code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def __magic_name__( __UpperCAmelCase = 1000 ) -> str: '''simple docstring''' return sum(e for e in range(3 , lowerCAmelCase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCamelCase__ = parser.parse_args() if args.model_type == "bert": UpperCamelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ = 'bert' else: raise ValueError('args.model_type should be \"bert\".') UpperCamelCase__ = model.state_dict() UpperCamelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase__ = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] UpperCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 UpperCamelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCamelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f'''cls.predictions.transform.dense.{w}'''] UpperCamelCase__ = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
from __future__ import annotations import time snake_case__ = list[tuple[int, int]] snake_case__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = pos_x _lowerCamelCase = pos_y _lowerCamelCase = (pos_y, pos_x) _lowerCamelCase = goal_x _lowerCamelCase = goal_y _lowerCamelCase = parent class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = [self.start] _lowerCamelCase = False def UpperCamelCase_ ( self ) -> Path | None: """simple docstring""" while self.node_queue: _lowerCamelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = self.get_successors(_SCREAMING_SNAKE_CASE ) for node in successors: self.node_queue.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def UpperCamelCase_ ( self , A_ ) -> list[Node]: """simple docstring""" _lowerCamelCase = [] for action in delta: _lowerCamelCase = parent.pos_x + action[1] _lowerCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , _SCREAMING_SNAKE_CASE ) ) return successors def UpperCamelCase_ ( self , A_ ) -> Path: """simple docstring""" _lowerCamelCase = node _lowerCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase = current_node.parent path.reverse() return path class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = BreadthFirstSearch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = BreadthFirstSearch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = False def UpperCamelCase_ ( self ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _lowerCamelCase = self.fwd_bfs.node_queue.pop(0 ) _lowerCamelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _lowerCamelCase = True return self.retrace_bidirectional_path( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = current_bwd_node _lowerCamelCase = current_fwd_node _lowerCamelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(_SCREAMING_SNAKE_CASE ), self.bwd_bfs: self.bwd_bfs.get_successors(_SCREAMING_SNAKE_CASE ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase_ ( self , A_ , A_ ) -> Path: """simple docstring""" _lowerCamelCase = self.fwd_bfs.retrace_path(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = self.bwd_bfs.retrace_path(_SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() _lowerCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case__ = (0, 0) snake_case__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case__ = time.time() snake_case__ = BreadthFirstSearch(init, goal) snake_case__ = bfs.search() snake_case__ = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) snake_case__ = time.time() snake_case__ = BidirectionalBreadthFirstSearch(init, goal) snake_case__ = bd_bfs.search() snake_case__ = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from collections.abc import Callable def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = a _lowerCamelCase = b if function(A_ ) == 0: # one of the a or b is a root for the function return a elif function(A_ ) == 0: return b elif ( function(A_ ) * function(A_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: _lowerCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(A_ ) == 0: return mid elif function(A_ ) * function(A_ ) < 0: _lowerCamelCase = mid else: _lowerCamelCase = mid _lowerCamelCase = start + (end - start) / 2.0 return mid def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = TapasConfig.from_json_file(__UpperCAmelCase ) # set absolute/relative position embeddings parameter _lowerCamelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _lowerCamelCase = TapasForQuestionAnswering(config=__UpperCAmelCase ) elif task == "WTQ": # run_task_main.py hparams _lowerCamelCase = 4 _lowerCamelCase = True # hparam_utils.py hparams _lowerCamelCase = 0.6_6_4_6_9_4 _lowerCamelCase = 0.2_0_7_9_5_1 _lowerCamelCase = 0.1_2_1_1_9_4 _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = 0.0_3_5_2_5_1_3 _lowerCamelCase = TapasForQuestionAnswering(config=__UpperCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _lowerCamelCase = 4 _lowerCamelCase = False # hparam_utils.py hparams _lowerCamelCase = 3_6.4_5_1_9 _lowerCamelCase = 0.9_0_3_4_2_1 _lowerCamelCase = 2_2_2.0_8_8 _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = 0.7_6_3_1_4_1 _lowerCamelCase = TapasForQuestionAnswering(config=__UpperCAmelCase ) elif task == "TABFACT": _lowerCamelCase = TapasForSequenceClassification(config=__UpperCAmelCase ) elif task == "MLM": _lowerCamelCase = TapasForMaskedLM(config=__UpperCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": _lowerCamelCase = TapasModel(config=__UpperCAmelCase ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__UpperCAmelCase ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) _lowerCamelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(__UpperCAmelCase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
def __magic_name__( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' stooge(__snake_case , 0 , len(__snake_case ) - 1 ) return arr def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowerCamelCase , _lowerCamelCase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowerCamelCase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__snake_case , __snake_case , (h - t) ) # Recursively sort last 2/3 elements stooge(__snake_case , i + t , (__snake_case) ) # Recursively sort first 2/3 elements stooge(__snake_case , __snake_case , (h - t) ) if __name__ == "__main__": snake_case__ = input('Enter numbers separated by a comma:\n').strip() snake_case__ = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case__ = 25_6047 snake_case__ = 25_6145 @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' A_ = NllbTokenizer A_ = NllbTokenizerFast A_ = True A_ = True A_ = {} def UpperCamelCase_ ( self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase = NllbTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = NllbTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _lowerCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _lowerCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way _lowerCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way _lowerCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" if not self.test_seqaseq: return _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. _lowerCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] _lowerCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: _lowerCamelCase = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase_ , tgt_texts=lowerCamelCase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified _lowerCamelCase = tokenizer.prepare_seqaseq_batch( lowerCamelCase_ , tgt_texts=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _lowerCamelCase = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , lowerCamelCase_ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = [AddedToken('''<special>''' , lstrip=lowerCamelCase_ )] _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ ) _lowerCamelCase = tokenizer_r.encode('''Hey this is a <special> token''' ) _lowerCamelCase = tokenizer_r.encode('''<special>''' , add_special_tokens=lowerCamelCase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) _lowerCamelCase = self.tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ ) _lowerCamelCase = tokenizer_p.encode('''Hey this is a <special> token''' ) _lowerCamelCase = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' A_ = 'facebook/nllb-200-distilled-600M' A_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] A_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] A_ = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def UpperCamelCase_ ( cls ) -> Any: """simple docstring""" _lowerCamelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) _lowerCamelCase = 1 return cls def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_60_57 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) # fmt: off _lowerCamelCase = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on _lowerCamelCase = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) _lowerCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) _lowerCamelCase = 10 _lowerCamelCase = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_62_03, 3] ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) _lowerCamelCase = NllbTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _lowerCamelCase = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) _lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) _lowerCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) _lowerCamelCase = targets["""input_ids"""] _lowerCamelCase = shift_tokens_right( lowerCamelCase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[25_60_47, 70, 73_56, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_60_57, } , ) @require_torch def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) _lowerCamelCase = False _lowerCamelCase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' return "".join(chr(ord(A__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), F'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: _lowerCamelCase = F'The input value of [n={number}] has to be > 0' raise ValueError(lowerCamelCase__ ) else: _lowerCamelCase = sylvester(number - 1 ) _lowerCamelCase = num - 1 _lowerCamelCase = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import fire from utils import calculate_rouge, save_json def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = [x.strip() for x in open(a__ ).readlines()] _lowerCamelCase = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] _lowerCamelCase = calculate_rouge(a__ , a__ , **a__ ) if save_path is not None: save_json(a__ , a__ , indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
from __future__ import annotations import math def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' _lowerCamelCase = u for i in range(1 , snake_case__ ): _lowerCamelCase = temp * (u - i) return temp def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = int(input('''enter the numbers of values: ''' ) ) _lowerCamelCase = [] for _ in range(snake_case__ ): y.append([] ) for i in range(snake_case__ ): for j in range(snake_case__ ): y[i].append(snake_case__ ) _lowerCamelCase = 0 print('''enter the values of parameters in a list: ''' ) _lowerCamelCase = list(map(snake_case__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(snake_case__ ): _lowerCamelCase = float(input() ) _lowerCamelCase = int(input('''enter the value to interpolate: ''' ) ) _lowerCamelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , snake_case__ ): for j in range(n - i ): _lowerCamelCase = y[j + 1][i - 1] - y[j][i - 1] _lowerCamelCase = y[0][0] for i in range(1 , snake_case__ ): summ += (ucal(snake_case__ , snake_case__ ) * y[0][i]) / math.factorial(snake_case__ ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
import collections import os import re from pathlib import Path snake_case__ = 'src/transformers' # Matches is_xxx_available() snake_case__ = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} snake_case__ = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available snake_case__ = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") snake_case__ = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo snake_case__ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: snake_case__ = re.compile(R'^\s*try:') # Catches a line with else: snake_case__ = re.compile(R'^\s*else:') def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if _re_test_backend.search(__UpperCAmelCase ) is None: return None _lowerCamelCase = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _lowerCamelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): _lowerCamelCase = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] _lowerCamelCase = re.findall(r'''\[([^\]]+)\]''' , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _lowerCamelCase = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: _lowerCamelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _lowerCamelCase = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: _lowerCamelCase = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) _lowerCamelCase = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: _lowerCamelCase = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) _lowerCamelCase = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _lowerCamelCase = lines[line_index] _lowerCamelCase = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _lowerCamelCase = lines[line_index] _lowerCamelCase = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' def find_duplicates(__UpperCAmelCase ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase = [] for key in import_dict_objects.keys(): _lowerCamelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) _lowerCamelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase = '''base imports''' if key == '''none''' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: _lowerCamelCase = os.path.join(__UpperCAmelCase , '''__init__.py''' ) _lowerCamelCase = parse_init(__UpperCAmelCase ) if objects is not None: _lowerCamelCase = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCAmelCase ) ) def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue _lowerCamelCase = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) _lowerCamelCase = short_path.replace(os.path.sep , '''.''' ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) _lowerCamelCase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules snake_case__ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def __magic_name__( ) -> List[Any]: '''simple docstring''' from transformers.utils import direct_transformers_import _lowerCamelCase = direct_transformers_import(__UpperCAmelCase ) _lowerCamelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__UpperCAmelCase , '''__init__.py''' ) , '''r''' ) as f: _lowerCamelCase = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , __UpperCAmelCase ) ) ) _lowerCamelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join(F'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = min(__UpperCAmelCase ) # min() finds the minimum value _lowerCamelCase = max(__UpperCAmelCase ) # max() finds the maximum value _lowerCamelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCamelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCamelCase = 0 for count in range(__UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCamelCase = count + min_val i += 1 def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__UpperCAmelCase ) print('''Sorted order is:''' , ''' '''.join(__UpperCAmelCase ) ) if __name__ == "__main__": main()
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
from collections.abc import Callable import numpy as np def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _lowerCamelCase = np.zeros((n + 1,) ) _lowerCamelCase = ya _lowerCamelCase = xa for k in range(__a ): _lowerCamelCase = y[k] + step_size * ode_func(__a , y[k] ) _lowerCamelCase = y[k] + ( (step_size / 2) * (ode_func(__a , y[k] ) + ode_func(x + step_size , __a )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( lowercase__ ): '''simple docstring''' A_ = 'wav2vec2' def __init__( self , A_=32 , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1E-5 , A_="group" , A_="gelu" , A_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=1_28 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=3_20 , A_=2 , A_=0.1 , A_=1_00 , A_=2_56 , A_=2_56 , A_=0.1 , A_="sum" , A_=False , A_=False , A_=2_56 , A_=(5_12, 5_12, 5_12, 5_12, 15_00) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=5_12 , A_=0 , A_=1 , A_=2 , A_=False , A_=3 , A_=2 , A_=3 , A_=None , A_=None , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _lowerCamelCase = hidden_size _lowerCamelCase = feat_extract_norm _lowerCamelCase = feat_extract_activation _lowerCamelCase = list(UpperCAmelCase__ ) _lowerCamelCase = list(UpperCAmelCase__ ) _lowerCamelCase = list(UpperCAmelCase__ ) _lowerCamelCase = conv_bias _lowerCamelCase = num_conv_pos_embeddings _lowerCamelCase = num_conv_pos_embedding_groups _lowerCamelCase = len(self.conv_dim ) _lowerCamelCase = num_hidden_layers _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = feat_proj_dropout _lowerCamelCase = final_dropout _lowerCamelCase = layerdrop _lowerCamelCase = layer_norm_eps _lowerCamelCase = initializer_range _lowerCamelCase = vocab_size _lowerCamelCase = do_stable_layer_norm _lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase = apply_spec_augment _lowerCamelCase = mask_time_prob _lowerCamelCase = mask_time_length _lowerCamelCase = mask_time_min_masks _lowerCamelCase = mask_feature_prob _lowerCamelCase = mask_feature_length _lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase = num_codevectors_per_group _lowerCamelCase = num_codevector_groups _lowerCamelCase = contrastive_logits_temperature _lowerCamelCase = feat_quantizer_dropout _lowerCamelCase = num_negatives _lowerCamelCase = codevector_dim _lowerCamelCase = proj_codevector_dim _lowerCamelCase = diversity_loss_weight # ctc loss _lowerCamelCase = ctc_loss_reduction _lowerCamelCase = ctc_zero_infinity # adapter _lowerCamelCase = add_adapter _lowerCamelCase = adapter_kernel_size _lowerCamelCase = adapter_stride _lowerCamelCase = num_adapter_layers _lowerCamelCase = output_hidden_size or hidden_size _lowerCamelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase = list(UpperCAmelCase__ ) _lowerCamelCase = list(UpperCAmelCase__ ) _lowerCamelCase = list(UpperCAmelCase__ ) _lowerCamelCase = xvector_output_dim @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} snake_case__ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } snake_case__ = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = collections.OrderedDict() _lowerCamelCase = collections.OrderedDict() _lowerCamelCase = collections.OrderedDict() with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(_lowerCAmelCase ): _lowerCamelCase = b _lowerCamelCase = idx for wd in b: _lowerCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|startoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ) -> Dict: """simple docstring""" super().__init__( unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , do_clean_text=_lowerCamelCase , **_lowerCamelCase , ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) _lowerCamelCase = do_clean_text _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = load_vocab_and_emoji(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" return self.subword_tokenizer.tokenize(_lowerCamelCase , clean=self.do_clean_text ) def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_lowerCamelCase ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = ''''''.join(_lowerCamelCase ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: _lowerCamelCase = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple: """simple docstring""" _lowerCamelCase = 0 if os.path.isdir(_lowerCamelCase ): _lowerCamelCase = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: _lowerCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) _lowerCamelCase = token_index writer.write(''','''.join(_lowerCamelCase ) + '''\n''' ) index += 1 with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _lowerCamelCase ) return vocab_file, emoji_file class UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = vocab # same as swe _lowerCamelCase = ids_to_tokens # same as bpe _lowerCamelCase = emoji _lowerCamelCase = np.max([len(_lowerCamelCase ) for w in self.vocab.keys()] ) _lowerCamelCase = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) _lowerCamelCase = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) _lowerCamelCase = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) _lowerCamelCase = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _lowerCamelCase = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _lowerCamelCase = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) _lowerCamelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' _lowerCamelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' _lowerCamelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Tuple: """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.content_repattera.sub('''<URL>''' , _lowerCamelCase ) _lowerCamelCase = self.content_repattera.sub('''<EMAIL>''' , _lowerCamelCase ) _lowerCamelCase = self.content_repattera.sub('''<TEL>''' , _lowerCamelCase ) _lowerCamelCase = self.content_repattera.sub('''<DATE>''' , _lowerCamelCase ) _lowerCamelCase = self.content_repattera.sub('''<DATE>''' , _lowerCamelCase ) _lowerCamelCase = self.content_repattera.sub('''<PRICE>''' , _lowerCamelCase ) _lowerCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _lowerCamelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def UpperCamelCase_ ( self , A_ , A_=False ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = text.replace(''' ''' , '''<SP>''' ) _lowerCamelCase = text.replace(''' ''' , '''<SP>''' ) _lowerCamelCase = text.replace('''\r\n''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\n''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\r''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\t''' , '''<TAB>''' ) _lowerCamelCase = text.replace('''—''' , '''ー''' ) _lowerCamelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: _lowerCamelCase = text.replace(_lowerCamelCase , _lowerCamelCase ) if clean: _lowerCamelCase = self.clean_text(_lowerCamelCase ) def check_simbol(A_ ): _lowerCamelCase = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 2: _lowerCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(A_ ): _lowerCamelCase = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 3: _lowerCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False _lowerCamelCase = 0 _lowerCamelCase = [] while pos < len(_lowerCamelCase ): _lowerCamelCase = min(len(_lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 _lowerCamelCase = [] # (token_id, token, pos) for e in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_lowerCamelCase ) > 2: _lowerCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_lowerCamelCase ) > 0: # the smallest token_id is adopted _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = sorted(_lowerCamelCase , key=lambda A_ : x[0] )[0] result.append(_lowerCamelCase ) _lowerCamelCase = e else: _lowerCamelCase = pos + 1 _lowerCamelCase = text[pos:end] if check_simbol(_lowerCamelCase ): result.append('''<KIGOU>''' ) elif checkuae(_lowerCamelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) _lowerCamelCase = end return result def UpperCamelCase_ ( self , A_ , A_="\n" ) -> Dict: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode('''utf-8''' , errors='''replace''' ) ) _lowerCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_lowerCamelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode('''utf-8''' , errors='''replace''' ) ) _lowerCamelCase = ''''''.join(_lowerCamelCase ) return text
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' return 10 - x * x def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' if equation(lowerCamelCase_ ) * equation(lowerCamelCase_ ) >= 0: raise ValueError('''Wrong space!''' ) _lowerCamelCase = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase_ ) * equation(lowerCamelCase_ ) < 0: _lowerCamelCase = c else: _lowerCamelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf snake_case__ = logging.get_logger(__name__) @dataclass class UpperCamelCase ( UpperCAmelCase_ ): '''simple docstring''' A_ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **A_ ) -> Tuple: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCamelCase = deprecated_arg[3:] _lowerCamelCase = not kwargs.pop(_lowercase ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) _lowerCamelCase = kwargs.pop('''tpu_name''' , self.tpu_name ) _lowerCamelCase = kwargs.pop('''device_idx''' , self.device_idx ) _lowerCamelCase = kwargs.pop('''eager_mode''' , self.eager_mode ) _lowerCamelCase = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_lowercase ) A_ = field( default=UpperCAmelCase_ , metadata={'help': 'Name of TPU'} , ) A_ = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) A_ = field(default=UpperCAmelCase_ , metadata={'help': 'Benchmark models in eager model.'} ) A_ = field( default=UpperCAmelCase_ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''tf'''] ) _lowerCamelCase = None if self.tpu: try: if self.tpu_name: _lowerCamelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCamelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCamelCase = None return tpu @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCamelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) _lowerCamelCase = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU _lowerCamelCase = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.n_gpu > 0
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) # TODO Update this snake_case__ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase ( snake_case__ ): '''simple docstring''' A_ = 'esm' def __init__( self , A_=None , A_=None , A_=None , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_=0.1 , A_=0.1 , A_=10_26 , A_=0.02 , A_=1E-1_2 , A_="absolute" , A_=True , A_=None , A_=False , A_=False , A_=None , A_=None , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = use_cache _lowerCamelCase = emb_layer_norm_before _lowerCamelCase = token_dropout _lowerCamelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowerCamelCase = EsmFoldConfig() elif isinstance(lowercase_ , lowercase_ ): _lowerCamelCase = EsmFoldConfig(**lowercase_ ) _lowerCamelCase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowerCamelCase = get_default_vocab_list() else: _lowerCamelCase = vocab_list else: _lowerCamelCase = None _lowerCamelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , lowercase_ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = super().to_dict() if isinstance(self.esmfold_config , lowercase_ ): _lowerCamelCase = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase : '''simple docstring''' A_ = None A_ = True A_ = False A_ = False A_ = False A_ = 0 A_ = True A_ = False A_ = 128 A_ = None def UpperCamelCase_ ( self ) -> int: """simple docstring""" if self.trunk is None: _lowerCamelCase = TrunkConfig() elif isinstance(self.trunk , lowercase_ ): _lowerCamelCase = TrunkConfig(**self.trunk ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = asdict(self ) _lowerCamelCase = self.trunk.to_dict() return output @dataclass class UpperCamelCase : '''simple docstring''' A_ = 48 A_ = 1_024 A_ = 128 A_ = 32 A_ = 32 A_ = 32 A_ = 0 A_ = 0 A_ = False A_ = 4 A_ = 128 A_ = None def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" if self.structure_module is None: _lowerCamelCase = StructureModuleConfig() elif isinstance(self.structure_module , lowercase_ ): _lowerCamelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) _lowerCamelCase = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = asdict(self ) _lowerCamelCase = self.structure_module.to_dict() return output @dataclass class UpperCamelCase : '''simple docstring''' A_ = 384 A_ = 128 A_ = 16 A_ = 128 A_ = 12 A_ = 4 A_ = 8 A_ = 0.1 A_ = 8 A_ = 1 A_ = 2 A_ = 7 A_ = 10 A_ = 1E-8 A_ = 1E5 def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return asdict(self ) def __magic_name__( ) -> Optional[Any]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = {"vocab_file": "sentencepiece.bpe.model"} snake_case__ = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } snake_case__ = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } snake_case__ = "▁" class UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) _lowerCamelCase = vocab_file _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) _lowerCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _lowerCamelCase = len(self.sp_model ) - 1 _lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return len(self.sp_model ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase = self.sp_model.PieceToId(A_ ) return spm_id if spm_id else self.unk_token_id def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A_ ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = '''''' _lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token _lowerCamelCase = True _lowerCamelCase = [] else: current_sub_tokens.append(A_ ) _lowerCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self ) -> int: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case__ = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = '''hf-internal-testing/tiny-random-t5''' _lowerCamelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) _lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ) _lowerCamelCase = tokenizer('''This is me''' , return_tensors='''pt''' ) _lowerCamelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _lowerCamelCase = model.generate(**__UpperCamelCase ) _lowerCamelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) _lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _lowerCamelCase = model_reloaded.generate(**__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase ) ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = '''hf-internal-testing/tiny-random-t5''' _lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ) _lowerCamelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__UpperCamelCase ): model.save_pretrained(__UpperCamelCase ) _lowerCamelCase = model.reverse_bettertransformer() model.save_pretrained(__UpperCamelCase )
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand UpperCamelCase__ = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) UpperCamelCase__ = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) UpperCamelCase__ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) UpperCamelCase__ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) UpperCamelCase__ = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) UpperCamelCase__ = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) UpperCamelCase__ = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = randrange(len(__UpperCAmelCase ) ), randrange(len(__UpperCAmelCase ) ) _lowerCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _lowerCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __magic_name__( __UpperCAmelCase = 100 ) -> Union[str, Any]: '''simple docstring''' return (generate_random_hand() for _ in range(__UpperCAmelCase )) @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = PokerHand(__UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = [PokerHand(__UpperCAmelCase ) for hand in SORTED_HANDS] _lowerCamelCase = poker_hands.copy() shuffle(__UpperCAmelCase ) _lowerCamelCase = chain(sorted(__UpperCAmelCase ) ) for index, hand in enumerate(__UpperCAmelCase ): assert hand == poker_hands[index] def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=__UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = PokerHand('''2C 4S AS 3D 5C''' ) _lowerCamelCase = True _lowerCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __magic_name__( ) -> List[Any]: '''simple docstring''' _lowerCamelCase = 0 _lowerCamelCase = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''poker_hands.txt''' ) with open(__UpperCAmelCase ) as file_hand: for line in file_hand: _lowerCamelCase = line[:14].strip() _lowerCamelCase = line[15:].strip() _lowerCamelCase = PokerHand(__UpperCAmelCase ), PokerHand(__UpperCAmelCase ) _lowerCamelCase = player.compare_with(__UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case__ = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase ( a__ ): '''simple docstring''' A_ = ["image_processor", "tokenizer"] A_ = "BlipImageProcessor" A_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _lowerCamelCase = self.tokenizer _lowerCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding # add pixel_values _lowerCamelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) if text is not None: _lowerCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) else: _lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def UpperCamelCase_ ( self , *A_ , **A_ ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ ( self , *A_ , **A_ ) -> str: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer.model_input_names _lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase : '''simple docstring''' A_ = MBartConfig A_ = {} A_ = 'gelu' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = eos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = bos_token_id def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCamelCase = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _lowerCamelCase = inputs_dict['''input_ids'''] _lowerCamelCase = input_ids[:1, :] _lowerCamelCase = inputs_dict['''attention_mask'''][:1, :] _lowerCamelCase = inputs_dict['''head_mask'''] _lowerCamelCase = 1 # first forward pass _lowerCamelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _lowerCamelCase , _lowerCamelCase = outputs.to_tuple() _lowerCamelCase = past_key_values[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: _lowerCamelCase = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = TFMBartModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCAmelCase_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' A_ = [ ' UN Chief Says There Is No Military Solution in Syria', ] A_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] A_ = 'facebook/mbart-large-en-ro' @cached_property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase_ ( self , **A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def UpperCamelCase_ ( self , **A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _lowerCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _lowerCamelCase = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" self._assert_generated_batch_equal_expected()
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase ( _UpperCamelCase ): '''simple docstring''' A_ = 'mobilenet_v2' def __init__( self , A_=3 , A_=2_24 , A_=1.0 , A_=8 , A_=8 , A_=6 , A_=32 , A_=True , A_=True , A_="relu6" , A_=True , A_=0.8 , A_=0.02 , A_=0.001 , A_=2_55 , **A_ , ) -> Dict: """simple docstring""" super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = depth_multiplier _lowerCamelCase = depth_divisible_by _lowerCamelCase = min_depth _lowerCamelCase = expand_ratio _lowerCamelCase = output_stride _lowerCamelCase = first_layer_is_expansion _lowerCamelCase = finegrained_output _lowerCamelCase = hidden_act _lowerCamelCase = tf_padding _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = semantic_loss_ignore_index class UpperCamelCase ( _UpperCamelCase ): '''simple docstring''' A_ = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return 1E-4
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , ) -> List[Any]: '''simple docstring''' _lowerCamelCase = {} if train_file is not None: _lowerCamelCase = [train_file] if eval_file is not None: _lowerCamelCase = [eval_file] if test_file is not None: _lowerCamelCase = [test_file] _lowerCamelCase = datasets.load_dataset('''csv''' , data_files=UpperCAmelCase__ ) _lowerCamelCase = list(ds[list(files.keys() )[0]].features.keys() ) _lowerCamelCase = features_name.pop(UpperCAmelCase__ ) _lowerCamelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowerCamelCase = {label: i for i, label in enumerate(UpperCAmelCase__ )} _lowerCamelCase = tokenizer.model_input_names _lowerCamelCase = {} if len(UpperCAmelCase__ ) == 1: for k in files.keys(): _lowerCamelCase = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) , batched=UpperCAmelCase__ , ) elif len(UpperCAmelCase__ ) == 2: for k in files.keys(): _lowerCamelCase = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) , batched=UpperCAmelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase = labelaid[ex[label_name]] yield (d, label) _lowerCamelCase = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowerCamelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowerCamelCase = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowerCamelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowerCamelCase = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowerCamelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case__ = logging.getLogger(__name__) @dataclass class UpperCamelCase : '''simple docstring''' A_ = field(metadata={'help': 'Which column contains the label'} ) A_ = field(default=_a , metadata={'help': 'The path of the training file'} ) A_ = field(default=_a , metadata={'help': 'The path of the development file'} ) A_ = field(default=_a , metadata={'help': 'The path of the test file'} ) A_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ = field( default=_a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ = field( default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ = field(default=_a , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A_ = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCAmelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCAmelCase__ ) , labelaid=UpperCAmelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _lowerCamelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase ) -> Dict: _lowerCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowerCamelCase = TFTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _lowerCamelCase = trainer.evaluate() _lowerCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCAmelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(UpperCAmelCase__ ) return results if __name__ == "__main__": main()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = scope _lowerCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _lowerCamelCase = (self.image_size // 32) ** 2 _lowerCamelCase = num_patches + 1 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCamelCase , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = ViTHybridModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCamelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.type_sequence_label_size _lowerCamelCase = ViTHybridForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCamelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A_ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = ViTHybridModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(__UpperCamelCase ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _lowerCamelCase = model_class(config=__UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _lowerCamelCase = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = ViTHybridModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**__UpperCamelCase ) # verify the logits _lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _lowerCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow @require_accelerate def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) _lowerCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) _lowerCamelCase = model(**__UpperCamelCase ) _lowerCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _lowerCamelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = AlbertTokenizer A_ = AlbertTokenizerFast A_ = True A_ = True A_ = True def UpperCamelCase_ ( self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase = AlbertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = '''this is a test''' _lowerCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''<pad>''' _lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(A_ ) , 3_00_00 ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = '''I was born in 92000, and this is falsé.''' _lowerCamelCase = tokenizer.tokenize(A_ ) _lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = AlbertTokenizer(A_ , keep_accents=A_ ) _lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [48, 25, 21, 12_89] ) _lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual(A_ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = AlbertTokenizer(A_ ) _lowerCamelCase = tokenizer.encode('''sequence builders''' ) _lowerCamelCase = tokenizer.encode('''multi-sequence build''' ) _lowerCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) _lowerCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case__ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging snake_case__ = logging.get_logger(__name__) def __magic_name__( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _lowerCamelCase = json.loads(snake_case_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _lowerCamelCase = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _lowerCamelCase = json.loads(snake_case_ ) if not mpi_options.get('''sagemaker_mpi_enabled''' , snake_case_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase ( UpperCamelCase_ ): '''simple docstring''' A_ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , A_ , ) @cached_property def UpperCamelCase_ ( self ) -> "torch.device": """simple docstring""" logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: _lowerCamelCase = torch.device('''cpu''' ) _lowerCamelCase = 0 elif is_sagemaker_model_parallel_available(): _lowerCamelCase = smp.local_rank() _lowerCamelCase = torch.device('''cuda''' , A_ ) _lowerCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) _lowerCamelCase = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) _lowerCamelCase = torch.device('''cuda''' , self.local_rank ) _lowerCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _lowerCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _lowerCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) _lowerCamelCase = torch.device('''cuda''' , self.local_rank ) _lowerCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(A_ ) return device @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return False
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path snake_case__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) snake_case__ = [ord(letter) for letter in string.ascii_lowercase] snake_case__ = {ord(char) for char in VALID_CHARS} snake_case__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = '''''' _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase__ ) , UpperCamelCase__ ): _lowerCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase__ ) return decoded def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] for key in product(UpperCamelCase__ , repeat=3 ): _lowerCamelCase = try_key(UpperCamelCase__ , UpperCamelCase__ ) if encoded is not None: possibles.append(UpperCamelCase__ ) return possibles def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def __magic_name__( __UpperCAmelCase = "p059_cipher.txt" ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = Path(UpperCamelCase__ ).parent.joinpath(UpperCamelCase__ ).read_text(encoding='''utf-8''' ) _lowerCamelCase = [int(UpperCamelCase__ ) for number in data.strip().split(''',''' )] _lowerCamelCase = filter_valid_chars(UpperCamelCase__ ) for common_word in COMMON_WORDS: _lowerCamelCase = filter_common_word(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: break _lowerCamelCase = possibles[0] return sum(ord(UpperCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ = TypeVar('T') class UpperCAmelCase__ ( Generic[T] ): '''simple docstring''' A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = deque() _lowerCamelCase = set() if not n: _lowerCamelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: _lowerCamelCase = n def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCamelCase = self.dq_store.pop() self.key_reference.remove(A_ ) else: self.dq_store.remove(A_ ) self.dq_store.appendleft(A_ ) self.key_reference.add(A_ ) def UpperCamelCase_ ( self ) -> None: """simple docstring""" for k in self.dq_store: print(A_ ) def __repr__( self ) -> str: """simple docstring""" return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def __magic_name__( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase ( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(A_ , '''depth_multiplier''' ) ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=3 , A_=32 , A_=0.25 , A_=8 , A_=8 , A_=6 , A_=32 , A_=True , A_=True , A_=True , A_="relu6" , A_=12_80 , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , ) -> Any: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = depth_multiplier _lowerCamelCase = depth_divisible_by _lowerCamelCase = min_depth _lowerCamelCase = expand_ratio _lowerCamelCase = tf_padding _lowerCamelCase = output_stride _lowerCamelCase = first_layer_is_expansion _lowerCamelCase = finegrained_output _lowerCamelCase = hidden_act _lowerCamelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = use_labels _lowerCamelCase = is_training _lowerCamelCase = num_labels _lowerCamelCase = initializer_range _lowerCamelCase = scope def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ) -> int: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = MobileNetVaModel(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = MobileNetVaForImageClassification(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = MobileNetVaForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) A_ = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = MobileNetVaModelTester(self ) _lowerCamelCase = MobileNetVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): _lowerCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) _lowerCamelCase = outputs.hidden_states _lowerCamelCase = 16 self.assertEqual(len(A_ ) , A_ ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = MobileNetVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(A_ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=A_ , return_tensors='''pt''' ).to(A_ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**A_ ) # verify the logits _lowerCamelCase = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , A_ ) _lowerCamelCase = torch.tensor([0.2445, -1.1993, 0.1905] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) _lowerCamelCase = model.to(A_ ) _lowerCamelCase = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=A_ , return_tensors='''pt''' ).to(A_ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**A_ ) _lowerCamelCase = outputs.logits # verify the logits _lowerCamelCase = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , A_ ) _lowerCamelCase = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1E-4 ) )
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _lowerCamelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(A_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A_ , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = '''sgugger/tiny-distilbert-classification''' _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = AutoConfig.from_pretrained(A_ ) _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A_ , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ , [config] ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = AutoConfig.from_pretrained(A_ ) _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ , [config] ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = AutoConfig.from_pretrained(A_ ) _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ , [config] ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = '''patrickvonplaten/t5-tiny-random''' _lowerCamelCase = AutoConfig.from_pretrained(A_ ) _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ , configs=[config] ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A_ , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) _lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(A_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(A_ , '''env.csv''' ) , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , '''env.csv''' ) ).exists() ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A_ ): self.assertTrue(hasattr(A_ , '''sequential''' ) ) self.assertTrue(hasattr(A_ , '''cumulative''' ) ) self.assertTrue(hasattr(A_ , '''current''' ) ) self.assertTrue(hasattr(A_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , '''log.txt''' ) , log_print=A_ , trace_memory_line_by_line=A_ , eager_mode=A_ , multi_process=A_ , ) _lowerCamelCase = TensorFlowBenchmark(A_ ) _lowerCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A_ , '''log.txt''' ) ).exists() )
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
def __magic_name__( __UpperCAmelCase = 1000 ): '''simple docstring''' return sum(e for e in range(3 , __UpperCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' snake_case__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = input('''Enter message: ''' ) _lowerCamelCase = input('''Enter key [alphanumeric]: ''' ) _lowerCamelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): _lowerCamelCase = '''encrypt''' _lowerCamelCase = encrypt_message(__UpperCAmelCase , __UpperCAmelCase ) elif mode.lower().startswith('''d''' ): _lowerCamelCase = '''decrypt''' _lowerCamelCase = decrypt_message(__UpperCAmelCase , __UpperCAmelCase ) print(F'\n{mode.title()}ed message:' ) print(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return translate_message(__UpperCAmelCase , __UpperCAmelCase , '''encrypt''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return translate_message(__UpperCAmelCase , __UpperCAmelCase , '''decrypt''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = key.upper() for symbol in message: _lowerCamelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__UpperCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__UpperCAmelCase ): _lowerCamelCase = 0 else: translated.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) if __name__ == "__main__": main()
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = jnp.floataa A_ = True def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" super().setup() _lowerCamelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *A_ , **A_ ) -> int: """simple docstring""" _lowerCamelCase = super().__call__(*A_ , **A_ ) _lowerCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = FlaxBigBirdForNaturalQuestionsModule def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' def cross_entropy(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): _lowerCamelCase = logits.shape[-1] _lowerCamelCase = (labels[..., None] == jnp.arange(__UpperCAmelCase )[None]).astype('''f4''' ) _lowerCamelCase = jax.nn.log_softmax(__UpperCAmelCase , axis=-1 ) _lowerCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase = reduction(__UpperCAmelCase ) return loss _lowerCamelCase = partial(__UpperCAmelCase , reduction=jnp.mean ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase : '''simple docstring''' A_ = 'google/bigbird-roberta-base' A_ = 3_000 A_ = 10_500 A_ = 128 A_ = 3 A_ = 1 A_ = 5 # tx_args A_ = 3E-5 A_ = 0.0 A_ = 20_000 A_ = 0.00_95 A_ = 'bigbird-roberta-natural-questions' A_ = 'training-expt' A_ = 'data/nq-training.jsonl' A_ = 'data/nq-validation.jsonl' def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" os.makedirs(self.base_dir , exist_ok=A_ ) _lowerCamelCase = os.path.join(self.base_dir , self.save_dir ) _lowerCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 4_096 # no dynamic padding on TPUs def __call__( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.collate_fn(A_ ) _lowerCamelCase = jax.tree_util.tree_map(A_ , A_ ) return batch def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.fetch_inputs(features['''input_ids'''] ) _lowerCamelCase = { '''input_ids''': jnp.array(A_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(A_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = [self._fetch_inputs(A_ ) for ids in input_ids] return zip(*A_ ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = [1 for _ in range(len(A_ ) )] while len(A_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if seed is not None: _lowerCamelCase = dataset.shuffle(seed=__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) // batch_size ): _lowerCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__UpperCAmelCase ) @partial(jax.pmap , axis_name='''batch''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' def loss_fn(__UpperCAmelCase ): _lowerCamelCase = model_inputs.pop('''start_labels''' ) _lowerCamelCase = model_inputs.pop('''end_labels''' ) _lowerCamelCase = model_inputs.pop('''pooled_labels''' ) _lowerCamelCase = state.apply_fn(**__UpperCAmelCase , params=__UpperCAmelCase , dropout_rng=__UpperCAmelCase , train=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = outputs return state.loss_fn( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) _lowerCamelCase , _lowerCamelCase = jax.random.split(__UpperCAmelCase ) _lowerCamelCase = jax.value_and_grad(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = grad_fn(state.params ) _lowerCamelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _lowerCamelCase = jax.lax.pmean(__UpperCAmelCase , '''batch''' ) _lowerCamelCase = state.apply_gradients(grads=__UpperCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __magic_name__( __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = model_inputs.pop('''start_labels''' ) _lowerCamelCase = model_inputs.pop('''end_labels''' ) _lowerCamelCase = model_inputs.pop('''pooled_labels''' ) _lowerCamelCase = state.apply_fn(**__UpperCAmelCase , params=state.params , train=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = outputs _lowerCamelCase = state.loss_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase ( train_state.TrainState ): '''simple docstring''' A_ = struct.field(pytree_node=__lowercase ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = None def UpperCamelCase_ ( self , A_ , A_ , A_ , A_=None ) -> List[str]: """simple docstring""" _lowerCamelCase = model.params _lowerCamelCase = TrainState.create( apply_fn=model.__call__ , params=A_ , tx=A_ , loss_fn=A_ , ) if ckpt_dir is not None: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = restore_checkpoint(A_ , A_ ) _lowerCamelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _lowerCamelCase , _lowerCamelCase = build_tx(**A_ ) _lowerCamelCase = train_state.TrainState( step=A_ , apply_fn=model.__call__ , params=A_ , tx=A_ , opt_state=A_ , ) _lowerCamelCase = args _lowerCamelCase = data_collator _lowerCamelCase = lr _lowerCamelCase = params _lowerCamelCase = jax_utils.replicate(A_ ) return state def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = self.args _lowerCamelCase = len(A_ ) // args.batch_size _lowerCamelCase = jax.random.PRNGKey(0 ) _lowerCamelCase = jax.random.split(A_ , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase = get_batched_dataset(A_ , args.batch_size , seed=A_ ) _lowerCamelCase = 0 for batch in tqdm(A_ , total=A_ , desc=F'Running EPOCH-{epoch}' ): _lowerCamelCase = self.data_collator(A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.train_step_fn(A_ , A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _lowerCamelCase = jax_utils.unreplicate(state.step ) _lowerCamelCase = running_loss.item() / i _lowerCamelCase = self.scheduler_fn(state_step - 1 ) _lowerCamelCase = self.evaluate(A_ , A_ ) _lowerCamelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(A_ ) ) self.logger.log(A_ , commit=A_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = get_batched_dataset(A_ , self.args.batch_size ) _lowerCamelCase = len(A_ ) // self.args.batch_size _lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase = 0 for batch in tqdm(A_ , total=A_ , desc='''Evaluating ... ''' ): _lowerCamelCase = self.data_collator(A_ ) _lowerCamelCase = self.val_step_fn(A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = jax_utils.unreplicate(A_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=''' ... ''' ) self.model_save_fn(A_ , params=state.params ) with open(os.path.join(A_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(A_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(A_ , '''data_collator.joblib''' ) ) with open(os.path.join(A_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , A_ ) print('''DONE''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=''' ... ''' ) with open(os.path.join(__UpperCAmelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _lowerCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(__UpperCAmelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _lowerCamelCase = from_bytes(state.opt_state , f.read() ) _lowerCamelCase = joblib.load(os.path.join(__UpperCAmelCase , '''args.joblib''' ) ) _lowerCamelCase = joblib.load(os.path.join(__UpperCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__UpperCAmelCase , '''training_state.json''' ) , '''r''' ) as f: _lowerCamelCase = json.load(__UpperCAmelCase ) _lowerCamelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = num_train_steps - warmup_steps _lowerCamelCase = optax.linear_schedule(init_value=__UpperCAmelCase , end_value=__UpperCAmelCase , transition_steps=__UpperCAmelCase ) _lowerCamelCase = optax.linear_schedule(init_value=__UpperCAmelCase , end_value=1E-7 , transition_steps=__UpperCAmelCase ) _lowerCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' def weight_decay_mask(__UpperCAmelCase ): _lowerCamelCase = traverse_util.flatten_dict(__UpperCAmelCase ) _lowerCamelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__UpperCAmelCase ) _lowerCamelCase = scheduler_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = optax.adamw(learning_rate=__UpperCAmelCase , weight_decay=__UpperCAmelCase , mask=__UpperCAmelCase ) return tx, lr
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
def __magic_name__( __UpperCAmelCase = 3 , __UpperCAmelCase = 7 , __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' _lowerCamelCase = 0 _lowerCamelCase = 1 for current_denominator in range(1 , limit + 1 ): _lowerCamelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _lowerCamelCase = current_numerator _lowerCamelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
class UpperCamelCase : '''simple docstring''' def __init__( self ) -> None: """simple docstring""" _lowerCamelCase = {} # Mapping from char to TrieNode _lowerCamelCase = False def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" for word in words: self.insert(A_ ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = self for char in word: if char not in curr.nodes: _lowerCamelCase = TrieNode() _lowerCamelCase = curr.nodes[char] _lowerCamelCase = True def UpperCamelCase_ ( self , A_ ) -> bool: """simple docstring""" _lowerCamelCase = self for char in word: if char not in curr.nodes: return False _lowerCamelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" def _delete(A_ , A_ , A_ ) -> bool: if index == len(A_ ): # If word does not exist if not curr.is_leaf: return False _lowerCamelCase = False return len(curr.nodes ) == 0 _lowerCamelCase = word[index] _lowerCamelCase = curr.nodes.get(A_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCamelCase = _delete(A_ , A_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A_ , 0 ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' if node.is_leaf: print(__UpperCAmelCase , end=''' ''' ) for key, value in node.nodes.items(): print_words(__UpperCAmelCase , word + key ) def __magic_name__( ) -> bool: '''simple docstring''' _lowerCamelCase = '''banana bananas bandana band apple all beast'''.split() _lowerCamelCase = TrieNode() root.insert_many(__UpperCAmelCase ) # print_words(root, "") assert all(root.find(__UpperCAmelCase ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' print(str(__UpperCAmelCase ) , '''works!''' if passes else '''doesn\'t work :(''' ) def __magic_name__( ) -> None: '''simple docstring''' assert test_trie() def __magic_name__( ) -> None: '''simple docstring''' print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = (DDPMParallelScheduler,) def UpperCamelCase_ ( self , **A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**A_ ) return config def UpperCamelCase_ ( self ) -> int: """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = len(A_ ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter _lowerCamelCase = self.dummy_sample_deter + 0.1 _lowerCamelCase = self.dummy_sample_deter - 0.1 _lowerCamelCase = samplea.shape[0] _lowerCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCamelCase = torch.arange(A_ )[0:3, None].repeat(1 , A_ ) _lowerCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCamelCase = scheduler.batch_step_no_noise(A_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCamelCase = torch.sum(torch.abs(A_ ) ) _lowerCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = len(A_ ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter _lowerCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual _lowerCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample _lowerCamelCase = pred_prev_sample _lowerCamelCase = torch.sum(torch.abs(A_ ) ) _lowerCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = len(A_ ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter _lowerCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual _lowerCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample _lowerCamelCase = pred_prev_sample _lowerCamelCase = torch.sum(torch.abs(A_ ) ) _lowerCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) _lowerCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: _lowerCamelCase = -1 else: _lowerCamelCase = timesteps[i + 1] _lowerCamelCase = scheduler.previous_timestep(A_ ) _lowerCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(A_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = [1_00, 87, 50, 1, 0] _lowerCamelCase = len(A_ ) with self.assertRaises(A_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**A_ ) _lowerCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=A_ )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = ort.SessionOptions() _lowerCamelCase = False return options def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A red cat sitting on a park bench''' _lowerCamelCase = np.random.RandomState(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _lowerCamelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) _lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A red cat sitting on a park bench''' _lowerCamelCase = np.random.RandomState(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 3 _lowerCamelCase = (32, 32) _lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.dummy_cond_unet_upscale _lowerCamelCase = DDPMScheduler() _lowerCamelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCamelCase = self.dummy_vae _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCamelCase = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) _lowerCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger''' _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=A_ , )[0] _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] _lowerCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCamelCase = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.dummy_cond_unet_upscale _lowerCamelCase = DDPMScheduler() _lowerCamelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCamelCase = self.dummy_vae _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCamelCase = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) _lowerCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger''' _lowerCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = output.images assert image.shape[0] == 2 _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.dummy_cond_unet_upscale _lowerCamelCase = DDPMScheduler() _lowerCamelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCamelCase = self.dummy_vae _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCamelCase = unet.half() _lowerCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCamelCase = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) _lowerCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ).images _lowerCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _lowerCamelCase = '''a cat sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _lowerCamelCase = '''a cat sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase = '''a cat sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type='''np''' , ) _lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase ( __lowercase ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _lowerCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _lowerCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _lowerCamelCase = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A_ ) BertModel.from_pretrained(A_ ) BertTokenizer.from_pretrained(A_ ) pipeline(task='''fill-mask''' , model=A_ ) # baseline - just load from_pretrained with normal network _lowerCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _lowerCamelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase = '''1''' _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _lowerCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _lowerCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _lowerCamelCase = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A_ ) BertModel.from_pretrained(A_ ) BertTokenizer.from_pretrained(A_ ) pipeline(task='''fill-mask''' , model=A_ ) # baseline - just load from_pretrained with normal network _lowerCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _lowerCamelCase = self.get_env() _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _lowerCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _lowerCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _lowerCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _lowerCamelCase = self.get_env() _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _lowerCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase = '''1''' _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = ''' from transformers import pipeline ''' _lowerCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _lowerCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _lowerCamelCase = self.get_env() _lowerCamelCase = '''1''' _lowerCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = ''' from transformers import AutoModel ''' _lowerCamelCase = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _lowerCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _lowerCamelCase = self.get_env() _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase = '''1''' _lowerCamelCase = subprocess.run(A_ , env=A_ , check=A_ , capture_output=A_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case__ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = {} state_dict.pop('''pixel_mean''' , __UpperCAmelCase ) state_dict.pop('''pixel_std''' , __UpperCAmelCase ) _lowerCamelCase = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCamelCase = key.replace(__UpperCAmelCase , __UpperCAmelCase ) if re.match(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = int(re.match(__UpperCAmelCase , __UpperCAmelCase ).group(2 ) ) if layer_nb == 0: _lowerCamelCase = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: _lowerCamelCase = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: _lowerCamelCase = key.replace('''layers.2''' , '''proj_out''' ) _lowerCamelCase = value _lowerCamelCase = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="ybelkada/segment-anything" ) -> Any: '''simple docstring''' _lowerCamelCase = hf_hub_download(__UpperCAmelCase , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: _lowerCamelCase = SamConfig() elif "sam_vit_l" in model_name: _lowerCamelCase = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _lowerCamelCase = SamConfig( vision_config=__UpperCAmelCase , ) elif "sam_vit_h" in model_name: _lowerCamelCase = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _lowerCamelCase = SamConfig( vision_config=__UpperCAmelCase , ) _lowerCamelCase = torch.load(__UpperCAmelCase , map_location='''cpu''' ) _lowerCamelCase = replace_keys(__UpperCAmelCase ) _lowerCamelCase = SamImageProcessor() _lowerCamelCase = SamProcessor(image_processor=__UpperCAmelCase ) _lowerCamelCase = SamModel(__UpperCAmelCase ) hf_model.load_state_dict(__UpperCAmelCase ) _lowerCamelCase = hf_model.to('''cuda''' ) _lowerCamelCase = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('''RGB''' ) _lowerCamelCase = [[[400, 650]]] _lowerCamelCase = [[1]] _lowerCamelCase = processor(images=np.array(__UpperCAmelCase ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowerCamelCase = hf_model(**__UpperCAmelCase ) _lowerCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 _lowerCamelCase = processor( images=np.array(__UpperCAmelCase ) , input_points=__UpperCAmelCase , input_labels=__UpperCAmelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowerCamelCase = hf_model(**__UpperCAmelCase ) _lowerCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 _lowerCamelCase = ((75, 275, 1725, 850),) _lowerCamelCase = processor(images=np.array(__UpperCAmelCase ) , input_boxes=__UpperCAmelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowerCamelCase = hf_model(**__UpperCAmelCase ) _lowerCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. _lowerCamelCase = [[[400, 650], [800, 650]]] _lowerCamelCase = [[1, 1]] _lowerCamelCase = processor( images=np.array(__UpperCAmelCase ) , input_points=__UpperCAmelCase , input_labels=__UpperCAmelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowerCamelCase = hf_model(**__UpperCAmelCase ) _lowerCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() snake_case__ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) snake_case__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' A_ = 'resnet' A_ = ['basic', 'bottleneck'] def __init__( self , A_=3 , A_=64 , A_=[2_56, 5_12, 10_24, 20_48] , A_=[3, 4, 6, 3] , A_="bottleneck" , A_="relu" , A_=False , A_=None , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) _lowerCamelCase = num_channels _lowerCamelCase = embedding_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = layer_type _lowerCamelCase = hidden_act _lowerCamelCase = downsample_in_first_stage _lowerCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(A_ ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1E-3
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' def get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) -> str: _lowerCamelCase = [] _lowerCamelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCamelCase = int(max(0 , i - limit ) ) _lowerCamelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCAmelCase ) _lowerCamelCase = F'{_stra[0:_stra.index(__UpperCAmelCase )]} {_stra[_stra.index(__UpperCAmelCase ) + 1:]}' return "".join(__UpperCAmelCase ) # matching characters _lowerCamelCase = get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = len(__UpperCAmelCase ) # transposition _lowerCamelCase = ( len([(ca, ca) for ca, ca in zip(__UpperCAmelCase , __UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _lowerCamelCase = 0.0 else: _lowerCamelCase = ( 1 / 3 * ( match_count / len(__UpperCAmelCase ) + match_count / len(__UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCamelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(A_ , A_ , A_ ) self.assertEqual(A_ , ['''c'''] ) self.assertEqual(A_ , [2] ) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , A_ , A_ ) self.assertEqual(A_ , ['''a''', '''c'''] ) self.assertEqual(A_ , [0, 2] ) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(A_ , [0, 2] , A_ ) self.assertEqual(A_ , ['''a''', '''c'''] ) self.assertEqual(A_ , [0, 2] ) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(A_ , [-3, -1] , A_ ) self.assertEqual(A_ , ['''a''', '''c'''] ) self.assertEqual(A_ , [-3, -1] ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" # Stage names must be set with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A_ ) # Out features must be a list with self.assertRaises(A_ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A_ ): verify_out_features_out_indices(A_ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A_ ): verify_out_features_out_indices(A_ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A_ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = BackboneMixin() _lowerCamelCase = ['''a''', '''b''', '''c'''] _lowerCamelCase = ['''a''', '''c'''] _lowerCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _lowerCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _lowerCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device snake_case__ = False class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger ''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_ ) _lowerCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = generator.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger ''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images _lowerCamelCase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case__ = 'true' def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=16 ) -> Union[str, Any]: '''simple docstring''' set_seed(42 ) _lowerCamelCase = RegressionModel() _lowerCamelCase = deepcopy(__UpperCAmelCase ) _lowerCamelCase = RegressionDataset(length=__UpperCAmelCase ) _lowerCamelCase = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase ) model.to(accelerator.device ) _lowerCamelCase , _lowerCamelCase = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) return model, ddp_model, dataloader def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict: '''simple docstring''' _lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) _lowerCamelCase = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__UpperCAmelCase ): _lowerCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs with accelerator.main_process_first(): _lowerCamelCase = dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) _lowerCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): if use_longest: return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(__UpperCAmelCase , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=16 ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = Accelerator(dispatch_batches=__UpperCAmelCase , split_batches=__UpperCAmelCase ) _lowerCamelCase = get_dataloader(__UpperCAmelCase , not dispatch_batches ) _lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [] for batch in dataloader: _lowerCamelCase , _lowerCamelCase = batch.values() with torch.no_grad(): _lowerCamelCase = model(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCamelCase , _lowerCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCAmelCase ) targs.append(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = torch.cat(__UpperCAmelCase ), torch.cat(__UpperCAmelCase ) return logits, targs def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=16 ) -> Optional[int]: '''simple docstring''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = get_basic_setup(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = generate_predictions(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) assert ( len(__UpperCAmelCase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCAmelCase )}' def __magic_name__( __UpperCAmelCase = False , __UpperCAmelCase = False ) -> Dict: '''simple docstring''' _lowerCamelCase = evaluate.load('''glue''' , '''mrpc''' ) _lowerCamelCase , _lowerCamelCase = get_mrpc_setup(__UpperCAmelCase , __UpperCAmelCase ) # First do baseline _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = setup['''no'''] model.to(__UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(__UpperCAmelCase ) with torch.inference_mode(): _lowerCamelCase = model(**__UpperCAmelCase ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCAmelCase , references=batch['''labels'''] ) _lowerCamelCase = metric.compute() # Then do distributed _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCamelCase = model(**__UpperCAmelCase ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) _lowerCamelCase = batch['''labels'''] _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCAmelCase , references=__UpperCAmelCase ) _lowerCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __magic_name__( ) -> Dict: '''simple docstring''' _lowerCamelCase = Accelerator(split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(__UpperCAmelCase , __UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCamelCase = Accelerator(split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(__UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) _lowerCamelCase = Accelerator() test_torch_metrics(__UpperCAmelCase , 512 ) accelerator.state._reset_state() def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for part_id in partition_order: _lowerCamelCase = df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__UpperCAmelCase ): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Any: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(100 ).repartition(1 ) _lowerCamelCase = Spark(__UpperCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(10 ).repartition(2 ) _lowerCamelCase = [1, 0] _lowerCamelCase = _generate_iterable_examples(__UpperCAmelCase , __UpperCAmelCase ) # Reverse the partitions. _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , __UpperCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Dict: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(10 ).repartition(1 ) _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: _lowerCamelCase = lambda __UpperCAmelCase : x.reverse() _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [2, 1, 0] ) _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ).shuffle_data_sources(__UpperCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(100 ).repartition(1 ) _lowerCamelCase = Spark(__UpperCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer snake_case__ = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_ , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( prior=A_ , image_encoder=A_ , image_processor=A_ , scheduler=A_ , renderer=A_ , ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" if latents is None: _lowerCamelCase = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase = latents.to(A_ ) _lowerCamelCase = latents * scheduler.init_noise_sigma return latents def UpperCamelCase_ ( self , A_=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) _lowerCamelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" if isinstance(A_ , A_ ) and isinstance(image[0] , torch.Tensor ): _lowerCamelCase = torch.cat(A_ , axis=0 ) if image[0].ndim == 4 else torch.stack(A_ , axis=0 ) if not isinstance(A_ , torch.Tensor ): _lowerCamelCase = self.image_processor(A_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase = image.to(dtype=self.image_encoder.dtype , device=A_ ) _lowerCamelCase = self.image_encoder(A_ )['''last_hidden_state'''] _lowerCamelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase = image_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: _lowerCamelCase = torch.zeros_like(A_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ = 1 , A_ = 25 , A_ = None , A_ = None , A_ = 4.0 , A_ = 64 , A_ = "pil" , A_ = True , ) -> Any: """simple docstring""" if isinstance(A_ , PIL.Image.Image ): _lowerCamelCase = 1 elif isinstance(A_ , torch.Tensor ): _lowerCamelCase = image.shape[0] elif isinstance(A_ , A_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _lowerCamelCase = len(A_ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A_ )}' ) _lowerCamelCase = self._execution_device _lowerCamelCase = batch_size * num_images_per_prompt _lowerCamelCase = guidance_scale > 1.0 _lowerCamelCase = self._encode_image(A_ , A_ , A_ , A_ ) # prior self.scheduler.set_timesteps(A_ , device=A_ ) _lowerCamelCase = self.scheduler.timesteps _lowerCamelCase = self.prior.config.num_embeddings _lowerCamelCase = self.prior.config.embedding_dim _lowerCamelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase = latents.reshape(latents.shape[0] , A_ , A_ ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase = self.scheduler.scale_model_input(A_ , A_ ) _lowerCamelCase = self.prior( A_ , timestep=A_ , proj_embedding=A_ , ).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase = noise_pred.chunk(2 ) _lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase = self.scheduler.step( A_ , timestep=A_ , sample=A_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A_ ) _lowerCamelCase = [] for i, latent in enumerate(A_ ): print() _lowerCamelCase = self.renderer.decode( latent[None, :] , A_ , size=A_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(A_ ) _lowerCamelCase = torch.stack(A_ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase = images.cpu().numpy() if output_type == "pil": _lowerCamelCase = [self.numpy_to_pil(A_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A_ )
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
import math def __magic_name__( __UpperCAmelCase ) -> list: '''simple docstring''' _lowerCamelCase = [True] * n _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _lowerCamelCase = i * 2 while index < n: _lowerCamelCase = False _lowerCamelCase = index + i _lowerCamelCase = [2] for i in range(3 , __UpperCAmelCase , 2 ): if is_prime[i]: primes.append(__UpperCAmelCase ) return primes def __magic_name__( __UpperCAmelCase = 9999_6666_3333 ) -> int: '''simple docstring''' _lowerCamelCase = math.floor(math.sqrt(__UpperCAmelCase ) ) + 100 _lowerCamelCase = prime_sieve(__UpperCAmelCase ) _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = primes[prime_index] while (last_prime**2) <= limit: _lowerCamelCase = primes[prime_index + 1] _lowerCamelCase = last_prime**2 _lowerCamelCase = next_prime**2 # Get numbers divisible by lps(current) _lowerCamelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _lowerCamelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _lowerCamelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _lowerCamelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version snake_case__ = get_logger(__name__) class UpperCamelCase : '''simple docstring''' A_ = 'dummy_data' A_ = 'datasets' A_ = False def __init__( self , A_ , A_ , A_ , A_ = None , A_ = False , A_ = True , A_ = None , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 0 _lowerCamelCase = dataset_name _lowerCamelCase = cache_dir _lowerCamelCase = use_local_dummy_data _lowerCamelCase = config # download_callbacks take a single url as input _lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase = str(A_ ) # to be downloaded _lowerCamelCase = None _lowerCamelCase = None @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if self._dummy_file is None: _lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase = cached_path( A_ , cache_dir=self.cache_dir , extract_compressed_file=A_ , force_extract=A_ ) return os.path.join(A_ , self.dummy_file_name ) @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" if self._bucket_url is None: _lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def UpperCamelCase_ ( self , A_ , *A_ ) -> List[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(A_ , A_ ): return self.create_dummy_data_dict(A_ , A_ ) elif isinstance(A_ , (list, tuple) ): return self.create_dummy_data_list(A_ , A_ ) else: return self.create_dummy_data_single(A_ , A_ ) def UpperCamelCase_ ( self , A_ , *A_ ) -> List[Any]: """simple docstring""" return self.download_and_extract(A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(A_ ) def UpperCamelCase_ ( self , A_ , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" return path def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return {} def UpperCamelCase_ ( self , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A_ , A_ ): for single_url in single_urls: download_callback(A_ ) else: _lowerCamelCase = single_urls download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A_ , A_ ): _lowerCamelCase = [os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) for x in single_urls] else: _lowerCamelCase = single_urls _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) _lowerCamelCase = value # make sure that values are unique if all(isinstance(A_ , A_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A_ ) ) for url in data_url ) _lowerCamelCase = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase = [data_url[0]] * len(A_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A_ ) return dummy_data_list def UpperCamelCase_ ( self , A_ , A_ ) -> Any: """simple docstring""" for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" def _iter_archive_members(A_ ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase = Path(self.dummy_file ).parent _lowerCamelCase = path.relative_to(A_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A_ ) _lowerCamelCase = Path(A_ ) _lowerCamelCase = _iter_archive_members(A_ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A_ ).as_posix(), file_path.open('''rb''' ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ): _lowerCamelCase = [paths] for path in paths: if os.path.isfile(A_ ): if os.path.basename(A_ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A_ ): if os.path.basename(A_ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A_ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A_ , A_ )
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "" , A_ = False ) -> None: """simple docstring""" _lowerCamelCase = {} # A node will be a leaf if the tree contains its word _lowerCamelCase = is_leaf _lowerCamelCase = prefix def UpperCamelCase_ ( self , A_ ) -> tuple[str, str, str]: """simple docstring""" _lowerCamelCase = 0 for q, w in zip(self.prefix , A_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" for word in words: self.insert(A_ ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: _lowerCamelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCamelCase = RadixNode(prefix=A_ , is_leaf=A_ ) else: _lowerCamelCase = self.nodes[word[0]] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = incoming_node.match( A_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(A_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCamelCase = remaining_prefix _lowerCamelCase = self.nodes[matching_string[0]] _lowerCamelCase = RadixNode(A_ , A_ ) _lowerCamelCase = aux_node if remaining_word == "": _lowerCamelCase = True else: self.nodes[matching_string[0]].insert(A_ ) def UpperCamelCase_ ( self , A_ ) -> bool: """simple docstring""" _lowerCamelCase = self.nodes.get(word[0] , A_ ) if not incoming_node: return False else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = incoming_node.match( A_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(A_ ) def UpperCamelCase_ ( self , A_ ) -> bool: """simple docstring""" _lowerCamelCase = self.nodes.get(word[0] , A_ ) if not incoming_node: return False else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = incoming_node.match( A_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(A_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _lowerCamelCase = list(self.nodes.values() )[0] _lowerCamelCase = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCamelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _lowerCamelCase = False # If there is 1 edge, we merge it with its child else: _lowerCamelCase = list(incoming_node.nodes.values() )[0] _lowerCamelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCamelCase = merging_node.nodes return True def UpperCamelCase_ ( self , A_ = 0 ) -> None: """simple docstring""" if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __magic_name__( ) -> bool: '''simple docstring''' _lowerCamelCase = '''banana bananas bandana band apple all beast'''.split() _lowerCamelCase = RadixNode() root.insert_many(__UpperCAmelCase ) assert all(root.find(__UpperCAmelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __magic_name__( ) -> None: '''simple docstring''' assert test_trie() def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = RadixNode() _lowerCamelCase = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__UpperCAmelCase ) print('''Words:''' , __UpperCAmelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=A_ , ) assert hasattr(self , '''env''' ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = { '''enabled''': True, '''processes_per_host''': 8, } _lowerCamelCase = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } _lowerCamelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} _lowerCamelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=A_ , py_version='''py36''' , ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" TrainingJobAnalytics(A_ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = self.create_estimator(A_ ) # run training estimator.fit() # result dataframe _lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A_ )
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = '▁' snake_case__ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} snake_case__ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } snake_case__ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } snake_case__ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } snake_case__ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['input_ids'] A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = RESOURCE_FILES_NAMES def __init__( self , A_ , A_=None , A_=False , A_="utf8" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ) -> None: """simple docstring""" _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , vocab_file=A_ , encoding=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) _lowerCamelCase = do_lower_case _lowerCamelCase = sentencepiece_model_ckpt _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _lowerCamelCase = self.load_vocab(filepath=A_ ) else: _lowerCamelCase = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )} _lowerCamelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" if text is None: return None _lowerCamelCase = self.tokenize(A_ ) _lowerCamelCase , _lowerCamelCase = '''''', [] for i, ch in enumerate(A_ ): if ch in self.SP_CHAR_MAPPING: _lowerCamelCase = self.SP_CHAR_MAPPING.get(A_ ) else: _lowerCamelCase = unicodedata.normalize('''NFKC''' , A_ ) if self.is_whitespace(A_ ): continue normalized_text += ch char_mapping.extend([i] * len(A_ ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = normalized_text, [], 0 if self.do_lower_case: _lowerCamelCase = text.lower() for token in split_tokens: if token[:1] == "▁": _lowerCamelCase = token[1:] _lowerCamelCase = text[offset:].index(A_ ) + offset _lowerCamelCase = start + len(A_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _lowerCamelCase = end return token_mapping @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return len(self.vocab ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> str: """simple docstring""" _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(A_ , A_ ) for c in text) ) def UpperCamelCase_ ( self , A_ , A_=False , A_=64 , A_=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: _lowerCamelCase = True if self.sp_model_kwargs.get('''alpha''' ) is not None: _lowerCamelCase = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: _lowerCamelCase = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: _lowerCamelCase = self.sp_model.EncodeAsPieces(A_ ) else: _lowerCamelCase = self.sp_model.SampleEncodeAsPieces(A_ , A_ , A_ ) _lowerCamelCase = [] for pi, piece in enumerate(A_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A_ ) and pi != 0: new_pieces.append(A_ ) continue else: continue _lowerCamelCase = 0 for i, chunk in enumerate(A_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A_ ) or self.is_punct(A_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A_ ) _lowerCamelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase = i if len(A_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ).replace(A_ , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.convert_ids_to_tokens(A_ ) _lowerCamelCase = ''''''.join(A_ ).replace(A_ , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(A_ , self.unk_token ) def UpperCamelCase_ ( self , A_ , A_=None ) -> List[str]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self , A_ , A_=None ) -> List[Any]: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self , A_ , A_=None , A_=False ) -> List[str]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(A_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A_ ) == 1: _lowerCamelCase = unicodedata.category(A_ ) if cat == "Zs": return True return False def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = {} with io.open(A_ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(A_ ): _lowerCamelCase = line.rstrip('''\n''' ) _lowerCamelCase = int(A_ ) return token_to_idx def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = 0 if os.path.isdir(A_ ): _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _lowerCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) _lowerCamelCase = token_index writer.write(token + '''\n''' ) index += 1 _lowerCamelCase = os.path.join(A_ , '''sentencepiece.bpe.model''' ) with open(A_ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (vocab_file,)
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
import socket def __magic_name__( ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCamelCase = socket.gethostname() _lowerCamelCase = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: _lowerCamelCase = sock.recv(1024 ) if not data: break out_file.write(__UpperCAmelCase ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run snake_case__ = True except (ImportError, AttributeError): snake_case__ = object def __magic_name__( *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' pass snake_case__ = False snake_case__ = logging.get_logger('transformers-cli/serving') def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCAmelCase , args.host , args.port , args.workers ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=A_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=A_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=A_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=A_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=A_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=A_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=A_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=A_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = pipeline _lowerCamelCase = host _lowerCamelCase = port _lowerCamelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'Serving model over {host}:{port}' ) _lowerCamelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=A_ , response_class=A_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=A_ , response_class=A_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=A_ , response_class=A_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=A_ , response_class=A_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCamelCase_ ( self , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) ) -> str: """simple docstring""" try: _lowerCamelCase = self._pipeline.tokenizer.tokenize(A_ ) if return_ids: _lowerCamelCase = self._pipeline.tokenizer.convert_tokens_to_ids(A_ ) return ServeTokenizeResult(tokens=A_ , tokens_ids=A_ ) else: return ServeTokenizeResult(tokens=A_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(A_ )} ) def UpperCamelCase_ ( self , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) , ) -> int: """simple docstring""" try: _lowerCamelCase = self._pipeline.tokenizer.decode(A_ , A_ , A_ ) return ServeDeTokenizeResult(model='''''' , text=A_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(A_ )} ) async def UpperCamelCase_ ( self , A_=Body(A_ , embed=A_ ) ) -> Any: """simple docstring""" # Check we don't have empty string if len(A_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _lowerCamelCase = self._pipeline(A_ ) return ServeForwardResult(output=A_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(A_ )} )
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
from __future__ import annotations snake_case__ = 8.988E9 # units = N * m^s * C^-2 def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict[str, float]: '''simple docstring''' _lowerCamelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: _lowerCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _lowerCamelCase = abs(__UpperCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _lowerCamelCase = abs(__UpperCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _lowerCamelCase = (COULOMBS_CONSTANT * charge_product / abs(__UpperCAmelCase )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 @flax_register_to_config class UpperCamelCase ( nn.Module , __lowercase , __lowercase ): '''simple docstring''' A_ = 32 A_ = 4 A_ = 4 A_ = ( 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D', ) A_ = ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D') A_ = False A_ = (320, 640, 1_280, 1_280) A_ = 2 A_ = 8 A_ = None A_ = 1_280 A_ = 0.0 A_ = False A_ = jnp.floataa A_ = True A_ = 0 A_ = False def UpperCamelCase_ ( self , A_ ) -> FrozenDict: """simple docstring""" _lowerCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCamelCase = jnp.zeros(A_ , dtype=jnp.floataa ) _lowerCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _lowerCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowerCamelCase , _lowerCamelCase = jax.random.split(A_ ) _lowerCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A_ , A_ , A_ , A_ )["params"] def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.block_out_channels _lowerCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCamelCase = self.num_attention_heads or self.attention_head_dim # input _lowerCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowerCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowerCamelCase = FlaxTimestepEmbedding(A_ , dtype=self.dtype ) _lowerCamelCase = self.only_cross_attention if isinstance(A_ , A_ ): _lowerCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A_ , A_ ): _lowerCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _lowerCamelCase = [] _lowerCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] _lowerCamelCase = i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCamelCase = FlaxCrossAttnDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCamelCase = FlaxDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A_ ) _lowerCamelCase = down_blocks # mid _lowerCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _lowerCamelCase = [] _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _lowerCamelCase = output_channel _lowerCamelCase = reversed_block_out_channels[i] _lowerCamelCase = reversed_block_out_channels[min(i + 1 , len(A_ ) - 1 )] _lowerCamelCase = i == len(A_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowerCamelCase = FlaxCrossAttnUpBlockaD( in_channels=A_ , out_channels=A_ , prev_output_channel=A_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCamelCase = FlaxUpBlockaD( in_channels=A_ , out_channels=A_ , prev_output_channel=A_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(A_ ) _lowerCamelCase = output_channel _lowerCamelCase = up_blocks # out _lowerCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _lowerCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , A_ , A_ , A_ , A_=None , A_=None , A_ = True , A_ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: """simple docstring""" # 1. time if not isinstance(A_ , jnp.ndarray ): _lowerCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A_ , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps.astype(dtype=jnp.floataa ) _lowerCamelCase = jnp.expand_dims(A_ , 0 ) _lowerCamelCase = self.time_proj(A_ ) _lowerCamelCase = self.time_embedding(A_ ) # 2. pre-process _lowerCamelCase = jnp.transpose(A_ , (0, 2, 3, 1) ) _lowerCamelCase = self.conv_in(A_ ) # 3. down _lowerCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(A_ , A_ ): _lowerCamelCase , _lowerCamelCase = down_block(A_ , A_ , A_ , deterministic=not train ) else: _lowerCamelCase , _lowerCamelCase = down_block(A_ , A_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowerCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( A_ , A_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowerCamelCase = new_down_block_res_samples # 4. mid _lowerCamelCase = self.mid_block(A_ , A_ , A_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowerCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _lowerCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(A_ , A_ ): _lowerCamelCase = up_block( A_ , temb=A_ , encoder_hidden_states=A_ , res_hidden_states_tuple=A_ , deterministic=not train , ) else: _lowerCamelCase = up_block(A_ , temb=A_ , res_hidden_states_tuple=A_ , deterministic=not train ) # 6. post-process _lowerCamelCase = self.conv_norm_out(A_ ) _lowerCamelCase = nn.silu(A_ ) _lowerCamelCase = self.conv_out(A_ ) _lowerCamelCase = jnp.transpose(A_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=A_ )
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' snake_case__ = 'Alexander Joslin' import operator as op from .stack import Stack def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _lowerCamelCase = Stack() _lowerCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCAmelCase ) elif i == ")": # RULE 4 _lowerCamelCase = operator_stack.peek() operator_stack.pop() _lowerCamelCase = operand_stack.peek() operand_stack.pop() _lowerCamelCase = operand_stack.peek() operand_stack.pop() _lowerCamelCase = operators[opr](__UpperCAmelCase , __UpperCAmelCase ) operand_stack.push(__UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case__ = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
from collections.abc import Sequence def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(__UpperCAmelCase ) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' _lowerCamelCase = 0.0 for coeff in reversed(__UpperCAmelCase ): _lowerCamelCase = result * x + coeff return result if __name__ == "__main__": snake_case__ = (0.0, 0.0, 5.0, 9.3, 7.0) snake_case__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = DDIMPipeline A_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS A_ = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } A_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS A_ = False def UpperCamelCase_ ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) _lowerCamelCase = DDIMScheduler() _lowerCamelCase = {'''unet''': unet, '''scheduler''': scheduler} return components def UpperCamelCase_ ( self , A_ , A_=0 ) -> int: """simple docstring""" if str(A_ ).startswith('''mps''' ): _lowerCamelCase = torch.manual_seed(A_ ) else: _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) _lowerCamelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = '''cpu''' _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = self.get_dummy_inputs(A_ ) _lowerCamelCase = pipe(**A_ ).images _lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _lowerCamelCase = np.array( [1.0_0_0E0_0, 5.7_1_7E-0_1, 4.7_1_7E-0_1, 1.0_0_0E0_0, 0.0_0_0E0_0, 1.0_0_0E0_0, 3.0_0_0E-0_4, 0.0_0_0E0_0, 9.0_0_0E-0_4] ) _lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ , 1E-3 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = '''google/ddpm-cifar10-32''' _lowerCamelCase = UNetaDModel.from_pretrained(A_ ) _lowerCamelCase = DDIMScheduler() _lowerCamelCase = DDIMPipeline(unet=A_ , scheduler=A_ ) ddim.to(A_ ) ddim.set_progress_bar_config(disable=A_ ) _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = ddim(generator=A_ , eta=0.0 , output_type='''numpy''' ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = '''google/ddpm-ema-bedroom-256''' _lowerCamelCase = UNetaDModel.from_pretrained(A_ ) _lowerCamelCase = DDIMScheduler.from_pretrained(A_ ) _lowerCamelCase = DDIMPipeline(unet=A_ , scheduler=A_ ) ddpm.to(A_ ) ddpm.set_progress_bar_config(disable=A_ ) _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = ddpm(generator=A_ , output_type='''numpy''' ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _lowerCamelCase = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors snake_case__ = logging.getLogger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'sequence-classification' def __init__( self , A_ ) -> str: """simple docstring""" if type(A_ ) == dict: _lowerCamelCase = Namespace(**A_ ) _lowerCamelCase = glue_output_modes[hparams.task] _lowerCamelCase = glue_tasks_num_labels[hparams.task] super().__init__(A_ , A_ , self.mode ) def UpperCamelCase_ ( self , **A_ ) -> Optional[int]: """simple docstring""" return self.model(**A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCamelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _lowerCamelCase = self(**A_ ) _lowerCamelCase = outputs[0] _lowerCamelCase = self.trainer.lr_schedulers[0]['''scheduler'''] _lowerCamelCase = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.hparams _lowerCamelCase = processors[args.task]() _lowerCamelCase = processor.get_labels() for mode in ["train", "dev"]: _lowerCamelCase = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , A_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _lowerCamelCase = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) _lowerCamelCase = convert_examples_to_features( A_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , A_ ) torch.save(A_ , A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = False ) -> DataLoader: """simple docstring""" _lowerCamelCase = '''dev''' if mode == '''test''' else mode _lowerCamelCase = self._feature_file(A_ ) logger.info('''Loading features from cached file %s''' , A_ ) _lowerCamelCase = torch.load(A_ ) _lowerCamelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCamelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCamelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCamelCase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCamelCase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(A_ , A_ , A_ , A_ ) , batch_size=A_ , shuffle=A_ , ) def UpperCamelCase_ ( self , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCamelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _lowerCamelCase = self(**A_ ) _lowerCamelCase , _lowerCamelCase = outputs[:2] _lowerCamelCase = logits.detach().cpu().numpy() _lowerCamelCase = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase_ ( self , A_ ) -> tuple: """simple docstring""" _lowerCamelCase = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() _lowerCamelCase = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCamelCase = np.argmax(A_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCamelCase = np.squeeze(A_ ) _lowerCamelCase = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _lowerCamelCase = [[] for _ in range(out_label_ids.shape[0] )] _lowerCamelCase = [[] for _ in range(out_label_ids.shape[0] )] _lowerCamelCase = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , A_ , A_ )} _lowerCamelCase = dict(results.items() ) _lowerCamelCase = results return ret, preds_list, out_label_list def UpperCamelCase_ ( self , A_ ) -> dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._eval_end(A_ ) _lowerCamelCase = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase_ ( self , A_ ) -> dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._eval_end(A_ ) _lowerCamelCase = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" BaseTransformer.add_model_specific_args(A_ , A_ ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=A_ , required=A_ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=A_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __magic_name__( ) -> Dict: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() add_generic_args(__UpperCAmelCase , os.getcwd() ) _lowerCamelCase = GLUETransformer.add_model_specific_args(__UpperCAmelCase , os.getcwd() ) _lowerCamelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCamelCase = os.path.join( '''./results''' , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) _lowerCamelCase = GLUETransformer(__UpperCAmelCase ) _lowerCamelCase = generic_train(__UpperCAmelCase , __UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__UpperCAmelCase ) ) _lowerCamelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCAmelCase ) if __name__ == "__main__": main()
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['pixel_values'] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = 1 / 2_55 , A_ = True , A_ = None , A_ = True , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) _lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_56, '''width''': 2_56} _lowerCamelCase = get_size_dict(A_ , param_name='''crop_size''' ) _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_center_crop _lowerCamelCase = crop_size _lowerCamelCase = do_flip_channel_order def UpperCamelCase_ ( self , A_ , A_ , A_ = PIL.Image.BILINEAR , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCamelCase = get_resize_output_image_size(A_ , size=size['''shortest_edge'''] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowerCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(A_ , data_format=A_ ) def UpperCamelCase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: """simple docstring""" _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) _lowerCamelCase = crop_size if crop_size is not None else self.crop_size _lowerCamelCase = get_size_dict(A_ , param_name='''crop_size''' ) _lowerCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowerCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCamelCase = [self.flip_channel_order(image=A_ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> int: """simple docstring""" _lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): _lowerCamelCase = target_sizes.numpy() _lowerCamelCase = [] for idx in range(len(A_ ) ): _lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) _lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: _lowerCamelCase = logits.argmax(dim=1 ) _lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _lowerCamelCase = 6 _lowerCamelCase = 1 _lowerCamelCase = 1901 _lowerCamelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCamelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _lowerCamelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 _lowerCamelCase = day - days_per_month[month - 2] if month > 12: year += 1 _lowerCamelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate snake_case__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) snake_case__ = [] snake_case__ = [] snake_case__ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} snake_case__ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', 'emoji': True, }, } ] snake_case__ = 0 for log in Path().glob('*.log'): snake_case__ = 0 with open(log, 'r') as f: for line in f: snake_case__ = json.loads(line) if line.get('nodeid', '') != "": snake_case__ = line['nodeid'] if line.get('duration', None) is not None: snake_case__ = f'''{line["duration"]:.4f}''' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) snake_case__ = [] log.unlink() snake_case__ = '' snake_case__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" snake_case__ = [] snake_case__ = {} for test in failed_tests: snake_case__ = test[0].split('::') snake_case__ = data[0].split('/')[-1] if data[0] not in filesafailed: snake_case__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) snake_case__ = [test[0] for test in failed_table] snake_case__ = list(set(files)) # Count number of instances in failed_tests snake_case__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) snake_case__ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: snake_case__ = 'Too many failed tests, please see the full report in the Action results.' snake_case__ = len(err) + 10 snake_case__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: snake_case__ = 'No failed tests! 🤗' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient snake_case__ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": snake_case__ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) snake_case__ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) snake_case__ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) snake_case__ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) snake_case__ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name snake_case__ = '' for i, row in enumerate(test_failures): if row[0] != test_class: snake_case__ = row[0] else: snake_case__ = '' snake_case__ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = RobertaTokenizer A_ = RobertaTokenizerFast A_ = True A_ = {'cls_token': '<s>'} def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase = {'''unk_token''': '''<unk>'''} _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) def UpperCamelCase_ ( self , **A_ ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = '''lower newer''' _lowerCamelCase = '''lower newer''' return input_text, output_text def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase = '''lower newer''' _lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase = tokenizer.tokenize(A_ ) # , add_prefix_space=True) self.assertListEqual(A_ , A_ ) _lowerCamelCase = tokens + [tokenizer.unk_token] _lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=A_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=A_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.tokenizer_class.from_pretrained('''roberta-base''' ) _lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=A_ ) _lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_ ) _lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) _lowerCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = '''Encode this sequence.''' _lowerCamelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A_ , A_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A_ , A_ ) # Testing spaces after special tokens _lowerCamelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(A_ , lstrip=A_ , rstrip=A_ )} ) # mask token has a left space _lowerCamelCase = tokenizer.convert_tokens_to_ids(A_ ) _lowerCamelCase = '''Encode <mask> sequence''' _lowerCamelCase = '''Encode <mask>sequence''' _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = encoded.index(A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = encoded.index(A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) _lowerCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) _lowerCamelCase = '''A, <mask> AllenNLP sentence.''' _lowerCamelCase = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) _lowerCamelCase = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , A_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , A_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , A_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase = F'{text_of_1_token} {text_of_1_token}' _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ) + 1, 1 + len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , )
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase ( __lowercase ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( A_ ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self ) -> str: """simple docstring""" raise NotImplementedError()
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = '▁' snake_case__ = {'vocab_file': 'prophetnet.tokenizer'} snake_case__ = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } snake_case__ = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } snake_case__ = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = collections.OrderedDict() with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: _lowerCamelCase = reader.readlines() for index, token in enumerate(__UpperCAmelCase ): _lowerCamelCase = token.rstrip('''\n''' ) _lowerCamelCase = index return vocab class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self , A_ , A_="[SEP]" , A_="[SEP]" , A_="[SEP]" , A_="[UNK]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ) -> None: """simple docstring""" _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) _lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _lowerCamelCase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): _lowerCamelCase = F'[unused{i}]' _lowerCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _lowerCamelCase = 12 _lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ).replace(A_ , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> float: '''simple docstring''' _lowerCamelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: _lowerCamelCase = 1 - (matter_density + radiation_density + dark_energy) _lowerCamelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _lowerCamelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin snake_case__ = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = UNetaDModel A_ = 'sample' @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 4 _lowerCamelCase = 3 _lowerCamelCase = (32, 32) _lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) _lowerCamelCase = torch.tensor([10] ).to(A_ ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return (3, 32, 32) @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return (3, 32, 32) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } _lowerCamelCase = self.dummy_input return init_dict, inputs_dict class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = UNetaDModel A_ = 'sample' @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = 4 _lowerCamelCase = 4 _lowerCamelCase = (32, 32) _lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) _lowerCamelCase = torch.tensor([10] ).to(A_ ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return (4, 32, 32) @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return (4, 32, 32) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } _lowerCamelCase = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(A_ ) _lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=A_ ) model.to(A_ ) _lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=A_ ) model_accelerate.to(A_ ) model_accelerate.eval() _lowerCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCamelCase = noise.to(A_ ) _lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A_ ) _lowerCamelCase = model_accelerate(A_ , A_ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _lowerCamelCase , _lowerCamelCase = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=A_ , low_cpu_mem_usage=A_ ) model_normal_load.to(A_ ) model_normal_load.eval() _lowerCamelCase = model_normal_load(A_ , A_ )['''sample'''] assert torch_all_close(A_ , A_ , rtol=1E-3 ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(A_ ) _lowerCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCamelCase = noise.to(A_ ) _lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ , A_ ).sample _lowerCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _lowerCamelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-3 ) ) class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = UNetaDModel A_ = 'sample' @property def UpperCamelCase_ ( self , A_=(32, 32) ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 4 _lowerCamelCase = 3 _lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) _lowerCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=A_ ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return (3, 32, 32) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } _lowerCamelCase = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(A_ ) _lowerCamelCase = self.dummy_input _lowerCamelCase = floats_tensor((4, 3) + (2_56, 2_56) ).to(A_ ) _lowerCamelCase = noise _lowerCamelCase = model(**A_ ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(A_ ) _lowerCamelCase = 4 _lowerCamelCase = 3 _lowerCamelCase = (2_56, 2_56) _lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A_ ) _lowerCamelCase = torch.tensor(batch_size * [1E-4] ).to(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ , A_ ).sample _lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _lowerCamelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-2 ) ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(A_ ) _lowerCamelCase = 4 _lowerCamelCase = 3 _lowerCamelCase = (32, 32) _lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A_ ) _lowerCamelCase = torch.tensor(batch_size * [1E-4] ).to(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ , A_ ).sample _lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _lowerCamelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-2 ) ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" pass
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=64 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = vocab_size - 1 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = True return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = GPTNeoXModel(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ ) _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = GPTNeoXModel(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = GPTNeoXForCausalLM(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = GPTNeoXForQuestionAnswering(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = GPTNeoXForSequenceClassification(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = GPTNeoXForTokenClassification(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = GPTNeoXForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass _lowerCamelCase = model(A_ , attention_mask=A_ , use_cache=A_ ) _lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase = model(A_ , attention_mask=A_ , output_hidden_states=A_ ) _lowerCamelCase = output_from_no_past['''hidden_states'''][0] _lowerCamelCase = model( A_ , attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) A_ = (GPTNeoXForCausalLM,) if is_torch_available() else () A_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = GPTNeoXModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=64 , num_attention_heads=8 ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = ids_tensor([1, 10] , config.vocab_size ) _lowerCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCamelCase = GPTNeoXModel(A_ ) original_model.to(A_ ) original_model.eval() _lowerCamelCase = original_model(A_ ).last_hidden_state _lowerCamelCase = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCamelCase = {'''type''': scaling_type, '''factor''': 10.0} _lowerCamelCase = GPTNeoXModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() _lowerCamelCase = scaled_model(A_ ).last_hidden_state _lowerCamelCase = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1E-5 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: _lowerCamelCase = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(A_ ) _lowerCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _lowerCamelCase = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' _lowerCamelCase = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 ) _lowerCamelCase = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_ , A_ )
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __magic_name__( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = create_tensor(__UpperCAmelCase ) _lowerCamelCase = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [state.process_index] _lowerCamelCase = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, F'{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __magic_name__( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = create_tensor(__UpperCAmelCase ) _lowerCamelCase = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if state.is_main_process: _lowerCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: _lowerCamelCase = torch.arange(state.num_processes ).to(state.device ) _lowerCamelCase = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if state.num_processes != 2: return _lowerCamelCase = create_tensor(__UpperCAmelCase ) _lowerCamelCase = reduce(__UpperCAmelCase , '''sum''' ) _lowerCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F'{reduced_tensor} != {truth_tensor}' def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if state.num_processes != 2: return _lowerCamelCase = create_tensor(__UpperCAmelCase ) _lowerCamelCase = reduce(__UpperCAmelCase , '''mean''' ) _lowerCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F'{reduced_tensor} != {truth_tensor}' def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' main() def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = PartialState() state.print(F'State: {state}' ) state.print('''testing gather''' ) test_gather(__UpperCAmelCase ) state.print('''testing gather_object''' ) test_gather_object(__UpperCAmelCase ) state.print('''testing broadcast''' ) test_broadcast(__UpperCAmelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__UpperCAmelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__UpperCAmelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' A_ = 'bit' A_ = ['preactivation', 'bottleneck'] A_ = ['SAME', 'VALID'] def __init__( self , A_=3 , A_=64 , A_=[2_56, 5_12, 10_24, 20_48] , A_=[3, 4, 6, 3] , A_="preactivation" , A_="relu" , A_=None , A_=32 , A_=0.0 , A_=False , A_=32 , A_=1 , A_=None , A_=None , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) _lowerCamelCase = num_channels _lowerCamelCase = embedding_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = layer_type _lowerCamelCase = hidden_act _lowerCamelCase = global_padding _lowerCamelCase = num_groups _lowerCamelCase = drop_path_rate _lowerCamelCase = embedding_dynamic_padding _lowerCamelCase = output_stride _lowerCamelCase = width_factor _lowerCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(A_ ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = SwinvaConfig() _lowerCamelCase = swinva_name.split('''_''' ) _lowerCamelCase = name_split[1] if "to" in name_split[3]: _lowerCamelCase = int(name_split[3][-3:] ) else: _lowerCamelCase = int(name_split[3] ) if "to" in name_split[2]: _lowerCamelCase = int(name_split[2][-2:] ) else: _lowerCamelCase = int(name_split[2][6:] ) if model_size == "tiny": _lowerCamelCase = 96 _lowerCamelCase = (2, 2, 6, 2) _lowerCamelCase = (3, 6, 12, 24) elif model_size == "small": _lowerCamelCase = 96 _lowerCamelCase = (2, 2, 18, 2) _lowerCamelCase = (3, 6, 12, 24) elif model_size == "base": _lowerCamelCase = 128 _lowerCamelCase = (2, 2, 18, 2) _lowerCamelCase = (4, 8, 16, 32) else: _lowerCamelCase = 192 _lowerCamelCase = (2, 2, 18, 2) _lowerCamelCase = (6, 12, 24, 48) if "to" in swinva_name: _lowerCamelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _lowerCamelCase = 2_1841 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-22k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} else: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = img_size _lowerCamelCase = num_classes _lowerCamelCase = embed_dim _lowerCamelCase = depths _lowerCamelCase = num_heads _lowerCamelCase = window_size return config def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: _lowerCamelCase = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: _lowerCamelCase = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: _lowerCamelCase = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: _lowerCamelCase = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": _lowerCamelCase = '''layernorm.weight''' if name == "norm.bias": _lowerCamelCase = '''layernorm.bias''' if "head" in name: _lowerCamelCase = name.replace('''head''' , '''classifier''' ) else: _lowerCamelCase = '''swinv2.''' + name return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "mask" in key: continue elif "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[1] ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[ dim : dim * 2 ] _lowerCamelCase = val[-dim:] else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ) timm_model.eval() _lowerCamelCase = get_swinva_config(__UpperCAmelCase ) _lowerCamelCase = SwinvaForImageClassification(__UpperCAmelCase ) model.eval() _lowerCamelCase = convert_state_dict(timm_model.state_dict() , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) _lowerCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) _lowerCamelCase = timm_model(inputs['''pixel_values'''] ) _lowerCamelCase = model(**__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 't5' A_ = ['past_key_values'] A_ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , A_=3_21_28 , A_=5_12 , A_=64 , A_=20_48 , A_=6 , A_=None , A_=8 , A_=32 , A_=1_28 , A_=0.1 , A_=1E-6 , A_=1.0 , A_="relu" , A_=True , A_=True , A_=0 , A_=1 , **A_ , ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = vocab_size _lowerCamelCase = d_model _lowerCamelCase = d_kv _lowerCamelCase = d_ff _lowerCamelCase = num_layers _lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase = num_heads _lowerCamelCase = relative_attention_num_buckets _lowerCamelCase = relative_attention_max_distance _lowerCamelCase = dropout_rate _lowerCamelCase = layer_norm_epsilon _lowerCamelCase = initializer_factor _lowerCamelCase = feed_forward_proj _lowerCamelCase = use_cache _lowerCamelCase = self.feed_forward_proj.split('''-''' ) _lowerCamelCase = act_info[-1] _lowerCamelCase = act_info[0] == '''gated''' if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCamelCase = '''gelu_new''' super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , ) class UpperCamelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _lowerCamelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _lowerCamelCase = '''past_encoder_sequence + sequence''' _lowerCamelCase = {0: '''batch'''} _lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A_ , direction='''inputs''' ) return common_inputs @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 13
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from __future__ import annotations from math import pi def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['PoolFormerFeatureExtractor'] snake_case__ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
from __future__ import annotations snake_case__ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> None: """simple docstring""" _lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree _lowerCamelCase = {} _lowerCamelCase = source_vertex def UpperCamelCase_ ( self ) -> None: """simple docstring""" _lowerCamelCase = {self.source_vertex} _lowerCamelCase = None _lowerCamelCase = [self.source_vertex] # first in first out queue while queue: _lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(A_ ) _lowerCamelCase = vertex queue.append(A_ ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex _lowerCamelCase = self.parent.get(A_ ) if target_vertex_parent is None: _lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(A_ ) return self.shortest_path(A_ ) + F'->{target_vertex}' if __name__ == "__main__": snake_case__ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> str: '''simple docstring''' if attention_mask is None: _lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _lowerCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _lowerCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="relu" , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=20 , A_=2 , A_=1 , A_=0 , ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = encoder_layerdrop _lowerCamelCase = decoder_layerdrop _lowerCamelCase = max_position_embeddings _lowerCamelCase = eos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = bos_token_id def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = self.eos_token_id # Eos Token _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) _lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCamelCase = self.get_config() _lowerCamelCase = prepare_mam_aaa_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = MaMaaaModel(config=A_ ).get_decoder().to(A_ ).eval() _lowerCamelCase = inputs_dict['''input_ids'''] _lowerCamelCase = inputs_dict['''attention_mask'''] _lowerCamelCase = inputs_dict['''head_mask'''] # first forward pass _lowerCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) _lowerCamelCase , _lowerCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCamelCase = model(A_ , attention_mask=A_ )['''last_hidden_state'''] _lowerCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[ '''last_hidden_state''' ] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-2 ) ) def UpperCamelCase_ ( self , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaMaaaModel(config=A_ ).to(A_ ).eval() _lowerCamelCase = model(**A_ ) _lowerCamelCase = outputs.encoder_last_hidden_state _lowerCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = model.get_encoder() encoder.save_pretrained(A_ ) _lowerCamelCase = MaMaaaEncoder.from_pretrained(A_ ).to(A_ ) _lowerCamelCase = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = model.get_decoder() decoder.save_pretrained(A_ ) _lowerCamelCase = MaMaaaDecoder.from_pretrained(A_ ).to(A_ ) _lowerCamelCase = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=A_ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) A_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () A_ = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) A_ = True A_ = True A_ = False A_ = False def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaMaaaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) _lowerCamelCase , _lowerCamelCase = model_class.from_pretrained(A_ , output_loading_info=A_ ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A_ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _lowerCamelCase = model_class(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = copy.deepcopy(self._prepare_for_class(A_ , A_ ) ) if not self.is_encoder_decoder: _lowerCamelCase = inputs['''input_ids'''] del inputs["input_ids"] else: _lowerCamelCase = inputs['''input_ids'''] _lowerCamelCase = inputs.get('''decoder_input_ids''' , A_ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , A_ ) _lowerCamelCase = model.get_input_embeddings() if not self.is_encoder_decoder: _lowerCamelCase = wte(A_ ) else: _lowerCamelCase = wte(A_ ) _lowerCamelCase = wte(A_ ) with torch.no_grad(): model(**A_ )[0] def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() _lowerCamelCase = input_dict['''input_ids'''] _lowerCamelCase = input_ids.ne(1 ).to(A_ ) _lowerCamelCase = MaMaaaForConditionalGeneration(A_ ).eval().to(A_ ) if torch_device == "cuda": model.half() model.generate(A_ , attention_mask=A_ ) model.generate(num_beams=4 , do_sample=A_ , early_stopping=A_ , num_return_sequences=3 ) def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' return torch.tensor(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) snake_case__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(A_ ) _lowerCamelCase = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) _lowerCamelCase = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) _lowerCamelCase = prepare_mam_aaa_inputs_dict(model.config , A_ , A_ ) with torch.no_grad(): _lowerCamelCase = model(**A_ )[0] _lowerCamelCase = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , A_ ) # change to expected output here _lowerCamelCase = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=A_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(A_ ) # change to intended input _lowerCamelCase = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) _lowerCamelCase = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) _lowerCamelCase = prepare_mam_aaa_inputs_dict(model.config , A_ , A_ ) with torch.no_grad(): _lowerCamelCase = model(**A_ )[0] _lowerCamelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , A_ ) # change to expected output here _lowerCamelCase = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=A_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(A_ ) _lowerCamelCase = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) _lowerCamelCase = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _lowerCamelCase = tokenizer(A_ , padding=A_ , return_tensors='''pt''' ) _lowerCamelCase = model.generate( input_ids=dct['''input_ids'''].to(A_ ) , attention_mask=dct['''attention_mask'''].to(A_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) _lowerCamelCase = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] _lowerCamelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=A_ , skip_special_tokens=A_ ) assert generated == expected_en
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) snake_case__ = logging.getLogger(__name__) snake_case__ = tf.data.AUTOTUNE def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__UpperCAmelCase , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__UpperCAmelCase , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__UpperCAmelCase , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__UpperCAmelCase , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__UpperCAmelCase , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__UpperCAmelCase , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__UpperCAmelCase , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__UpperCAmelCase , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__UpperCAmelCase , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__UpperCAmelCase , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__UpperCAmelCase , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__UpperCAmelCase , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__UpperCAmelCase , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__UpperCAmelCase , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__UpperCAmelCase , help='''Model ID to upload to on the Hugging Face Hub.''' ) _lowerCamelCase = parser.parse_args() return args def __magic_name__( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' try: if args.tpu_name: _lowerCamelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _lowerCamelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__UpperCAmelCase ) tf.tpu.experimental.initialize_tpu_system(__UpperCAmelCase ) return tpu def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = 0 for file in file_list: _lowerCamelCase = file.split('''/''' )[-1] _lowerCamelCase = re.search(r'''-\d+-(\d+)\.tfrecord''' , __UpperCAmelCase ).group(1 ) _lowerCamelCase = int(__UpperCAmelCase ) num_samples += sample_count return num_samples def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> str: '''simple docstring''' _lowerCamelCase = count_samples(__UpperCAmelCase ) _lowerCamelCase = tf.data.Dataset.from_tensor_slices(__UpperCAmelCase ) if shuffle: _lowerCamelCase = dataset.shuffle(len(__UpperCAmelCase ) ) _lowerCamelCase = tf.data.TFRecordDataset(__UpperCAmelCase , num_parallel_reads=__UpperCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _lowerCamelCase = dataset.apply(tf.data.experimental.assert_cardinality(__UpperCAmelCase ) ) _lowerCamelCase = dataset.map(__UpperCAmelCase , num_parallel_calls=__UpperCAmelCase ) if shuffle: assert shuffle_buffer_size is not None _lowerCamelCase = dataset.shuffle(args.shuffle_buffer_size ) _lowerCamelCase = dataset.batch(__UpperCAmelCase , drop_remainder=__UpperCAmelCase ) _lowerCamelCase = dataset.map(__UpperCAmelCase , num_parallel_calls=__UpperCAmelCase ) _lowerCamelCase = dataset.prefetch(__UpperCAmelCase ) return dataset def __magic_name__( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: _lowerCamelCase = initialize_tpu(__UpperCAmelCase ) _lowerCamelCase = tf.distribute.TPUStrategy(__UpperCAmelCase ) else: _lowerCamelCase = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) _lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer ) _lowerCamelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) _lowerCamelCase = tokenizer.vocab_size _lowerCamelCase = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) _lowerCamelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) _lowerCamelCase = count_samples(__UpperCAmelCase ) _lowerCamelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _lowerCamelCase = steps_per_epoch * args.num_epochs with strategy.scope(): _lowerCamelCase = TFAutoModelForMaskedLM.from_config(__UpperCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _lowerCamelCase , _lowerCamelCase = create_optimizer( num_train_steps=__UpperCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__UpperCAmelCase , metrics=['''accuracy'''] ) def decode_fn(__UpperCAmelCase ): _lowerCamelCase = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__UpperCAmelCase , __UpperCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _lowerCamelCase = DataCollatorForLanguageModeling( tokenizer=__UpperCAmelCase , mlm_probability=args.mlm_probability , mlm=__UpperCAmelCase , return_tensors='''tf''' ) def mask_with_collator(__UpperCAmelCase ): # TF really needs an isin() function _lowerCamelCase = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) _lowerCamelCase , _lowerCamelCase = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__UpperCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__UpperCAmelCase , ) return batch _lowerCamelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync _lowerCamelCase = prepare_dataset( __UpperCAmelCase , decode_fn=__UpperCAmelCase , mask_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase , shuffle=__UpperCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) _lowerCamelCase = prepare_dataset( __UpperCAmelCase , decode_fn=__UpperCAmelCase , mask_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase , shuffle=__UpperCAmelCase , ) _lowerCamelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__UpperCAmelCase ) ) model.fit( __UpperCAmelCase , validation_data=__UpperCAmelCase , epochs=args.num_epochs , callbacks=__UpperCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": snake_case__ = parse_args() main(args)
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available snake_case__ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0