lowercase_ : Dict = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowercase_ , lowercase_ : Any = embeds # forward lowercase_ : Optional[Any] = pipe(**a ) lowercase_ : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[int] = ort.SessionOptions() lowercase_ : Tuple = False return options def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a ) lowercase_ : Optional[Any] = "A painting of a squirrel eating a burger" np.random.seed(0 ) lowercase_ : Optional[Any] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=1_0 , output_type="np" ) lowercase_ : int = output.images lowercase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ : int = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Tuple = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowercase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = "open neural network exchange" lowercase_ : List[str] = np.random.RandomState(0 ) lowercase_ : Tuple = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type="np" ) lowercase_ : Any = output.images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ : str = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[int] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowercase_ : int = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a ) lowercase_ : Tuple = "open neural network exchange" lowercase_ : Tuple = np.random.RandomState(0 ) lowercase_ : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type="np" ) lowercase_ : str = output.images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ : Optional[int] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = 0 def test_callback_fn(a : int , a : int , a : np.ndarray ) -> None: lowercase_ : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) lowercase_ : List[str] = latents[0, -3:, -3:, -1] lowercase_ : Dict = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) lowercase_ : List[Any] = latents[0, -3:, -3:, -1] lowercase_ : Optional[int] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 lowercase_ : Any = False lowercase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Union[str, Any] = "Andromeda galaxy in a bottle" lowercase_ : Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=a , num_inference_steps=5 , guidance_scale=7.5 , generator=a , callback=a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : int = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(a , a ) assert pipe.safety_checker is None lowercase_ : List[Any] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase_ : int = OnnxStableDiffusionPipeline.from_pretrained(a ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ : Any = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
640
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCamelCase__ = 'hf-internal-testing/tiny-random-bert' UpperCamelCase__ = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') UpperCamelCase__ = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = cached_file(a , a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(a , a ) ) ) with open(os.path.join(a , "refs" , "main" ) ) as f: lowercase_ : List[Any] = f.read() self.assertEqual(a , os.path.join(a , "snapshots" , a , a ) ) self.assertTrue(os.path.isfile(a ) ) # File is cached at the same place the second time. lowercase_ : List[str] = cached_file(a , a ) self.assertEqual(a , a ) # Using a specific revision to test the full commit hash. lowercase_ : int = cached_file(a , a , revision="9b8c223" ) self.assertEqual(a , os.path.join(a , "snapshots" , a , a ) ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex(a , "is not a valid model identifier" ): lowercase_ : Any = cached_file("tiny-random-bert" , a ) with self.assertRaisesRegex(a , "is not a valid git identifier" ): lowercase_ : Tuple = cached_file(a , a , revision="aaaa" ) with self.assertRaisesRegex(a , "does not appear to have a file named" ): lowercase_ : List[Any] = cached_file(a , "conf" ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' with self.assertRaisesRegex(a , "does not appear to have a file named" ): lowercase_ : Optional[Any] = cached_file(a , "conf" ) with open(os.path.join(a , "refs" , "main" ) ) as f: lowercase_ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(a , ".no_exist" , a , "conf" ) ) ) lowercase_ : int = cached_file(a , "conf" , _raise_exceptions_for_missing_entries=a ) self.assertIsNone(a ) lowercase_ : List[Any] = cached_file(a , "conf" , local_files_only=a , _raise_exceptions_for_missing_entries=a ) self.assertIsNone(a ) lowercase_ : int = mock.Mock() lowercase_ : Tuple = 5_0_0 lowercase_ : Tuple = {} lowercase_ : List[Any] = HTTPError lowercase_ : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a ) as mock_head: lowercase_ : Union[str, Any] = cached_file(a , "conf" , _raise_exceptions_for_connection_errors=a ) self.assertIsNone(a ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , a ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a ) ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(a , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(a , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , a , revision="ahaha" ) lowercase_ : Optional[int] = get_file_from_repo("bert-base-cased" , a ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase_ : Dict = json.loads(open(a , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_6_8 ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = Path(a ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(a , "a.txt" ) , str(a ) ) self.assertIsNone(get_file_from_repo(a , "b.txt" ) )
640
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[PIL.Image.Image, np.ndarray] class _UpperCAmelCase ( snake_case ): def __init__( self : Union[str, Any] , a : PriorTransformer , a : CLIPVisionModel , a : CLIPImageProcessor , a : HeunDiscreteScheduler , a : ShapERenderer , ): '''simple docstring''' super().__init__() self.register_modules( prior=a , image_encoder=a , image_processor=a , scheduler=a , renderer=a , ) def lowerCAmelCase__ ( self : List[str] , a : List[Any] , a : List[str] , a : str , a : str , a : Tuple , a : Tuple ): '''simple docstring''' if latents is None: lowercase_ : Any = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : Optional[int] = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Dict , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Union[str, Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Any , a : Optional[int] , ): '''simple docstring''' if isinstance(a , a ) and isinstance(image[0] , torch.Tensor ): lowercase_ : List[str] = torch.cat(a , axis=0 ) if image[0].ndim == 4 else torch.stack(a , axis=0 ) if not isinstance(a , torch.Tensor ): lowercase_ : Any = self.image_processor(a , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowercase_ : Optional[Any] = image.to(dtype=self.image_encoder.dtype , device=a ) lowercase_ : int = self.image_encoder(a )["last_hidden_state"] lowercase_ : Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase_ : Dict = image_embeds.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Union[str, Any] = torch.zeros_like(a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[PIL.Image.Image, List[PIL.Image.Image]] , a : int = 1 , a : int = 2_5 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : float = 4.0 , a : int = 6_4 , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , PIL.Image.Image ): lowercase_ : Optional[Any] = 1 elif isinstance(a , torch.Tensor ): lowercase_ : str = image.shape[0] elif isinstance(a , a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase_ : Tuple = len(a ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(a )}""" ) lowercase_ : Union[str, Any] = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ : Optional[Any] = self._encode_image(a , a , a , a ) # prior self.scheduler.set_timesteps(a , device=a ) lowercase_ : Any = self.scheduler.timesteps lowercase_ : List[str] = self.prior.config.num_embeddings lowercase_ : Optional[int] = self.prior.config.embedding_dim lowercase_ : str = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , a , a , a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase_ : Dict = latents.reshape(latents.shape[0] , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Any = self.scheduler.scale_model_input(a , a ) lowercase_ : List[Any] = self.prior( a , timestep=a , proj_embedding=a , ).predicted_image_embedding # remove the variance lowercase_ , lowercase_ : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase_ , lowercase_ : Dict = noise_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase_ : List[Any] = self.scheduler.step( a , timestep=a , sample=a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=a ) lowercase_ : Any = [] for i, latent in enumerate(a ): print() lowercase_ : Optional[int] = self.renderer.decode( latent[None, :] , a , size=a , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(a ) lowercase_ : int = torch.stack(a ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowercase_ : str = images.cpu().numpy() if output_type == "pil": lowercase_ : Optional[int] = [self.numpy_to_pil(a ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=a )
640
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" model.train() lowercase_ : Optional[Any] = model(_UpperCamelCase ) lowercase_ : List[Any] = F.mse_loss(_UpperCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" set_seed(42 ) lowercase_ : List[str] = RegressionModel() lowercase_ : Tuple = deepcopy(_UpperCamelCase ) lowercase_ : Tuple = RegressionDataset(length=80 ) lowercase_ : List[Any] = DataLoader(_UpperCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: lowercase_ : List[str] = AdamW(params=model.parameters() , lr=1e-3 ) lowercase_ : Optional[Any] = AdamW(params=ddp_model.parameters() , lr=1e-3 ) lowercase_ : Tuple = LambdaLR(_UpperCamelCase , lr_lambda=lambda _UpperCamelCase : epoch**0.65 ) lowercase_ : str = LambdaLR(_UpperCamelCase , lr_lambda=lambda _UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: lowercase_ , lowercase_ : Any = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ : List[Any] = get_training_setup(_UpperCamelCase ) # Use a single batch lowercase_ , lowercase_ : Optional[int] = next(iter(_UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ : List[str] = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_UpperCamelCase ): step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: # Sync grads step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowercase_ : Dict = ddp_input[torch.randperm(len(_UpperCamelCase ) )] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ : int = get_training_setup(_UpperCamelCase ) # Use a single batch lowercase_ , lowercase_ : List[Any] = next(iter(_UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ : Any = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_UpperCamelCase ): step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: # Sync grads step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowercase_ : str = ddp_input[torch.randperm(len(_UpperCamelCase ) )] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=False , _UpperCamelCase=False ): """simple docstring""" lowercase_ : Any = Accelerator( split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase_ , lowercase_ , lowercase_ : Any = get_training_setup(_UpperCamelCase ) for iteration, batch in enumerate(_UpperCamelCase ): lowercase_ , lowercase_ : Optional[int] = batch.values() # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_UpperCamelCase ): step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_UpperCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowercase_ : int = ddp_input[torch.randperm(len(_UpperCamelCase ) )] GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=False , _UpperCamelCase=False ): """simple docstring""" lowercase_ : int = Accelerator( split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = get_training_setup(_UpperCamelCase , _UpperCamelCase ) for iteration, batch in enumerate(_UpperCamelCase ): lowercase_ , lowercase_ : List[Any] = batch.values() # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ : Tuple = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_UpperCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_UpperCamelCase ): step_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" lowercase_ : int = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_UpperCamelCase )) if accelerator.num_processes > 1: check_model_parameters(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = Accelerator() lowercase_ : str = RegressionDataset(length=80 ) lowercase_ : List[Any] = DataLoader(_UpperCamelCase , batch_size=16 ) lowercase_ : List[str] = RegressionDataset(length=96 ) lowercase_ : int = DataLoader(_UpperCamelCase , batch_size=16 ) lowercase_ , lowercase_ : Union[str, Any] = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_UpperCamelCase ) if iteration < len(_UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_UpperCamelCase ) if batch_num < len(_UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Union[str, Any] = Accelerator() lowercase_ : Tuple = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_UpperCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_UpperCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_UpperCamelCase , _UpperCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
640
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
640
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _UpperCAmelCase ( snake_case ): @staticmethod @abstractmethod def lowerCAmelCase__ ( a : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def lowerCAmelCase__ ( self : Any ): '''simple docstring''' raise NotImplementedError()
640
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MultilingualCLIP , a : XLMRobertaTokenizer , a : UNetaDConditionModel , a : Union[DDIMScheduler, DDPMScheduler] , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=a , tokenizer=a , unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] , a : str , a : Tuple , a : List[str] ): '''simple docstring''' if latents is None: lowercase_ : List[str] = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : str = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Union[str, Any] , a : str , a : Tuple=None , ): '''simple docstring''' lowercase_ : Tuple = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( a , padding="max_length" , truncation=a , max_length=7_7 , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : Union[str, Any] = text_inputs.input_ids lowercase_ : Tuple = self.tokenizer(a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a , a ): lowercase_ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase_ : List[str] = text_input_ids.to(a ) lowercase_ : int = text_inputs.attention_mask.to(a ) lowercase_ , lowercase_ : Optional[int] = self.text_encoder( input_ids=a , attention_mask=a ) lowercase_ : str = prompt_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(a , dim=0 ) lowercase_ : int = text_mask.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] if negative_prompt is None: lowercase_ : int = [""] * batch_size elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase_ : Tuple = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: lowercase_ : Dict = negative_prompt lowercase_ : str = self.tokenizer( a , padding="max_length" , max_length=7_7 , truncation=a , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : List[Any] = uncond_input.input_ids.to(a ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(a ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=a , attention_mask=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : List[str] = negative_prompt_embeds.shape[1] lowercase_ : Dict = negative_prompt_embeds.repeat(1 , a ) lowercase_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , a , 1 ) lowercase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , a , -1 ) lowercase_ : List[Any] = uncond_text_mask.repeat_interleave(a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self : Tuple , a : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(a , a , prev_module_hook=a ) if self.safety_checker is not None: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(self.safety_checker , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[str, List[str]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Optional[Union[str, List[str]]] = None , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , a ): lowercase_ : List[str] = 1 elif isinstance(a , a ): lowercase_ : int = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) lowercase_ : Tuple = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : List[str] = self._encode_prompt( a , a , a , a , a ) if isinstance(a , a ): lowercase_ : Optional[int] = torch.cat(a , dim=0 ) if isinstance(a , a ): lowercase_ : int = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[int] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) lowercase_ : List[str] = self.scheduler.timesteps lowercase_ : str = self.unet.config.in_channels lowercase_ , lowercase_ : int = get_new_h_w(a , a , self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( a , a , a , generator=a , ).prev_sample # post-processing lowercase_ : Union[str, Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Optional[int] = image.clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
1
'''simple docstring''' from ....utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): def __init__( self : Optional[Any] , a : Optional[int] , a : Any=None , a : Any=2_0_4_8 ): '''simple docstring''' lowercase_ : int = config.__dict__ lowercase_ : int = modal_hidden_size if num_labels: lowercase_ : List[Any] = num_labels
640
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
1
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowercase_ : str = (low + high) // 2 lowercase_ , lowercase_ , lowercase_ : List[Any] = max_subarray(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = max_subarray(_UpperCamelCase , mid + 1 , _UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : str = max_cross_sum(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = float("-inf" ), -1 lowercase_ , lowercase_ : Dict = float("-inf" ), -1 lowercase_ : int | float = 0 for i in range(_UpperCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowercase_ : int = summ lowercase_ : Union[str, Any] = i lowercase_ : Tuple = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowercase_ : Dict = summ lowercase_ : str = i return max_left, max_right, (left_sum + right_sum) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = [randint(1 , _UpperCamelCase ) for _ in range(_UpperCamelCase )] lowercase_ : List[str] = time.time() max_subarray(_UpperCamelCase , 0 , input_size - 1 ) lowercase_ : Optional[int] = time.time() return end - start def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] lowercase_ : Tuple = [time_max_subarray(_UpperCamelCase ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(_UpperCamelCase , _UpperCamelCase ): print(_UpperCamelCase , "\t\t" , _UpperCamelCase ) plt.plot(_UpperCamelCase , _UpperCamelCase ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
640
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = ['image_processor', 'tokenizer'] __lowerCamelCase: Dict = 'Pix2StructImageProcessor' __lowerCamelCase: Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : str , a : Dict , a : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = False super().__init__(a , a ) def __call__( self : Tuple , a : int=None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : Optional[int] = 2_0_4_8 , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase_ : Dict = self.tokenizer lowercase_ : Tuple = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase_ : Optional[int] = self.image_processor( a , return_tensors=a , max_patches=a , **a ) else: # add pixel_values and bbox lowercase_ : Any = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a ) if text is not None and not self.image_processor.is_vqa: lowercase_ : int = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: lowercase_ : str = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase_ : Dict = text_encoding.pop("input_ids" ) else: lowercase_ : str = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def lowerCAmelCase__ ( self : Any , *a : str , **a : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def lowerCAmelCase__ ( self : str , *a : Optional[int] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
640
1
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = r'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class _UpperCAmelCase ( snake_case ): @add_start_docstrings(a ) def __call__( self : Any , a : torch.LongTensor , a : torch.FloatTensor , **a : Dict ): '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class _UpperCAmelCase ( snake_case ): def __init__( self : str , a : int , a : Optional[int] = None ): '''simple docstring''' lowercase_ : List[Any] = max_length lowercase_ : List[Any] = max_position_embeddings @add_start_docstrings(a ) def __call__( self : Union[str, Any] , a : torch.LongTensor , a : torch.FloatTensor , **a : List[str] ): '''simple docstring''' lowercase_ : Tuple = input_ids.shape[-1] lowercase_ : str = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : int , a : int ): '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , a , ) lowercase_ : List[Any] = start_length lowercase_ : Tuple = max_new_tokens lowercase_ : str = start_length + max_new_tokens @add_start_docstrings(a ) def __call__( self : int , a : torch.LongTensor , a : torch.FloatTensor , **a : Optional[int] ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _UpperCAmelCase ( snake_case ): def __init__( self : Optional[int] , a : float , a : Optional[float] = None ): '''simple docstring''' lowercase_ : Tuple = max_time lowercase_ : Optional[int] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(a ) def __call__( self : int , a : torch.LongTensor , a : torch.FloatTensor , **a : Optional[Any] ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _UpperCAmelCase ( snake_case ): @add_start_docstrings(a ) def __call__( self : List[Any] , a : torch.LongTensor , a : torch.FloatTensor , **a : List[Any] ): '''simple docstring''' return any(criteria(a , a ) for criteria in self ) @property def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for stopping_criterium in self: if isinstance(a , a ): return stopping_criterium.max_length elif isinstance(a , a ): return stopping_criterium.max_length return None def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = stopping_criteria.max_length lowercase_ : List[str] = deepcopy(_UpperCamelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _UpperCamelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_UpperCamelCase ) ) return new_stopping_criteria
640
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] UpperCamelCase__ = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Union[str, Any] = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowercase_ : Union[str, Any] = int(re.match(R".*layer_(\d*).*" , _UpperCamelCase )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if dtype == torch.bool: return 1 / 8 lowercase_ : List[str] = re.search(R"[^\d](\d+)$" , str(_UpperCamelCase ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) lowercase_ : Union[str, Any] = int(bit_search.groups()[0] ) return bit_size // 8 def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if bloom_config_file == "": lowercase_ : Tuple = BloomConfig() else: lowercase_ : str = BloomConfig.from_json_file(_UpperCamelCase ) if shard_model: lowercase_ : int = os.listdir(_UpperCamelCase ) lowercase_ : Union[str, Any] = sorted(filter(lambda _UpperCamelCase : s.startswith("layer" ) and "model_00" in s , _UpperCamelCase ) ) lowercase_ : str = {"weight_map": {}, "metadata": {}} lowercase_ : Any = 0 lowercase_ : str = None lowercase_ : Any = BloomConfig() for j, file in enumerate(_UpperCamelCase ): print("Processing file: {}".format(_UpperCamelCase ) ) lowercase_ : int = None for i in range(_UpperCamelCase ): # load all TP files lowercase_ : Union[str, Any] = file.replace("model_00" , F"""model_0{i}""" ) lowercase_ : Dict = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) , map_location="cpu" ) # Rename keys in the transformers names lowercase_ : str = list(temp.keys() ) for key in keys: lowercase_ : Tuple = temp.pop(_UpperCamelCase ) if tensors is None: lowercase_ : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase_ : Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowercase_ : Union[str, Any] = torch.cat([tensors[key], temp[key]] , dim=_UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowercase_ : str = tensors[key] / pretraining_tp torch.save( _UpperCamelCase , os.path.join( _UpperCamelCase , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(_UpperCamelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowercase_ : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowercase_ : Any = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) , str(len(_UpperCamelCase ) ).zfill(5 ) ) lowercase_ : int = BloomConfig() lowercase_ : List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME lowercase_ : Dict = total_size with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(_UpperCamelCase , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f: lowercase_ : Any = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + "\n" f.write(_UpperCamelCase ) else: lowercase_ : Tuple = BloomModel(_UpperCamelCase ) lowercase_ : Any = os.listdir(_UpperCamelCase ) lowercase_ : Dict = sorted(filter(lambda _UpperCamelCase : s.startswith("layer" ) and "model_00" in s , _UpperCamelCase ) ) lowercase_ : List[Any] = None for i, file in enumerate(_UpperCamelCase ): lowercase_ : int = None for i in range(_UpperCamelCase ): # load all TP files lowercase_ : List[Any] = file.replace("model_00" , F"""model_0{i}""" ) lowercase_ : List[Any] = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) , map_location="cpu" ) # Rename keys in the transformers names lowercase_ : int = list(temp.keys() ) for key in keys: lowercase_ : Optional[Any] = temp.pop(_UpperCamelCase ) if tensors is None: lowercase_ : List[Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase_ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowercase_ : Any = torch.cat([tensors[key], temp[key]] , dim=_UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowercase_ : Any = tensors[key] / pretraining_tp lowercase_ : int = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: lowercase_ : List[str] = set(other_keys.missing_keys ) else: lowercase_ : int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) lowercase_ : int = pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowercase_ : str = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: lowercase_ : List[str] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) UpperCamelCase__ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
640
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase_ : List[Any] = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowercase_ : Optional[Any] = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowercase_ : Any = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowercase_ : Optional[int] = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowercase_ : Dict = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowercase_ : Union[str, Any] = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowercase_ : Tuple = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowercase_ : str = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowercase_ : Optional[int] = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowercase_ : Any = key.replace("image_encoder.module" , "flava.image_model" ) lowercase_ : Tuple = key.replace("text_encoder.module" , "flava.text_model" ) lowercase_ : str = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowercase_ : Optional[Any] = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowercase_ : Tuple = key.replace("text_projection" , "flava.text_projection" ) lowercase_ : Optional[Any] = key.replace("image_projection" , "flava.image_projection" ) lowercase_ : List[str] = value.float() for key, value in codebook_state_dict.items(): lowercase_ : Dict = value return upgrade @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if config_path is not None: lowercase_ : List[Any] = FlavaConfig.from_pretrained(_UpperCamelCase ) else: lowercase_ : str = FlavaConfig() lowercase_ : Optional[Any] = FlavaForPreTraining(_UpperCamelCase ).eval() lowercase_ : Any = convert_dalle_checkpoint(_UpperCamelCase , _UpperCamelCase , save_checkpoint=_UpperCamelCase ) if os.path.exists(_UpperCamelCase ): lowercase_ : Optional[int] = torch.load(_UpperCamelCase , map_location="cpu" ) else: lowercase_ : str = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" ) lowercase_ : str = upgrade_state_dict(_UpperCamelCase , _UpperCamelCase ) hf_model.load_state_dict(_UpperCamelCase ) lowercase_ : Tuple = hf_model.state_dict() lowercase_ : Optional[Any] = count_parameters(_UpperCamelCase ) lowercase_ : List[Any] = count_parameters(_UpperCamelCase ) + count_parameters(_UpperCamelCase ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCamelCase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
640
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
1