code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'audio-spectrogram-transformer' def __init__( self , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-1_2 , A_=16 , A_=True , A_=10 , A_=10 , A_=10_24 , A_=1_28 , **A_ , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = patch_size _lowerCamelCase = qkv_bias _lowerCamelCase = frequency_stride _lowerCamelCase = time_stride _lowerCamelCase = max_length _lowerCamelCase = num_mel_bins
638
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = jnp.floataa A_ = True def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" super().setup() _lowerCamelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *A_ , **A_ ) -> int: """simple docstring""" _lowerCamelCase = super().__call__(*A_ , **A_ ) _lowerCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = FlaxBigBirdForNaturalQuestionsModule def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' def cross_entropy(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): _lowerCamelCase = logits.shape[-1] _lowerCamelCase = (labels[..., None] == jnp.arange(__UpperCAmelCase )[None]).astype('''f4''' ) _lowerCamelCase = jax.nn.log_softmax(__UpperCAmelCase , axis=-1 ) _lowerCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase = reduction(__UpperCAmelCase ) return loss _lowerCamelCase = partial(__UpperCAmelCase , reduction=jnp.mean ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase : '''simple docstring''' A_ = "google/bigbird-roberta-base" A_ = 3_000 A_ = 10_500 A_ = 128 A_ = 3 A_ = 1 A_ = 5 # tx_args A_ = 3E-5 A_ = 0.0 A_ = 20_000 A_ = 0.00_95 A_ = "bigbird-roberta-natural-questions" A_ = "training-expt" A_ = "data/nq-training.jsonl" A_ = "data/nq-validation.jsonl" def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" os.makedirs(self.base_dir , exist_ok=A_ ) _lowerCamelCase = os.path.join(self.base_dir , self.save_dir ) _lowerCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 4_096 # no dynamic padding on TPUs def __call__( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.collate_fn(A_ ) _lowerCamelCase = jax.tree_util.tree_map(A_ , A_ ) return batch def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.fetch_inputs(features['''input_ids'''] ) _lowerCamelCase = { '''input_ids''': jnp.array(A_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(A_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = [self._fetch_inputs(A_ ) for ids in input_ids] return zip(*A_ ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = [1 for _ in range(len(A_ ) )] while len(A_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if seed is not None: _lowerCamelCase = dataset.shuffle(seed=__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) // batch_size ): _lowerCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__UpperCAmelCase ) @partial(jax.pmap , axis_name='''batch''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' def loss_fn(__UpperCAmelCase ): _lowerCamelCase = model_inputs.pop('''start_labels''' ) _lowerCamelCase = model_inputs.pop('''end_labels''' ) _lowerCamelCase = model_inputs.pop('''pooled_labels''' ) _lowerCamelCase = state.apply_fn(**__UpperCAmelCase , params=__UpperCAmelCase , dropout_rng=__UpperCAmelCase , train=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = outputs return state.loss_fn( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) _lowerCamelCase , _lowerCamelCase = jax.random.split(__UpperCAmelCase ) _lowerCamelCase = jax.value_and_grad(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = grad_fn(state.params ) _lowerCamelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _lowerCamelCase = jax.lax.pmean(__UpperCAmelCase , '''batch''' ) _lowerCamelCase = state.apply_gradients(grads=__UpperCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __magic_name__( __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = model_inputs.pop('''start_labels''' ) _lowerCamelCase = model_inputs.pop('''end_labels''' ) _lowerCamelCase = model_inputs.pop('''pooled_labels''' ) _lowerCamelCase = state.apply_fn(**__UpperCAmelCase , params=state.params , train=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = outputs _lowerCamelCase = state.loss_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase ( train_state.TrainState ): '''simple docstring''' A_ = struct.field(pytree_node=__lowercase ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = None def UpperCamelCase_ ( self , A_ , A_ , A_ , A_=None ) -> List[str]: """simple docstring""" _lowerCamelCase = model.params _lowerCamelCase = TrainState.create( apply_fn=model.__call__ , params=A_ , tx=A_ , loss_fn=A_ , ) if ckpt_dir is not None: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = restore_checkpoint(A_ , A_ ) _lowerCamelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _lowerCamelCase , _lowerCamelCase = build_tx(**A_ ) _lowerCamelCase = train_state.TrainState( step=A_ , apply_fn=model.__call__ , params=A_ , tx=A_ , opt_state=A_ , ) _lowerCamelCase = args _lowerCamelCase = data_collator _lowerCamelCase = lr _lowerCamelCase = params _lowerCamelCase = jax_utils.replicate(A_ ) return state def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = self.args _lowerCamelCase = len(A_ ) // args.batch_size _lowerCamelCase = jax.random.PRNGKey(0 ) _lowerCamelCase = jax.random.split(A_ , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase = get_batched_dataset(A_ , args.batch_size , seed=A_ ) _lowerCamelCase = 0 for batch in tqdm(A_ , total=A_ , desc=F'Running EPOCH-{epoch}' ): _lowerCamelCase = self.data_collator(A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.train_step_fn(A_ , A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _lowerCamelCase = jax_utils.unreplicate(state.step ) _lowerCamelCase = running_loss.item() / i _lowerCamelCase = self.scheduler_fn(state_step - 1 ) _lowerCamelCase = self.evaluate(A_ , A_ ) _lowerCamelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(A_ ) ) self.logger.log(A_ , commit=A_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = get_batched_dataset(A_ , self.args.batch_size ) _lowerCamelCase = len(A_ ) // self.args.batch_size _lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase = 0 for batch in tqdm(A_ , total=A_ , desc='''Evaluating ... ''' ): _lowerCamelCase = self.data_collator(A_ ) _lowerCamelCase = self.val_step_fn(A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = jax_utils.unreplicate(A_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=''' ... ''' ) self.model_save_fn(A_ , params=state.params ) with open(os.path.join(A_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(A_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(A_ , '''data_collator.joblib''' ) ) with open(os.path.join(A_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , A_ ) print('''DONE''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=''' ... ''' ) with open(os.path.join(__UpperCAmelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _lowerCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(__UpperCAmelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _lowerCamelCase = from_bytes(state.opt_state , f.read() ) _lowerCamelCase = joblib.load(os.path.join(__UpperCAmelCase , '''args.joblib''' ) ) _lowerCamelCase = joblib.load(os.path.join(__UpperCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__UpperCAmelCase , '''training_state.json''' ) , '''r''' ) as f: _lowerCamelCase = json.load(__UpperCAmelCase ) _lowerCamelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = num_train_steps - warmup_steps _lowerCamelCase = optax.linear_schedule(init_value=__UpperCAmelCase , end_value=__UpperCAmelCase , transition_steps=__UpperCAmelCase ) _lowerCamelCase = optax.linear_schedule(init_value=__UpperCAmelCase , end_value=1E-7 , transition_steps=__UpperCAmelCase ) _lowerCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' def weight_decay_mask(__UpperCAmelCase ): _lowerCamelCase = traverse_util.flatten_dict(__UpperCAmelCase ) _lowerCamelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__UpperCAmelCase ) _lowerCamelCase = scheduler_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = optax.adamw(learning_rate=__UpperCAmelCase , weight_decay=__UpperCAmelCase , mask=__UpperCAmelCase ) return tx, lr
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
def __magic_name__( __UpperCAmelCase ) -> list: '''simple docstring''' _lowerCamelCase = [0] * len(__UpperCAmelCase ) for i in range(1 , len(__UpperCAmelCase ) ): # use last results for better performance - dynamic programming _lowerCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowerCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowerCamelCase = j return prefix_result def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' return max(prefix_function(__UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['pixel_values'] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = 1 / 2_55 , A_ = True , A_ = None , A_ = True , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) _lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_56, '''width''': 2_56} _lowerCamelCase = get_size_dict(A_ , param_name='''crop_size''' ) _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_center_crop _lowerCamelCase = crop_size _lowerCamelCase = do_flip_channel_order def UpperCamelCase_ ( self , A_ , A_ , A_ = PIL.Image.BILINEAR , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCamelCase = get_resize_output_image_size(A_ , size=size['''shortest_edge'''] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowerCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(A_ , data_format=A_ ) def UpperCamelCase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: """simple docstring""" _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) _lowerCamelCase = crop_size if crop_size is not None else self.crop_size _lowerCamelCase = get_size_dict(A_ , param_name='''crop_size''' ) _lowerCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowerCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCamelCase = [self.flip_channel_order(image=A_ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> int: """simple docstring""" _lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): _lowerCamelCase = target_sizes.numpy() _lowerCamelCase = [] for idx in range(len(A_ ) ): _lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) _lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: _lowerCamelCase = logits.argmax(dim=1 ) _lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
import math def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = int(math.floor(math.sqrt(__UpperCAmelCase ) ) ) _lowerCamelCase = 0 while arr[min(__UpperCAmelCase , __UpperCAmelCase ) - 1] < x: _lowerCamelCase = step step += int(math.floor(math.sqrt(__UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: _lowerCamelCase = prev + 1 if prev == min(__UpperCAmelCase , __UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": snake_case__ = input('Enter numbers separated by a comma:\n').strip() snake_case__ = [int(item) for item in user_input.split(',')] snake_case__ = int(input('Enter the number to be searched:\n')) snake_case__ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'''Number {x} is at index {res}''')
638
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' A_ = 'nat' A_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , A_=4 , A_=3 , A_=64 , A_=[3, 4, 6, 5] , A_=[2, 4, 8, 16] , A_=7 , A_=3.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=0.02 , A_=1E-5 , A_=0.0 , A_=None , A_=None , **A_ , ) -> List[str]: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = embed_dim _lowerCamelCase = depths _lowerCamelCase = len(A_ ) _lowerCamelCase = num_heads _lowerCamelCase = kernel_size _lowerCamelCase = mlp_ratio _lowerCamelCase = qkv_bias _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = drop_path_rate _lowerCamelCase = hidden_act _lowerCamelCase = layer_norm_eps _lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase = int(embed_dim * 2 ** (len(A_ ) - 1) ) _lowerCamelCase = layer_scale_init_value _lowerCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(A_ ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case__ = 'true' def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=16 ) -> Union[str, Any]: '''simple docstring''' set_seed(42 ) _lowerCamelCase = RegressionModel() _lowerCamelCase = deepcopy(__UpperCAmelCase ) _lowerCamelCase = RegressionDataset(length=__UpperCAmelCase ) _lowerCamelCase = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase ) model.to(accelerator.device ) _lowerCamelCase , _lowerCamelCase = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) return model, ddp_model, dataloader def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict: '''simple docstring''' _lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) _lowerCamelCase = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__UpperCAmelCase ): _lowerCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs with accelerator.main_process_first(): _lowerCamelCase = dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) _lowerCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): if use_longest: return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(__UpperCAmelCase , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=16 ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = Accelerator(dispatch_batches=__UpperCAmelCase , split_batches=__UpperCAmelCase ) _lowerCamelCase = get_dataloader(__UpperCAmelCase , not dispatch_batches ) _lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [] for batch in dataloader: _lowerCamelCase , _lowerCamelCase = batch.values() with torch.no_grad(): _lowerCamelCase = model(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCamelCase , _lowerCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCAmelCase ) targs.append(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = torch.cat(__UpperCAmelCase ), torch.cat(__UpperCAmelCase ) return logits, targs def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=16 ) -> Optional[int]: '''simple docstring''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = get_basic_setup(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = generate_predictions(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) assert ( len(__UpperCAmelCase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCAmelCase )}' def __magic_name__( __UpperCAmelCase = False , __UpperCAmelCase = False ) -> Dict: '''simple docstring''' _lowerCamelCase = evaluate.load('''glue''' , '''mrpc''' ) _lowerCamelCase , _lowerCamelCase = get_mrpc_setup(__UpperCAmelCase , __UpperCAmelCase ) # First do baseline _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = setup['''no'''] model.to(__UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(__UpperCAmelCase ) with torch.inference_mode(): _lowerCamelCase = model(**__UpperCAmelCase ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCAmelCase , references=batch['''labels'''] ) _lowerCamelCase = metric.compute() # Then do distributed _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCamelCase = model(**__UpperCAmelCase ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) _lowerCamelCase = batch['''labels'''] _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCAmelCase , references=__UpperCAmelCase ) _lowerCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __magic_name__( ) -> Dict: '''simple docstring''' _lowerCamelCase = Accelerator(split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(__UpperCAmelCase , __UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCamelCase = Accelerator(split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(__UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) _lowerCamelCase = Accelerator() test_torch_metrics(__UpperCAmelCase , 512 ) accelerator.state._reset_state() def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
638
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case__ = 'bert-base-cased' snake_case__ = 'google/pegasus-xsum' snake_case__ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] snake_case__ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] snake_case__ = 'patrickvonplaten/t5-tiny-random' snake_case__ = 'sshleifer/bart-tiny-random' snake_case__ = 'sshleifer/tiny-mbart' snake_case__ = 'sshleifer/tiny-marian-en-de' def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''\n'''.join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open('''w''' ).writelines(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(__UpperCAmelCase , F'{split}.source' ) , __UpperCAmelCase ) _dump_articles(os.path.join(__UpperCAmelCase , F'{split}.target' ) , __UpperCAmelCase ) return tmp_dir class UpperCamelCase ( __lowercase ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in ARTICLES ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in SUMMARIES ) _lowerCamelCase = 4 _lowerCamelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCamelCase , _lowerCamelCase = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=A_ , type_path='''train''' , max_source_length=A_ , max_target_length=A_ , src_lang=A_ , tgt_lang=A_ , ) _lowerCamelCase = DataLoader(A_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(A_ , A_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCamelCase = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in ARTICLES ) _lowerCamelCase = max(len(tokenizer.encode(A_ ) ) for a in SUMMARIES ) _lowerCamelCase = 4 _lowerCamelCase = LegacySeqaSeqDataset( A_ , data_dir=A_ , type_path='''train''' , max_source_length=20 , max_target_length=A_ , ) _lowerCamelCase = DataLoader(A_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) _lowerCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCamelCase = tmp_dir.joinpath('''train.source''' ).open().readlines() _lowerCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(A_ , A_ , 1_28 , A_ ) _lowerCamelCase = {x.name for x in tmp_dir.iterdir()} _lowerCamelCase = {x.name for x in save_dir.iterdir()} _lowerCamelCase = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(A_ ) < len(A_ ) assert len(A_ ) == 1 assert len(packed_examples[0] ) == sum(len(A_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" if not FAIRSEQ_AVAILABLE: return _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._get_dataset(max_len=64 ) _lowerCamelCase = 64 _lowerCamelCase = ds.make_dynamic_sampler(A_ , required_batch_size_multiple=A_ ) _lowerCamelCase = [len(A_ ) for x in batch_sampler] assert len(set(A_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(A_ ) == len(A_ ) # no dropped or added examples _lowerCamelCase = DataLoader(A_ , batch_sampler=A_ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase = [] _lowerCamelCase = [] for batch in data_loader: _lowerCamelCase = batch['''input_ids'''].shape _lowerCamelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCamelCase = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(A_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(A_ ) assert num_src_per_batch[0] == max(A_ ) if failures: raise AssertionError(F'too many tokens in {len(A_ )} batches' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._get_dataset(max_len=5_12 ) _lowerCamelCase = 2 _lowerCamelCase = ds.make_sortish_sampler(A_ , shuffle=A_ ) _lowerCamelCase = DataLoader(A_ , batch_size=A_ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase = DataLoader(A_ , batch_size=A_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=A_ ) _lowerCamelCase = tokenizer.pad_token_id def count_pad_tokens(A_ , A_="input_ids" ): return [batch[k].eq(A_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(A_ , k='''labels''' ) ) < sum(count_pad_tokens(A_ , k='''labels''' ) ) assert sum(count_pad_tokens(A_ ) ) < sum(count_pad_tokens(A_ ) ) assert len(A_ ) == len(A_ ) def UpperCamelCase_ ( self , A_=10_00 , A_=1_28 ) -> Tuple: """simple docstring""" if os.getenv('''USE_REAL_DATA''' , A_ ): _lowerCamelCase = '''examples/seq2seq/wmt_en_ro''' _lowerCamelCase = max_len * 2 * 64 if not Path(A_ ).joinpath('''train.len''' ).exists(): save_len_file(A_ , A_ ) else: _lowerCamelCase = '''examples/seq2seq/test_data/wmt_en_ro''' _lowerCamelCase = max_len * 4 save_len_file(A_ , A_ ) _lowerCamelCase = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=A_ , type_path='''train''' , max_source_length=A_ , max_target_length=A_ , n_obs=A_ , ) return ds, max_tokens, tokenizer def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._get_dataset() _lowerCamelCase = set(DistributedSortishSampler(A_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=A_ ) ) _lowerCamelCase = set(DistributedSortishSampler(A_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=A_ ) ) assert idsa.intersection(A_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = AutoTokenizer.from_pretrained(A_ , use_fast=A_ ) if tok_name == MBART_TINY: _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _lowerCamelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCamelCase = SeqaSeqDataset( A_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _lowerCamelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(A_ ) == 1 if tok_name == BART_TINY else len(A_ ) == 0
638
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = ort.SessionOptions() _lowerCamelCase = False return options def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A red cat sitting on a park bench''' _lowerCamelCase = np.random.RandomState(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _lowerCamelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) _lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A red cat sitting on a park bench''' _lowerCamelCase = np.random.RandomState(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
638
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available snake_case__ = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return number | (1 << position) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return number & ~(1 << position) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return number ^ (1 << position) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
638
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
1
import os def __magic_name__( __UpperCAmelCase = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) as in_file: _lowerCamelCase = in_file.read() _lowerCamelCase = [[int(__UpperCAmelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] _lowerCamelCase = [[0 for cell in row] for row in grid] _lowerCamelCase = len(grid[0] ) _lowerCamelCase = [[0 for i in range(__UpperCAmelCase )] for j in range(__UpperCAmelCase )] _lowerCamelCase = grid[0][0] for i in range(1 , __UpperCAmelCase ): _lowerCamelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , __UpperCAmelCase ): _lowerCamelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , __UpperCAmelCase ): for j in range(1 , __UpperCAmelCase ): _lowerCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
638
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge snake_case__ = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] snake_case__ = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , bootstrap_aggregation=__UpperCAmelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , bootstrap_aggregation=__UpperCAmelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = '''rougeLsum''' _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , newline_sep=__UpperCAmelCase , rouge_keys=[k] )[k] _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , newline_sep=__UpperCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = ['''rouge1''', '''rouge2''', '''rougeL'''] _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , newline_sep=__UpperCAmelCase , rouge_keys=__UpperCAmelCase ) _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , newline_sep=__UpperCAmelCase , rouge_keys=__UpperCAmelCase ) assert score_sep == score_no_sep def __magic_name__( ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _lowerCamelCase = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , newline_sep=__UpperCAmelCase ) == calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , newline_sep=__UpperCAmelCase ) def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _lowerCamelCase = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , rouge_keys=['''rougeLsum'''] , newline_sep=__UpperCAmelCase )['''rougeLsum'''] _lowerCamelCase = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _lowerCamelCase = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = nn.functional.normalize(__UpperCAmelCase ) _lowerCamelCase = nn.functional.normalize(__UpperCAmelCase ) return torch.mm(__UpperCAmelCase , normalized_text_embeds.t() ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = CLIPConfig A_ = ['CLIPEncoderLayer'] def __init__( self , A_ ) -> Any: """simple docstring""" super().__init__(A_ ) _lowerCamelCase = CLIPVisionModel(config.vision_config ) _lowerCamelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=A_ ) _lowerCamelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=A_ ) _lowerCamelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=A_ ) _lowerCamelCase = nn.Parameter(torch.ones(17 ) , requires_grad=A_ ) _lowerCamelCase = nn.Parameter(torch.ones(3 ) , requires_grad=A_ ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.vision_model(A_ )[1] # pooled_output _lowerCamelCase = self.visual_projection(A_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCamelCase = cosine_distance(A_ , self.special_care_embeds ).cpu().float().numpy() _lowerCamelCase = cosine_distance(A_ , self.concept_embeds ).cpu().float().numpy() _lowerCamelCase = [] _lowerCamelCase = image_embeds.shape[0] for i in range(A_ ): _lowerCamelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCamelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCamelCase = special_cos_dist[i][concept_idx] _lowerCamelCase = self.special_care_embeds_weights[concept_idx].item() _lowerCamelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) _lowerCamelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _lowerCamelCase = cos_dist[i][concept_idx] _lowerCamelCase = self.concept_embeds_weights[concept_idx].item() _lowerCamelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(A_ ) result.append(A_ ) _lowerCamelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.vision_model(A_ )[1] # pooled_output _lowerCamelCase = self.visual_projection(A_ ) _lowerCamelCase = cosine_distance(A_ , self.special_care_embeds ) _lowerCamelCase = cosine_distance(A_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCamelCase = 0.0 _lowerCamelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCamelCase = torch.any(special_scores > 0 , dim=1 ) _lowerCamelCase = special_care * 0.01 _lowerCamelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCamelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCamelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
638
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
1
from __future__ import annotations def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) _lowerCamelCase = number_of_bytes // partitions _lowerCamelCase = [] for i in range(__UpperCAmelCase ): _lowerCamelCase = i * bytes_per_partition + 1 _lowerCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
638
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = 'ml.p3.2xlarge' A_ = 'accelerate_sagemaker_execution_role' A_ = 'hf-sm' A_ = 'us-east-1' A_ = 1 A_ = 'accelerate-sagemaker-1' A_ = '1.6' A_ = '4.4' A_ = 'train.py' A_ = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] A_ = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , A_ ) assert isinstance(converted_args['''do_train'''] , A_ ) assert isinstance(converted_args['''epochs'''] , A_ ) assert isinstance(converted_args['''learning_rate'''] , A_ ) assert isinstance(converted_args['''max_steps'''] , A_ ) with pytest.raises(A_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
638
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] snake_case__ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } snake_case__ = {f'''funnel-transformer/{name}''': 512 for name in _model_names} snake_case__ = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = FunnelTokenizer A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = 2 def __init__( self , A_=None , A_=None , A_=True , A_="<unk>" , A_="<sep>" , A_="<pad>" , A_="<cls>" , A_="<mask>" , A_="<s>" , A_="</s>" , A_=True , A_=True , A_=None , A_="##" , **A_ , ) -> Tuple: """simple docstring""" super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , bos_token=A_ , eos_token=A_ , clean_text=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , wordpieces_prefix=A_ , **A_ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(A_ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**A_ ) _lowerCamelCase = do_lower_case def UpperCamelCase_ ( self , A_ , A_=None ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
638
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
1
class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> Optional[int]: """simple docstring""" # we need a list not a string, so do something to change the type _lowerCamelCase = arr.split(''',''' ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = [int(self.array[0] )] * len(self.array ) _lowerCamelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowerCamelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowerCamelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": snake_case__ = input('please input some numbers:') snake_case__ = SubArray(whole_array) snake_case__ = array.solve_sub_array() print(('the results is:', re))
638
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_ = True , A_ = None , A_ = 32 , A_ = True , A_ = 1 / 2_55 , A_ = True , A_ = True , A_ = [0.48145466, 0.4578275, 0.40821073] , A_ = [0.26862954, 0.26130258, 0.27577711] , A_ = True , A_=7 , A_=30 , A_=4_00 , A_=3 , ) -> int: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = do_resize _lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_88} _lowerCamelCase = size_divisor _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = do_center_crop _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_pad _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCamelCase_ ( self , A_ , A_=False ) -> Union[str, Any]: """simple docstring""" if not batched: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] _lowerCamelCase = size / min(A_ , A_ ) if h < w: _lowerCamelCase , _lowerCamelCase = size, scale * w else: _lowerCamelCase , _lowerCamelCase = scale * h, size _lowerCamelCase = int((13_33 / 8_00) * size ) if max(A_ , A_ ) > max_size: _lowerCamelCase = max_size / max(A_ , A_ ) _lowerCamelCase = newh * scale _lowerCamelCase = neww * scale _lowerCamelCase , _lowerCamelCase = int(newh + 0.5 ), int(neww + 0.5 ) _lowerCamelCase , _lowerCamelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = BridgeTowerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = BridgeTowerImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) self.assertTrue(hasattr(A_ , '''size_divisor''' ) ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" # Initialize image processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" # Initialize image processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" # Initialize image processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
638
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'big_bird' def __init__( self , A_=5_03_58 , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=40_96 , A_=2 , A_=0.02 , A_=1E-1_2 , A_=True , A_=0 , A_=1 , A_=2 , A_=66 , A_="block_sparse" , A_=True , A_=False , A_=64 , A_=3 , A_=None , **A_ , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = type_vocab_size _lowerCamelCase = layer_norm_eps _lowerCamelCase = use_cache _lowerCamelCase = rescale_embeddings _lowerCamelCase = attention_type _lowerCamelCase = use_bias _lowerCamelCase = block_size _lowerCamelCase = num_random_blocks _lowerCamelCase = classifier_dropout class UpperCamelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
638
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> str: '''simple docstring''' if attention_mask is None: _lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _lowerCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _lowerCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="relu" , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=20 , A_=2 , A_=1 , A_=0 , ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = encoder_layerdrop _lowerCamelCase = decoder_layerdrop _lowerCamelCase = max_position_embeddings _lowerCamelCase = eos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = bos_token_id def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = self.eos_token_id # Eos Token _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) _lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCamelCase = self.get_config() _lowerCamelCase = prepare_mam_aaa_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = MaMaaaModel(config=A_ ).get_decoder().to(A_ ).eval() _lowerCamelCase = inputs_dict['''input_ids'''] _lowerCamelCase = inputs_dict['''attention_mask'''] _lowerCamelCase = inputs_dict['''head_mask'''] # first forward pass _lowerCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) _lowerCamelCase , _lowerCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCamelCase = model(A_ , attention_mask=A_ )['''last_hidden_state'''] _lowerCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[ '''last_hidden_state''' ] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-2 ) ) def UpperCamelCase_ ( self , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaMaaaModel(config=A_ ).to(A_ ).eval() _lowerCamelCase = model(**A_ ) _lowerCamelCase = outputs.encoder_last_hidden_state _lowerCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = model.get_encoder() encoder.save_pretrained(A_ ) _lowerCamelCase = MaMaaaEncoder.from_pretrained(A_ ).to(A_ ) _lowerCamelCase = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = model.get_decoder() decoder.save_pretrained(A_ ) _lowerCamelCase = MaMaaaDecoder.from_pretrained(A_ ).to(A_ ) _lowerCamelCase = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=A_ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) A_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () A_ = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) A_ = True A_ = True A_ = False A_ = False def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaMaaaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) _lowerCamelCase , _lowerCamelCase = model_class.from_pretrained(A_ , output_loading_info=A_ ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A_ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _lowerCamelCase = model_class(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = copy.deepcopy(self._prepare_for_class(A_ , A_ ) ) if not self.is_encoder_decoder: _lowerCamelCase = inputs['''input_ids'''] del inputs["input_ids"] else: _lowerCamelCase = inputs['''input_ids'''] _lowerCamelCase = inputs.get('''decoder_input_ids''' , A_ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , A_ ) _lowerCamelCase = model.get_input_embeddings() if not self.is_encoder_decoder: _lowerCamelCase = wte(A_ ) else: _lowerCamelCase = wte(A_ ) _lowerCamelCase = wte(A_ ) with torch.no_grad(): model(**A_ )[0] def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() _lowerCamelCase = input_dict['''input_ids'''] _lowerCamelCase = input_ids.ne(1 ).to(A_ ) _lowerCamelCase = MaMaaaForConditionalGeneration(A_ ).eval().to(A_ ) if torch_device == "cuda": model.half() model.generate(A_ , attention_mask=A_ ) model.generate(num_beams=4 , do_sample=A_ , early_stopping=A_ , num_return_sequences=3 ) def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' return torch.tensor(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) snake_case__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(A_ ) _lowerCamelCase = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) _lowerCamelCase = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) _lowerCamelCase = prepare_mam_aaa_inputs_dict(model.config , A_ , A_ ) with torch.no_grad(): _lowerCamelCase = model(**A_ )[0] _lowerCamelCase = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , A_ ) # change to expected output here _lowerCamelCase = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=A_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(A_ ) # change to intended input _lowerCamelCase = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) _lowerCamelCase = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) _lowerCamelCase = prepare_mam_aaa_inputs_dict(model.config , A_ , A_ ) with torch.no_grad(): _lowerCamelCase = model(**A_ )[0] _lowerCamelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , A_ ) # change to expected output here _lowerCamelCase = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=A_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(A_ ) _lowerCamelCase = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) _lowerCamelCase = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _lowerCamelCase = tokenizer(A_ , padding=A_ , return_tensors='''pt''' ) _lowerCamelCase = model.generate( input_ids=dct['''input_ids'''].to(A_ ) , attention_mask=dct['''attention_mask'''].to(A_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) _lowerCamelCase = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] _lowerCamelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=A_ , skip_special_tokens=A_ ) assert generated == expected_en
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
from collections.abc import Sequence def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 _lowerCamelCase = 0 if allow_empty_subarrays else float('''-inf''' ) _lowerCamelCase = 0.0 for num in arr: _lowerCamelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCamelCase = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
from __future__ import annotations snake_case__ = [] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(__UpperCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__UpperCAmelCase , -1 , -1 ) , range(__UpperCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__UpperCAmelCase , -1 , -1 ) , range(__UpperCAmelCase , len(__UpperCAmelCase ) ) ): if board[i][j] == 1: return False return True def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if row >= len(__UpperCAmelCase ): solution.append(__UpperCAmelCase ) printboard(__UpperCAmelCase ) print() return True for i in range(len(__UpperCAmelCase ) ): if is_safe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = 1 solve(__UpperCAmelCase , row + 1 ) _lowerCamelCase = 0 return False def __magic_name__( __UpperCAmelCase ) -> None: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): for j in range(len(__UpperCAmelCase ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) snake_case__ = 8 snake_case__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
638
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 16 , A_ = 88 , A_ = None , A_ = None , A_ = 1 , A_ = 0.0 , A_ = 32 , A_ = None , A_ = False , A_ = None , A_ = "geglu" , A_ = True , A_ = True , ) -> List[str]: """simple docstring""" super().__init__() _lowerCamelCase = num_attention_heads _lowerCamelCase = attention_head_dim _lowerCamelCase = num_attention_heads * attention_head_dim _lowerCamelCase = in_channels _lowerCamelCase = torch.nn.GroupNorm(num_groups=A_ , num_channels=A_ , eps=1E-6 , affine=A_ ) _lowerCamelCase = nn.Linear(A_ , A_ ) # 3. Define transformers blocks _lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , cross_attention_dim=A_ , activation_fn=A_ , attention_bias=A_ , double_self_attention=A_ , norm_elementwise_affine=A_ , ) for d in range(A_ ) ] ) _lowerCamelCase = nn.Linear(A_ , A_ ) def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=None , A_=1 , A_=None , A_ = True , ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = hidden_states.shape _lowerCamelCase = batch_frames // num_frames _lowerCamelCase = hidden_states _lowerCamelCase = hidden_states[None, :].reshape(A_ , A_ , A_ , A_ , A_ ) _lowerCamelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _lowerCamelCase = self.norm(A_ ) _lowerCamelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A_ , A_ ) _lowerCamelCase = self.proj_in(A_ ) # 2. Blocks for block in self.transformer_blocks: _lowerCamelCase = block( A_ , encoder_hidden_states=A_ , timestep=A_ , cross_attention_kwargs=A_ , class_labels=A_ , ) # 3. Output _lowerCamelCase = self.proj_out(A_ ) _lowerCamelCase = ( hidden_states[None, None, :] .reshape(A_ , A_ , A_ , A_ , A_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _lowerCamelCase = hidden_states.reshape(A_ , A_ , A_ , A_ ) _lowerCamelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A_ )
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' for attribute in key.split('''.''' ): _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "weight" in name: _lowerCamelCase = '''weight''' elif "bias" in name: _lowerCamelCase = '''bias''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = SEWConfig() if is_finetuned: _lowerCamelCase = model.wav_encoder.wav_model.cfg else: _lowerCamelCase = model.cfg _lowerCamelCase = fs_config.conv_bias _lowerCamelCase = eval(fs_config.conv_feature_layers ) _lowerCamelCase = [x[0] for x in conv_layers] _lowerCamelCase = [x[1] for x in conv_layers] _lowerCamelCase = [x[2] for x in conv_layers] _lowerCamelCase = '''gelu''' _lowerCamelCase = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _lowerCamelCase = 0.0 _lowerCamelCase = fs_config.activation_fn.name _lowerCamelCase = fs_config.encoder_embed_dim _lowerCamelCase = 0.0_2 _lowerCamelCase = fs_config.encoder_ffn_embed_dim _lowerCamelCase = 1E-5 _lowerCamelCase = fs_config.encoder_layerdrop _lowerCamelCase = fs_config.encoder_attention_heads _lowerCamelCase = fs_config.conv_pos_groups _lowerCamelCase = fs_config.conv_pos _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = fs_config.encoder_layers _lowerCamelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _lowerCamelCase = model.cfg _lowerCamelCase = fs_config.final_dropout _lowerCamelCase = fs_config.layerdrop _lowerCamelCase = fs_config.activation_dropout _lowerCamelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _lowerCamelCase = fs_config.attention_dropout _lowerCamelCase = fs_config.dropout_input _lowerCamelCase = fs_config.dropout _lowerCamelCase = fs_config.mask_channel_length _lowerCamelCase = fs_config.mask_channel_prob _lowerCamelCase = fs_config.mask_length _lowerCamelCase = fs_config.mask_prob _lowerCamelCase = '''Wav2Vec2FeatureExtractor''' _lowerCamelCase = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _lowerCamelCase = SEWConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = convert_config(model[0] , __UpperCAmelCase ) _lowerCamelCase = model[0].eval() _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , __UpperCAmelCase ) _lowerCamelCase = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = SEWForCTC(__UpperCAmelCase ) else: _lowerCamelCase = SEWModel(__UpperCAmelCase ) feature_extractor.save_pretrained(__UpperCAmelCase ) recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
638
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = {"vocab_file": "spiece.model"} snake_case__ = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } snake_case__ = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } snake_case__ = "▁" class UpperCamelCase ( _lowerCamelCase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_=True , A_=True , A_=False , A_="[CLS]" , A_="[SEP]" , A_="<unk>" , A_="[SEP]" , A_="<pad>" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _lowerCamelCase = do_lower_case _lowerCamelCase = remove_space _lowerCamelCase = keep_accents _lowerCamelCase = vocab_file _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return len(self.sp_model ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> str: """simple docstring""" _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" if self.remove_space: _lowerCamelCase = ''' '''.join(inputs.strip().split() ) else: _lowerCamelCase = inputs _lowerCamelCase = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: _lowerCamelCase = unicodedata.normalize('''NFKD''' , A__ ) _lowerCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(A__ )] ) if self.do_lower_case: _lowerCamelCase = outputs.lower() return outputs def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = self.preprocess_text(A__ ) _lowerCamelCase = self.sp_model.encode(A__ , out_type=A__ ) _lowerCamelCase = [] for piece in pieces: if len(A__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(A__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCamelCase = cur_pieces[1:] else: _lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A__ ) else: new_pieces.append(A__ ) return new_pieces def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" return self.sp_model.PieceToId(A__ ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(A__ ) def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = '''''' _lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__ ) + token _lowerCamelCase = True _lowerCamelCase = [] else: current_sub_tokens.append(A__ ) _lowerCamelCase = False out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is not None: return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCamelCase ( _snake_case ): '''simple docstring''' A_ = 'roformer' def __init__( self , A_=5_00_00 , A_=None , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.1 , A_=0.1 , A_=15_36 , A_=2 , A_=0.02 , A_=1E-1_2 , A_=0 , A_=False , A_=True , **A_ , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size if embedding_size is None else embedding_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = rotary_value _lowerCamelCase = use_cache class UpperCamelCase ( _snake_case ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''sequence'''} _lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
snake_case__ = 0 # The first color of the flag. snake_case__ = 1 # The second color of the flag. snake_case__ = 2 # The third color of the flag. snake_case__ = (red, white, blue) def __magic_name__( __UpperCAmelCase ) -> list: '''simple docstring''' if not sequence: return [] if len(_SCREAMING_SNAKE_CASE ) == 1: return list(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = 0 _lowerCamelCase = len(_SCREAMING_SNAKE_CASE ) - 1 _lowerCamelCase = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase = F'The elements inside the sequence must contains only {colors} values' raise ValueError(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = input('Enter numbers separated by commas:\n').strip() snake_case__ = [int(item.strip()) for item in user_input.split(',')] print(f'''{dutch_national_flag_sort(unsorted)}''')
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
from collections.abc import Generator def __magic_name__( ) -> Generator[int, None, None]: '''simple docstring''' _lowerCamelCase , _lowerCamelCase = 0, 1 while True: _lowerCamelCase , _lowerCamelCase = b, a + b yield b def __magic_name__( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' _lowerCamelCase = 1 _lowerCamelCase = fibonacci_generator() while len(str(next(__UpperCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
from collections import deque class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ , A_ ) -> None: """simple docstring""" _lowerCamelCase = process_name # process name _lowerCamelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _lowerCamelCase = arrival_time _lowerCamelCase = burst_time # remaining burst time _lowerCamelCase = 0 # total time of the process wait in ready queue _lowerCamelCase = 0 # time from arrival time to completion time class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , ) -> None: """simple docstring""" _lowerCamelCase = number_of_queues # time slice of queues that round robin algorithm applied _lowerCamelCase = time_slices # unfinished process is in this ready_queue _lowerCamelCase = queue # current time _lowerCamelCase = current_time # finished process is in this sequence queue _lowerCamelCase = deque() def UpperCamelCase_ ( self ) -> list[str]: """simple docstring""" _lowerCamelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCamelCase_ ( self , A_ ) -> list[int]: """simple docstring""" _lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCamelCase_ ( self , A_ ) -> list[int]: """simple docstring""" _lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCamelCase_ ( self , A_ ) -> list[int]: """simple docstring""" _lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCamelCase_ ( self , A_ ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase_ ( self , A_ ) -> deque[Process]: """simple docstring""" _lowerCamelCase = deque() # sequence deque of finished process while len(UpperCamelCase_ ) != 0: _lowerCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _lowerCamelCase = 0 # set the process's turnaround time because it is finished _lowerCamelCase = self.current_time - cp.arrival_time # set the completion time _lowerCamelCase = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase_ ) self.finish_queue.extend(UpperCamelCase_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase_ ( self , A_ , A_ ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" _lowerCamelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase_ ) ): _lowerCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _lowerCamelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _lowerCamelCase = 0 # set the finish time _lowerCamelCase = self.current_time # update the process' turnaround time because it is finished _lowerCamelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase_ ) self.finish_queue.extend(UpperCamelCase_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase_ ( self ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): _lowerCamelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case__ = Process('P1', 0, 53) snake_case__ = Process('P2', 0, 17) snake_case__ = Process('P3', 0, 68) snake_case__ = Process('P4', 0, 24) snake_case__ = 3 snake_case__ = [17, 25] snake_case__ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) snake_case__ = Process('P1', 0, 53) snake_case__ = Process('P2', 0, 17) snake_case__ = Process('P3', 0, 68) snake_case__ = Process('P4', 0, 24) snake_case__ = 3 snake_case__ = [17, 25] snake_case__ = deque([Pa, Pa, Pa, Pa]) snake_case__ = MLFQ(number_of_queues, time_slices, queue, 0) snake_case__ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ = XLMProphetNetTokenizer A_ = False A_ = True def UpperCamelCase_ ( self ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase = XLMProphetNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = "[PAD]" _lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__lowerCamelCase ) , 10_12 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = XLMProphetNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) _lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = "Hello World!" _lowerCamelCase = [3_53_89, 66_72, 49, 2] self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = {"input_ids": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' A_ = ShapEPipeline A_ = ['prompt'] A_ = ['prompt'] A_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ = False @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return 32 @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return 32 @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return 8 @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(UpperCAmelCase_ ) @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCamelCase = PriorTransformer(**UpperCAmelCase_ ) return model @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCamelCase = ShapERenderer(**UpperCAmelCase_ ) return model def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.dummy_prior _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = self.dummy_tokenizer _lowerCamelCase = self.dummy_renderer _lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=UpperCAmelCase_ , clip_sample=UpperCAmelCase_ , clip_sample_range=1.0 , ) _lowerCamelCase = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self , A_ , A_=0 ) -> Optional[Any]: """simple docstring""" if str(UpperCAmelCase_ ).startswith('''mps''' ): _lowerCamelCase = torch.manual_seed(UpperCAmelCase_ ) else: _lowerCamelCase = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _lowerCamelCase = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = 'cpu' _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**UpperCAmelCase_ ) _lowerCamelCase = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _lowerCamelCase = output.images[0] _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = torch_device == 'cpu' _lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**UpperCAmelCase_ ) _lowerCamelCase = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = self.get_dummy_inputs(UpperCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: _lowerCamelCase = batch_size * [inputs[key]] _lowerCamelCase = pipe(**UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> str: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _lowerCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _lowerCamelCase = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCamelCase = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _lowerCamelCase = pipe( '''a shark''' , generator=UpperCAmelCase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( UpperCAmelCase_ ): '''simple docstring''' A_ = (DPMSolverSinglestepScheduler,) A_ = (('num_inference_steps', 25),) def UpperCamelCase_ ( self , **A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('''inf''' ), 'variance_type': None, } config.update(**_lowercase ) return config def UpperCamelCase_ ( self , A_=0 , **A_ ) -> Dict: """simple docstring""" _lowerCamelCase = dict(self.forward_default_kwargs ) _lowerCamelCase = kwargs.pop('''num_inference_steps''' , _lowercase ) _lowerCamelCase = self.dummy_sample _lowerCamelCase = 0.1 * sample _lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase = self.get_scheduler_config(**_lowercase ) _lowerCamelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _lowerCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _lowerCamelCase = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _lowerCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample _lowerCamelCase = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" pass def UpperCamelCase_ ( self , A_=0 , **A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = dict(self.forward_default_kwargs ) _lowerCamelCase = kwargs.pop('''num_inference_steps''' , _lowercase ) _lowerCamelCase = self.dummy_sample _lowerCamelCase = 0.1 * sample _lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _lowerCamelCase = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample _lowerCamelCase = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" if scheduler is None: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(**_lowercase ) _lowerCamelCase = scheduler_class(**_lowercase ) _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(**_lowercase ) _lowerCamelCase = scheduler_class(**_lowercase ) _lowerCamelCase = 10 _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase = model(_lowercase , _lowercase ) _lowerCamelCase = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase = 50 _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCamelCase = model(_lowercase , _lowercase ) _lowerCamelCase = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCamelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase = self.full_loop(scheduler=_lowercase ) _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCamelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase = self.full_loop(scheduler=_lowercase ) _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) _lowerCamelCase = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" self.check_over_configs(variance_type=_lowercase ) self.check_over_configs(variance_type='''learned_range''' ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.full_loop() _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.full_loop(use_karras_sigmas=_lowercase ) _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.full_loop(prediction_type='''v_prediction''' ) _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase ) _lowerCamelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0 ) _lowerCamelCase = scheduler_class(**_lowercase ) _lowerCamelCase = 10 _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase = model(_lowercase , _lowercase ) _lowerCamelCase = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample assert sample.dtype == torch.floataa
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCamelCase ( yaml.SafeLoader ): '''simple docstring''' def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = [self.constructed_objects[key_node] for key_node, _ in node.value] _lowerCamelCase = [tuple(A_ ) if isinstance(A_ , A_ ) else key for key in keys] _lowerCamelCase = Counter(A_ ) _lowerCamelCase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def UpperCamelCase_ ( self , A_ , A_=False ) -> Dict: """simple docstring""" _lowerCamelCase = super().construct_mapping(A_ , deep=A_ ) self._check_no_duplicates_on_constructed_node(A_ ) return mapping def __magic_name__( __UpperCAmelCase ) -> Tuple[Optional[str], str]: '''simple docstring''' _lowerCamelCase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _lowerCamelCase = full_content[1:].index('''---''' ) + 1 _lowerCamelCase = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class UpperCamelCase ( __A ): '''simple docstring''' A_ = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase_ ( cls , A_ ) -> "DatasetMetadata": """simple docstring""" with open(A_ , encoding='''utf-8''' ) as readme_file: _lowerCamelCase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(A_ ) else: return cls() def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if path.exists(): with open(A_ , encoding='''utf-8''' ) as readme_file: _lowerCamelCase = readme_file.read() else: _lowerCamelCase = None _lowerCamelCase = self._to_readme(A_ ) with open(A_ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(A_ ) def UpperCamelCase_ ( self , A_ = None ) -> str: """simple docstring""" if readme_content is not None: _lowerCamelCase = _split_yaml_from_readme(A_ ) _lowerCamelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _lowerCamelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCamelCase_ ( cls , A_ ) -> "DatasetMetadata": """simple docstring""" _lowerCamelCase = yaml.load(A_ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _lowerCamelCase = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=A_ , allow_unicode=A_ , encoding='''utf-8''' , ).decode('''utf-8''' ) UpperCamelCase__ = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCamelCase__ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCamelCase__ = ap.parse_args() UpperCamelCase__ = Path(args.readme_filepath) UpperCamelCase__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case__ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=_lowerCAmelCase , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=_lowerCAmelCase , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=_lowerCAmelCase , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=_lowerCAmelCase , default=0 , help='''cuda_id.''' , ) _lowerCamelCase = parser.parse_args() return args def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if not len(_lowerCAmelCase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) _lowerCamelCase = imgs[0].size _lowerCamelCase = Image.new('''RGB''' , size=(cols * w, rows * h) ) _lowerCamelCase = grid.size for i, img in enumerate(_lowerCAmelCase ): grid.paste(_lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __magic_name__( __UpperCAmelCase , __UpperCAmelCase="robotic cat with wings" , __UpperCAmelCase=7.5 , __UpperCAmelCase=50 , __UpperCAmelCase=1 , __UpperCAmelCase=42 , ) -> Tuple: '''simple docstring''' _lowerCamelCase = torch.Generator(pipeline.device ).manual_seed(_lowerCAmelCase ) _lowerCamelCase = pipeline( _lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , ).images _lowerCamelCase = int(math.sqrt(_lowerCAmelCase ) ) _lowerCamelCase = image_grid(_lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images snake_case__ = parse_args() # Load models and create wrapper for stable diffusion snake_case__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') snake_case__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') snake_case__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') snake_case__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') snake_case__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) snake_case__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): snake_case__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: snake_case__ = unet.to(torch.device('cuda', args.cuda_id)) snake_case__ = pipeline.to(unet.device) snake_case__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) snake_case__ = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , A_ = 7_68 , ) -> Optional[Any]: """simple docstring""" super().__init__() _lowerCamelCase = nn.Parameter(torch.zeros(1 , _a ) ) _lowerCamelCase = nn.Parameter(torch.ones(1 , _a ) ) def UpperCamelCase_ ( self , A_ = None , A_ = None , ) -> str: """simple docstring""" _lowerCamelCase = nn.Parameter(self.mean.to(_a ).to(_a ) ) _lowerCamelCase = nn.Parameter(self.std.to(_a ).to(_a ) ) return self def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = (embeds * self.std) + self.mean return embeds
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version snake_case__ = get_logger(__name__) class UpperCamelCase : '''simple docstring''' A_ = 'dummy_data' A_ = 'datasets' A_ = False def __init__( self , A_ , A_ , A_ , A_ = None , A_ = False , A_ = True , A_ = None , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 0 _lowerCamelCase = dataset_name _lowerCamelCase = cache_dir _lowerCamelCase = use_local_dummy_data _lowerCamelCase = config # download_callbacks take a single url as input _lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase = str(A_ ) # to be downloaded _lowerCamelCase = None _lowerCamelCase = None @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" if self._dummy_file is None: _lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase = cached_path( A_ , cache_dir=self.cache_dir , extract_compressed_file=A_ , force_extract=A_ ) return os.path.join(A_ , self.dummy_file_name ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if self._bucket_url is None: _lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def UpperCamelCase_ ( self , A_ , *A_ ) -> Tuple: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(A_ , A_ ): return self.create_dummy_data_dict(A_ , A_ ) elif isinstance(A_ , (list, tuple) ): return self.create_dummy_data_list(A_ , A_ ) else: return self.create_dummy_data_single(A_ , A_ ) def UpperCamelCase_ ( self , A_ , *A_ ) -> List[Any]: """simple docstring""" return self.download_and_extract(A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> Any: """simple docstring""" return self.download_and_extract(A_ ) def UpperCamelCase_ ( self , A_ , *A_ , **A_ ) -> Dict: """simple docstring""" return path def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return {} def UpperCamelCase_ ( self , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A_ , A_ ): for single_url in single_urls: download_callback(A_ ) else: _lowerCamelCase = single_urls download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A_ , A_ ): _lowerCamelCase = [os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) for x in single_urls] else: _lowerCamelCase = single_urls _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) _lowerCamelCase = value # make sure that values are unique if all(isinstance(A_ , A_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A_ ) ) for url in data_url ) _lowerCamelCase = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase = [data_url[0]] * len(A_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A_ ) return dummy_data_list def UpperCamelCase_ ( self , A_ , A_ ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" def _iter_archive_members(A_ ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase = Path(self.dummy_file ).parent _lowerCamelCase = path.relative_to(A_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A_ ) _lowerCamelCase = Path(A_ ) _lowerCamelCase = _iter_archive_members(A_ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A_ ).as_posix(), file_path.open('''rb''' ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ): _lowerCamelCase = [paths] for path in paths: if os.path.isfile(A_ ): if os.path.basename(A_ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A_ ): if os.path.basename(A_ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A_ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A_ , A_ )
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
from math import pow def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _lowerCamelCase = int(pow(lowerCAmelCase__ , lowerCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _lowerCamelCase , _lowerCamelCase = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _lowerCamelCase , _lowerCamelCase = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) return current_sum, solutions_count def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(lowerCAmelCase__ , lowerCAmelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] for rt in rc.restypes: _lowerCamelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCamelCase = {name: i for i, name in enumerate(__A )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCamelCase = torch.tensor( __A , dtype=torch.intaa , device=protein['''aatype'''].device , ) _lowerCamelCase = torch.tensor( __A , dtype=torch.intaa , device=protein['''aatype'''].device , ) _lowerCamelCase = torch.tensor( __A , dtype=torch.floataa , device=protein['''aatype'''].device , ) _lowerCamelCase = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase = restype_atomaa_mask[protein_aatype] _lowerCamelCase = residx_atomaa_mask _lowerCamelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCamelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCamelCase = rc.restype_atoa[restype_letter] _lowerCamelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCamelCase = rc.atom_order[atom_name] _lowerCamelCase = 1 _lowerCamelCase = restype_atomaa_mask[protein_aatype] _lowerCamelCase = residx_atomaa_mask return protein def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = tree_map(lambda __UpperCAmelCase : torch.tensor(__A , device=batch['''aatype'''].device ) , __A , np.ndarray ) _lowerCamelCase = tensor_tree_map(lambda __UpperCAmelCase : np.array(__A ) , make_atomaa_masks(__A ) ) return out
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class UpperCamelCase ( a__ , a__ ): '''simple docstring''' A_ = 'bit' A_ = ['preactivation', 'bottleneck'] A_ = ['SAME', 'VALID'] def __init__( self , A_=3 , A_=64 , A_=[2_56, 5_12, 10_24, 20_48] , A_=[3, 4, 6, 3] , A_="preactivation" , A_="relu" , A_=None , A_=32 , A_=0.0 , A_=False , A_=32 , A_=1 , A_=None , A_=None , **A_ , ) -> List[str]: """simple docstring""" super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) _lowerCamelCase = num_channels _lowerCamelCase = embedding_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = layer_type _lowerCamelCase = hidden_act _lowerCamelCase = global_padding _lowerCamelCase = num_groups _lowerCamelCase = drop_path_rate _lowerCamelCase = embedding_dynamic_padding _lowerCamelCase = output_stride _lowerCamelCase = width_factor _lowerCamelCase = ['stem'] + [F'stage{idx}' for idx in range(1 , len(_A ) + 1 )] _lowerCamelCase = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = list(_lowerCamelCase ) _lowerCamelCase = list(_lowerCamelCase ) _lowerCamelCase = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = [] while True: _lowerCamelCase = ["$"] * len(_lowerCamelCase ) _lowerCamelCase = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase = "*" _lowerCamelCase = "*" temp.append('''X''' ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase = list(set(_lowerCamelCase ) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = [] for minterm in minterms: _lowerCamelCase = "" for _ in range(_lowerCamelCase ): _lowerCamelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = list(_lowerCamelCase ) _lowerCamelCase = list(_lowerCamelCase ) _lowerCamelCase = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase = 0 _lowerCamelCase = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase = j if count == 1: _lowerCamelCase = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase = 0 _lowerCamelCase = -1 _lowerCamelCase = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase = count_n _lowerCamelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase = 0 def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase = prime_implicants[i].count('''_''' ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase = 1 return chart def __magic_name__( ) -> List[Any]: '''simple docstring''' _lowerCamelCase = int(input('''Enter the no. of variables\n''' ) ) _lowerCamelCase = [ float(_lowerCamelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] _lowerCamelCase = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase = check(_lowerCamelCase ) print('''Prime Implicants are:''' ) print(_lowerCamelCase ) _lowerCamelCase = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase = selection(_lowerCamelCase , _lowerCamelCase ) print('''Essential Prime Implicants are:''' ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' def __lt__( self , A_ ) -> Dict: """simple docstring""" return self[-1] < other[-1] def __eq__( self , A_ ) -> Optional[Any]: """simple docstring""" return self[-1] == other[-1] def __magic_name__( __UpperCAmelCase ) -> list: '''simple docstring''' _lowerCamelCase = [] # sort into stacks for element in collection: _lowerCamelCase = Stack([element] ) _lowerCamelCase = bisect_left(a_ , a_ ) if i != len(a_ ): stacks[i].append(a_ ) else: stacks.append(a_ ) # use a heap-based merge to merge stack efficiently _lowerCamelCase = merge(*(reversed(a_ ) for stack in stacks) ) return collection if __name__ == "__main__": snake_case__ = input('Enter numbers separated by a comma:\n').strip() snake_case__ = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , ) _lowerCamelCase = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) _lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) _lowerCamelCase = CLIPTextModel(__UpperCamelCase ) _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self , A_ , A_=0 ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) _lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(__UpperCamelCase ).startswith('''mps''' ): _lowerCamelCase = torch.manual_seed(__UpperCamelCase ) else: _lowerCamelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = StableDiffusionInpaintPipeline(**__UpperCamelCase ) _lowerCamelCase = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _lowerCamelCase = self.get_dummy_inputs(__UpperCamelCase ) _lowerCamelCase = sd_pipe(**__UpperCamelCase ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' _lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(__UpperCamelCase , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _lowerCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' _lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( __UpperCamelCase , torch_dtype=torch.floataa , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _lowerCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase_ ( self ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' _lowerCamelCase = PNDMScheduler.from_pretrained(__UpperCamelCase , subfolder='''scheduler''' ) _lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , scheduler=__UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate snake_case__ = trt.Logger(trt.Logger.WARNING) snake_case__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) snake_case__ = logging.getLogger(__name__) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) snake_case__ = parser.parse_args() if args.tokenizer_name: snake_case__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) snake_case__ = args.per_device_eval_batch_size snake_case__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties snake_case__ = True snake_case__ = """temp_engine/bert-fp32.engine""" if args.fpaa: snake_case__ = """temp_engine/bert-fp16.engine""" if args.inta: snake_case__ = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') snake_case__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network snake_case__ = [network.get_input(i) for i in range(network.num_inputs)] snake_case__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: snake_case__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) snake_case__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) snake_case__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) _lowerCamelCase = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) _lowerCamelCase = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __UpperCAmelCase ) # start time _lowerCamelCase = time.time() # Run inference context.execute_async( bindings=[int(__UpperCAmelCase ) for d_inp in d_inputs] + [int(__UpperCAmelCase ), int(__UpperCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time _lowerCamelCase = time.time() _lowerCamelCase = end_time - start_time _lowerCamelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. snake_case__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. snake_case__ = raw_datasets["""validation"""].column_names snake_case__ = """question""" if """question""" in column_names else column_names[0] snake_case__ = """context""" if """context""" in column_names else column_names[1] snake_case__ = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). snake_case__ = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case__ = min(args.max_seq_length, tokenizer.model_max_length) def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _lowerCamelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=__UpperCAmelCase , stride=args.doc_stride , return_overflowing_tokens=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _lowerCamelCase = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _lowerCamelCase = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _lowerCamelCase = tokenized_examples.sequence_ids(__UpperCAmelCase ) _lowerCamelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _lowerCamelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _lowerCamelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples snake_case__ = raw_datasets["""validation"""] # Validation Feature Creation snake_case__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) snake_case__ = default_data_collator snake_case__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) snake_case__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="eval" ) -> List[str]: '''simple docstring''' _lowerCamelCase = postprocess_qa_predictions( examples=__UpperCAmelCase , features=__UpperCAmelCase , predictions=__UpperCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__UpperCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _lowerCamelCase = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: _lowerCamelCase = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] _lowerCamelCase = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__UpperCAmelCase , label_ids=__UpperCAmelCase ) snake_case__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return trt.volume(engine.get_binding_shape(__UpperCAmelCase ) ) * engine.get_binding_dtype(__UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. snake_case__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer snake_case__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) snake_case__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) snake_case__ = cuda.mem_alloc(h_outputa.nbytes) snake_case__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. snake_case__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') snake_case__ = 0.0 snake_case__ = 0 snake_case__ = timeit.default_timer() snake_case__ = None for step, batch in enumerate(eval_dataloader): snake_case__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 snake_case__ = outputs snake_case__ = torch.tensor(start_logits) snake_case__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered snake_case__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) snake_case__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) snake_case__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) snake_case__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: snake_case__ = nested_truncate(all_preds, len(eval_dataset)) snake_case__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) snake_case__ = post_processing_function(eval_examples, eval_dataset, all_preds) snake_case__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCamelCase = s_dict.pop(__UpperCamelCase ) elif "subsample" in key: _lowerCamelCase = s_dict.pop(__UpperCamelCase ) def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = emb.weight.shape _lowerCamelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) _lowerCamelCase = emb.weight.data return lin_layer def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = torch.load(__UpperCamelCase , map_location='''cpu''' ) _lowerCamelCase = mam_aaa["""args"""] _lowerCamelCase = mam_aaa["""model"""] _lowerCamelCase = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) _lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] _lowerCamelCase = args.share_decoder_input_output_embed _lowerCamelCase = [int(__UpperCamelCase ) for i in args.conv_kernel_sizes.split(''',''' )] _lowerCamelCase = SpeechaTextConfig( vocab_size=__UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__UpperCamelCase , num_beams=5 , max_length=200 , use_cache=__UpperCamelCase , decoder_start_token_id=2 , early_stopping=__UpperCamelCase , ) _lowerCamelCase = SpeechaTextForConditionalGeneration(__UpperCamelCase ) _lowerCamelCase = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F' but all the following weights are missing {missing}' ) if tie_embeds: _lowerCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCamelCase = lm_head_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') snake_case__ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } snake_case__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __magic_name__( __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = {} with open(snake_case__ , '''r''' ) as file: for line_number, line in enumerate(snake_case__ ): _lowerCamelCase = line.strip() if line: _lowerCamelCase = line.split() _lowerCamelCase = line_number _lowerCamelCase = words[0] _lowerCamelCase = value return result def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for attribute in key.split('''.''' ): _lowerCamelCase = getattr(snake_case__ , snake_case__ ) _lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): _lowerCamelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] _lowerCamelCase = '''param''' if weight_type is not None and weight_type != "param": _lowerCamelCase = getattr(snake_case__ , snake_case__ ).shape elif weight_type is not None and weight_type == "param": _lowerCamelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): _lowerCamelCase = getattr(snake_case__ , snake_case__ ) _lowerCamelCase = shape_pointer.shape # let's reduce dimension _lowerCamelCase = value[0] else: _lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): _lowerCamelCase = getattr(snake_case__ , snake_case__ ) _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): _lowerCamelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] _lowerCamelCase = '''param''' if weight_type is not None and weight_type != "param": _lowerCamelCase = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCamelCase = '''.'''.join([key, hf_param_name] ) else: _lowerCamelCase = key _lowerCamelCase = value if '''lm_head''' in full_key else value[0] snake_case__ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' _lowerCamelCase = False for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(snake_case__ )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None if hf_dict is not None: rename_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return is_used return is_used def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: _lowerCamelCase = load_wavaveca_layer(snake_case__ , snake_case__ , snake_case__ ) if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False ): '''simple docstring''' if config_path is not None: _lowerCamelCase = WavaVecaConfig.from_pretrained(snake_case__ ) else: _lowerCamelCase = WavaVecaConfig() if is_seq_class: _lowerCamelCase = read_txt_into_dict(snake_case__ ) _lowerCamelCase = idalabel _lowerCamelCase = WavaVecaForSequenceClassification(snake_case__ ) _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) feature_extractor.save_pretrained(snake_case__ ) elif is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(snake_case__ , '''vocab.json''' ) if not os.path.isdir(snake_case__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 0 _lowerCamelCase = 1 with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case__ , snake_case__ ) _lowerCamelCase = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case__ , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _lowerCamelCase = WavaVecaForCTC(snake_case__ ) else: _lowerCamelCase = WavaVecaForPreTraining(snake_case__ ) if is_finetuned or is_seq_class: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _lowerCamelCase = argparse.Namespace(task='''audio_pretraining''' ) _lowerCamelCase = fairseq.tasks.setup_task(snake_case__ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case__ ) _lowerCamelCase = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , not is_finetuned ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) snake_case__ = parser.parse_args() snake_case__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=12 , A_=7 , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=5_12 , A_=0.02 , A_=0 , A_=None , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = projection_dim _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = max_position_embeddings _lowerCamelCase = initializer_range _lowerCamelCase = scope _lowerCamelCase = bos_token_id def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _lowerCamelCase = input_mask.numpy() _lowerCamelCase , _lowerCamelCase = input_mask.shape _lowerCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): _lowerCamelCase = 1 _lowerCamelCase = 0 _lowerCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = TFBlipTextModel(config=A_ ) _lowerCamelCase = model(A_ , attention_mask=A_ , training=A_ ) _lowerCamelCase = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ = (TFBlipTextModel,) if is_tf_available() else () A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = BlipTextModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass @slow def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = TFBlipTextModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def UpperCamelCase_ ( self , A_=True ) -> Optional[Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=A_ )
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging snake_case__ = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) snake_case__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = '''https://pypi.org/pypi/diffusers/json''' _lowerCamelCase = json.loads(request.urlopen(__UpperCAmelCase ).read() )['''releases'''].keys() return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : version.Version(__UpperCAmelCase ) ) def __magic_name__( ) -> int: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = Path(__UpperCAmelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __magic_name__( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' init_hf_modules() _lowerCamelCase = Path(__UpperCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __magic_name__( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.read() # Imports of the form `import .xxx` _lowerCamelCase = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCAmelCase ) ) def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = False _lowerCamelCase = [module_file] _lowerCamelCase = [] # Let's recurse through all relative imports while not no_change: _lowerCamelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCAmelCase ) ) _lowerCamelCase = Path(__UpperCAmelCase ).parent _lowerCamelCase = [str(module_path / m ) for m in new_imports] _lowerCamelCase = [f for f in new_import_files if f not in all_relative_imports] _lowerCamelCase = [F'{f}.py' for f in new_import_files] _lowerCamelCase = len(__UpperCAmelCase ) == 0 all_relative_imports.extend(__UpperCAmelCase ) return all_relative_imports def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.read() # Imports of the form `import xxx` _lowerCamelCase = re.findall('''^\s*import\s+(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module _lowerCamelCase = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all _lowerCamelCase = list(set(__UpperCAmelCase ) ) _lowerCamelCase = [] for imp in imports: try: importlib.import_module(__UpperCAmelCase ) except ImportError: missing_packages.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F'{", ".join(__UpperCAmelCase )}. Run `pip install {" ".join(__UpperCAmelCase )}`' ) return get_relative_imports(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = module_path.replace(os.path.sep , '''.''' ) _lowerCamelCase = importlib.import_module(__UpperCAmelCase ) if class_name is None: return find_pipeline_class(__UpperCAmelCase ) return getattr(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' from ..pipelines import DiffusionPipeline _lowerCamelCase = dict(inspect.getmembers(__UpperCAmelCase , inspect.isclass ) ) _lowerCamelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCAmelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) _lowerCamelCase = cls return pipeline_class def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Any: '''simple docstring''' _lowerCamelCase = str(__UpperCAmelCase ) _lowerCamelCase = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): _lowerCamelCase = module_file_or_url _lowerCamelCase = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: _lowerCamelCase = get_diffusers_versions() # cut ".dev0" _lowerCamelCase = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: _lowerCamelCase = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: _lowerCamelCase = F'v{revision}' elif revision == "main": _lowerCamelCase = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub _lowerCamelCase = COMMUNITY_PIPELINES_URL.format(revision=__UpperCAmelCase , pipeline=__UpperCAmelCase ) try: _lowerCamelCase = cached_download( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) _lowerCamelCase = '''git''' _lowerCamelCase = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached _lowerCamelCase = hf_hub_download( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) _lowerCamelCase = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment _lowerCamelCase = check_imports(__UpperCAmelCase ) # Now we move the module inside our cached dynamic modules. _lowerCamelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCAmelCase ) _lowerCamelCase = Path(__UpperCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: _lowerCamelCase = F'{module_needed}.py' shutil.copy(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = use_auth_token elif use_auth_token is True: _lowerCamelCase = HfFolder.get_token() else: _lowerCamelCase = None _lowerCamelCase = model_info(__UpperCAmelCase , revision=__UpperCAmelCase , token=__UpperCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _lowerCamelCase = submodule_path / commit_hash _lowerCamelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCAmelCase , F'{module_needed}.py' , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , **__UpperCAmelCase , ) -> Any: '''simple docstring''' _lowerCamelCase = get_cached_module_file( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return get_class_in_module(__UpperCAmelCase , final_module.replace('''.py''' , '''''' ) )
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case__ = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class UpperCamelCase ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> Optional[int]: """simple docstring""" super().__init__(*__A , **__A ) requires_backends(self , '''vision''' ) self.check_model_type(__A ) def __call__( self , A_ , **A_ ) -> Dict: """simple docstring""" return super().__call__(__A , **__A ) def UpperCamelCase_ ( self , **A_ ) -> Dict: """simple docstring""" return {}, {}, {} def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = load_image(__A ) _lowerCamelCase = image.size _lowerCamelCase = self.image_processor(images=__A , return_tensors=self.framework ) return model_inputs def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self.model(**__A ) return model_outputs def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = model_outputs.predicted_depth _lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__A ) _lowerCamelCase = prediction.squeeze().cpu().numpy() _lowerCamelCase = (output * 2_55 / np.max(__A )).astype('''uint8''' ) _lowerCamelCase = Image.fromarray(__A ) _lowerCamelCase = {} _lowerCamelCase = predicted_depth _lowerCamelCase = depth return output_dict
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 'char' A_ = 'bpe' A_ = 'wp' snake_case__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = ['image_processor', 'char_tokenizer'] A_ = 'ViTImageProcessor' A_ = 'MgpstrTokenizer' def __init__( self , A_=None , A_=None , **A_ ) -> Dict: """simple docstring""" _lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _lowerCamelCase = kwargs.pop('''feature_extractor''' ) _lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _lowerCamelCase = tokenizer _lowerCamelCase = AutoTokenizer.from_pretrained('''gpt2''' ) _lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(_a , _a ) def __call__( self , A_=None , A_=None , A_=None , **A_ ) -> Union[str, Any]: """simple docstring""" if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _lowerCamelCase = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None: _lowerCamelCase = self.char_tokenizer(_a , return_tensors=_a , **_a ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase = encodings["""input_ids"""] return inputs def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = sequences _lowerCamelCase = char_preds.size(0 ) _lowerCamelCase = self._decode_helper(_a , '''char''' ) _lowerCamelCase = self._decode_helper(_a , '''bpe''' ) _lowerCamelCase = self._decode_helper(_a , '''wp''' ) _lowerCamelCase = [] _lowerCamelCase = [] for i in range(_a ): _lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase = scores.index(max(_a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase = {} _lowerCamelCase = final_strs _lowerCamelCase = final_scores _lowerCamelCase = char_strs _lowerCamelCase = bpe_strs _lowerCamelCase = wp_strs return out def UpperCamelCase_ ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" if format == DecodeType.CHARACTER: _lowerCamelCase = self.char_decode _lowerCamelCase = 1 _lowerCamelCase = """[s]""" elif format == DecodeType.BPE: _lowerCamelCase = self.bpe_decode _lowerCamelCase = 2 _lowerCamelCase = """#""" elif format == DecodeType.WORDPIECE: _lowerCamelCase = self.wp_decode _lowerCamelCase = 1_02 _lowerCamelCase = """[SEP]""" else: raise ValueError(F'Format {format} is not supported.' ) _lowerCamelCase = [], [] _lowerCamelCase = pred_logits.size(0 ) _lowerCamelCase = pred_logits.size(1 ) _lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=_a , sorted=_a ) _lowerCamelCase = preds_index.view(-1 , _a )[:, 1:] _lowerCamelCase = decoder(_a ) _lowerCamelCase = torch.nn.functional.softmax(_a , dim=2 ).max(dim=2 ) _lowerCamelCase = preds_max_prob[:, 1:] for index in range(_a ): _lowerCamelCase = preds_str[index].find(_a ) _lowerCamelCase = preds_str[index][:pred_eos] _lowerCamelCase = preds_index[index].cpu().tolist() _lowerCamelCase = pred_index.index(_a ) if eos_token in pred_index else -1 _lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_a ) conf_scores.append(_a ) return dec_strs, conf_scores def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(_a )] return decode_strs def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" return self.bpe_tokenizer.batch_decode(_a ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(_a )] return decode_strs
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' import math class UpperCamelCase : '''simple docstring''' def __init__( self , A_=0 ) -> str: # a graph with Node 0,1,...,N-1 """simple docstring""" _lowerCamelCase = n _lowerCamelCase = [ [math.inf for j in range(0 , a_ )] for i in range(0 , a_ ) ] # adjacency matrix for weight _lowerCamelCase = [ [math.inf for j in range(0 , a_ )] for i in range(0 , a_ ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = w def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _lowerCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self , A_ , A_ ) -> str: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": snake_case__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = None # Automatically constructed A_ = 'dict' A_ = None A_ = field(default='Translation' , init=__lowercase , repr=__lowercase ) def __call__( self ) -> int: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCamelCase : '''simple docstring''' A_ = None A_ = None A_ = None # Automatically constructed A_ = 'dict' A_ = None A_ = field(default='TranslationVariableLanguages' , init=__lowercase , repr=__lowercase ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = sorted(set(self.languages ) ) if self.languages else None _lowerCamelCase = len(self.languages ) if self.languages else None def __call__( self ) -> int: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = set(self.languages ) if self.languages and set(__lowerCAmelCase ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(__lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__lowerCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCamelCase = [] for lang, text in translation_dict.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCamelCase , _lowerCamelCase = zip(*sorted(__lowerCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCamelCase_ ( self ) -> Any: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import sys UpperCamelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = 1 for digit in s: product *= int(UpperCAmelCase__ ) return product def __magic_name__( __UpperCAmelCase = N ) -> int: '''simple docstring''' _lowerCamelCase = -sys.maxsize - 1 _lowerCamelCase = n[:13] _lowerCamelCase = 13 while cur_index < len(UpperCAmelCase__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _lowerCamelCase = substr[1:] + n[cur_index] cur_index += 1 else: _lowerCamelCase = max(UpperCAmelCase__ , str_eval(UpperCAmelCase__ ) ) _lowerCamelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) _lowerCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house _lowerCamelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase = model(lowerCAmelCase__ )["last_hidden_state"].detach() self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) ) @slow def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) _lowerCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house _lowerCamelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase = model(lowerCAmelCase__ )["last_hidden_state"].detach() self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) )
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from math import isclose, sqrt def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = point_y / 4 / point_x _lowerCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCamelCase = outgoing_gradient**2 + 4 _lowerCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCamelCase = x_minus if isclose(UpperCAmelCase__ , UpperCAmelCase__ ) else x_plus _lowerCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __magic_name__( __UpperCAmelCase = 1.4 , __UpperCAmelCase = -9.6 ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = 0 _lowerCamelCase = first_x_coord _lowerCamelCase = first_y_coord _lowerCamelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = next_point(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _lowerCamelCase = shift_tokens_right(UpperCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) _lowerCamelCase = model(UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ).logits _lowerCamelCase = optax.softmax_cross_entropy(UpperCAmelCase_ , onehot(UpperCAmelCase_ , logits.shape[-1] ) ).mean() _lowerCamelCase = -(labels.shape[-1] * loss.item()) _lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=16 , A_=2 , A_=0.02 , A_=4 , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_attention_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_choices def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_attention_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCamelCase__ , ) return config, input_ids, attention_mask def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''' ) _lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ ) @require_flax class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _lowerCamelCase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _lowerCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] _lowerCamelCase = (1, 11, 7_68) self.assertEqual(output.shape , UpperCamelCase__ ) _lowerCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) )
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = CustomTokenizer pass
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
from __future__ import annotations def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) # We need to create solution object to save path. _lowerCamelCase = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] _lowerCamelCase = run_maze(__UpperCAmelCase , 0 , 0 , __UpperCAmelCase ) if solved: print('''\n'''.join(str(__UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) # Final check point. if i == j == (size - 1): _lowerCamelCase = 1 return True _lowerCamelCase = (not i < 0) and (not j < 0) # Check lower bounds _lowerCamelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _lowerCamelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _lowerCamelCase = 1 # check for directions if ( run_maze(__UpperCAmelCase , i + 1 , __UpperCAmelCase , __UpperCAmelCase ) or run_maze(__UpperCAmelCase , __UpperCAmelCase , j + 1 , __UpperCAmelCase ) or run_maze(__UpperCAmelCase , i - 1 , __UpperCAmelCase , __UpperCAmelCase ) or run_maze(__UpperCAmelCase , __UpperCAmelCase , j - 1 , __UpperCAmelCase ) ): return True _lowerCamelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( lowercase__ ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__lowercase , '''num_attention_heads''' ) ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=3 , A_=2 , A_=1 , A_=16 , A_=[1_28, 2_56, 3_84] , A_=[4, 6, 8] , A_=[2, 3, 4] , A_=[16, 16, 16] , A_=0 , A_=[2, 2, 2] , A_=[2, 2, 2] , A_=0.02 , A_=True , A_=True , A_=2 , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = kernel_size _lowerCamelCase = stride _lowerCamelCase = padding _lowerCamelCase = hidden_sizes _lowerCamelCase = num_attention_heads _lowerCamelCase = depths _lowerCamelCase = key_dim _lowerCamelCase = drop_path_rate _lowerCamelCase = patch_size _lowerCamelCase = attention_ratio _lowerCamelCase = mlp_ratio _lowerCamelCase = initializer_range _lowerCamelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = num_labels _lowerCamelCase = initializer_range def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = LevitModel(config=__lowercase ) model.to(__lowercase ) model.eval() _lowerCamelCase = model(__lowercase ) _lowerCamelCase = (self.image_size, self.image_size) _lowerCamelCase , _lowerCamelCase = image_size[0], image_size[1] for _ in range(4 ): _lowerCamelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _lowerCamelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = LevitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() _lowerCamelCase = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A_ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = LevitModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason='''Levit does not output attentions''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(__lowercase ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): _lowerCamelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) ) _lowerCamelCase = outputs.hidden_states _lowerCamelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowercase ) , __lowercase ) _lowerCamelCase = (self.model_tester.image_size, self.model_tester.image_size) _lowerCamelCase , _lowerCamelCase = image_size[0], image_size[1] for _ in range(4 ): _lowerCamelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _lowerCamelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self , A_ , A_ , A_=False ) -> Any: """simple docstring""" _lowerCamelCase = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCamelCase = model_class(__lowercase ) model.to(__lowercase ) model.train() _lowerCamelCase = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) _lowerCamelCase = model(**__lowercase ).loss loss.backward() def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCamelCase = False _lowerCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(__lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCamelCase = model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() _lowerCamelCase = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) _lowerCamelCase = model(**__lowercase ).loss loss.backward() def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): _lowerCamelCase = problem_type['''title'''] _lowerCamelCase = problem_type['''num_labels'''] _lowerCamelCase = model_class(__lowercase ) model.to(__lowercase ) model.train() _lowerCamelCase = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if problem_type["num_labels"] > 1: _lowerCamelCase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _lowerCamelCase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowercase ) as warning_list: _lowerCamelCase = model(**__lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = LevitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**__lowercase ) # verify the logits _lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) _lowerCamelCase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class UpperCamelCase ( __snake_case ): '''simple docstring''' A_ = 'mra' def __init__( self , A_=5_02_65 , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=1 , A_=0.02 , A_=1E-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = type_vocab_size _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = block_per_row _lowerCamelCase = approx_mode _lowerCamelCase = initial_prior_first_n_blocks _lowerCamelCase = initial_prior_diagonal_n_blocks
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = {'''vocab_file''': '''sentencepiece.model'''} snake_case__ = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } snake_case__ = { '''google/rembert''': 256, } class UpperCamelCase ( UpperCamelCase__ ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_=False , A_=True , A_=True , A_="[CLS]" , A_="[SEP]" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__( do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) _lowerCamelCase = do_lower_case _lowerCamelCase = remove_space _lowerCamelCase = keep_accents _lowerCamelCase = vocab_file _lowerCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(A_ ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = d _lowerCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , A_ , A_=False ) -> Any: """simple docstring""" _lowerCamelCase = self.sp_model.EncodeAsPieces(A_ ) return pieces def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" return self.sp_model.PieceToId(A_ ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" return self.sp_model.IdToPiece(A_ ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" _lowerCamelCase = self.sp_model.decode_pieces(A_ ) return out_string def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A_ ) ) return _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
from __future__ import annotations def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return [ord(__lowerCAmelCase ) - 96 for elem in plain] def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def __magic_name__( ) -> List[Any]: '''simple docstring''' _lowerCamelCase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __lowerCAmelCase ) print('''Decoded:''' , decode(__lowerCAmelCase ) ) if __name__ == "__main__": main()
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class UpperCamelCase ( __a , __a ): '''simple docstring''' A_ = "bit" A_ = ["preactivation", "bottleneck"] A_ = ["SAME", "VALID"] def __init__( self , A_=3 , A_=64 , A_=[2_56, 5_12, 10_24, 20_48] , A_=[3, 4, 6, 3] , A_="preactivation" , A_="relu" , A_=None , A_=32 , A_=0.0 , A_=False , A_=32 , A_=1 , A_=None , A_=None , **A_ , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) _lowerCamelCase = num_channels _lowerCamelCase = embedding_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = layer_type _lowerCamelCase = hidden_act _lowerCamelCase = global_padding _lowerCamelCase = num_groups _lowerCamelCase = drop_path_rate _lowerCamelCase = embedding_dynamic_padding _lowerCamelCase = output_stride _lowerCamelCase = width_factor _lowerCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Any: '''simple docstring''' if attention_mask is None: _lowerCamelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCamelCase : '''simple docstring''' A_ = OPTConfig A_ = {} A_ = '''gelu''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , A_=16 , A_=16 , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = eos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = bos_token_id _lowerCamelCase = embed_dim _lowerCamelCase = word_embed_proj_dim _lowerCamelCase = False def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) _lowerCamelCase = prepare_opt_inputs_dict(__a , __a ) return config, inputs_dict def UpperCamelCase_ ( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = TFOPTModel(config=__a ) _lowerCamelCase = inputs_dict["""input_ids"""] _lowerCamelCase = input_ids[:1, :] _lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] _lowerCamelCase = 1 # first forward pass _lowerCamelCase = model(__a , attention_mask=__a , use_cache=__a ) _lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase = model(__a , attention_mask=__a )[0] _lowerCamelCase = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) @require_tf class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A_ = (TFOPTForCausalLM,) if is_tf_available() else () A_ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = 10 def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = TFOPTModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=__a ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A_ , A_ ): if hasattr(__a , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase = model_class(config=__a ) _lowerCamelCase = _get_word_embedding_weight(__a , model.get_input_embeddings() ) _lowerCamelCase = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__a ) _lowerCamelCase = _get_word_embedding_weight(__a , model.get_input_embeddings() ) _lowerCamelCase = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a ) # check that weights remain the same after resizing _lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase = False self.assertTrue(__a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a ) _lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase = False self.assertTrue(__a ) def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' return tf.constant(UpperCamelCase__ , dtype=tf.intaa ) @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' A_ = 99 def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase = input_ids.shape[0] _lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) _lowerCamelCase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _lowerCamelCase = tf.not_equal(__a , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase = model(input_ids=__a , attention_mask=__a ).last_hidden_state _lowerCamelCase = (1, 11, 5_12) self.assertEqual(output.shape , __a ) _lowerCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4E-3 ) ) _lowerCamelCase = tf.function(__a , jit_compile=__a ) _lowerCamelCase = xla_generate(__a , __a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4E-2 ) ) @require_tf @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> str: """simple docstring""" super().setUp() _lowerCamelCase = """facebook/opt-350m""" def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase = tokenizer(__a , return_tensors='''tf''' , padding=__a , add_special_tokens=__a ) _lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__a , __a , atol=1E-4 ) ) _lowerCamelCase = tf.function(__a , jit_compile=__a ) _lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__a , __a , atol=1E-4 ) ) @require_tf @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = """facebook/opt-125m""" _lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] _lowerCamelCase = [] _lowerCamelCase = GPTaTokenizer.from_pretrained(__a ) _lowerCamelCase = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: _lowerCamelCase = tokenizer(__a , return_tensors='''tf''' ).input_ids _lowerCamelCase = model.generate(__a , max_length=10 ) _lowerCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = """facebook/opt-350m""" _lowerCamelCase = GPTaTokenizer.from_pretrained(__a ) _lowerCamelCase = TFOPTForCausalLM.from_pretrained(__a ) _lowerCamelCase = """left""" # use different length sentences to test batching _lowerCamelCase = [ """Hello, my dog is a little""", """Today, I""", ] _lowerCamelCase = tokenizer(__a , return_tensors='''tf''' , padding=__a ) _lowerCamelCase = inputs["""input_ids"""] _lowerCamelCase = model.generate(input_ids=__a , attention_mask=inputs['''attention_mask'''] ) _lowerCamelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _lowerCamelCase = model.generate(input_ids=__a ) _lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) _lowerCamelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _lowerCamelCase = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) _lowerCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a ) _lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) _lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) _lowerCamelCase = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = """facebook/opt-350m""" _lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] _lowerCamelCase = [] _lowerCamelCase = GPTaTokenizer.from_pretrained(__a ) _lowerCamelCase = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: _lowerCamelCase = tokenizer(__a , return_tensors='''tf''' ).input_ids _lowerCamelCase = model.generate(__a , max_length=10 ) _lowerCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
from __future__ import annotations import math def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(_UpperCamelCase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] _lowerCamelCase = math.log(len(_UpperCamelCase ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType snake_case__ , snake_case__ , snake_case__ = False, False, False @dataclass class UpperCamelCase : '''simple docstring''' A_ = None A_ = True A_ = True A_ = None # Automatically constructed A_ = 'dict' A_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) A_ = field(default='Audio' , init=__a , repr=__a ) def __call__( self ) -> Optional[Any]: """simple docstring""" return self.pa_type def UpperCamelCase_ ( self , A_ ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(A__ , A__ ): return {"bytes": None, "path": value} elif isinstance(A__ , A__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase = BytesIO() sf.write(A__ , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: _lowerCamelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_27_67 _lowerCamelCase = BytesIO(bytes() ) sf.write(A__ , A__ , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) _lowerCamelCase , _lowerCamelCase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err _lowerCamelCase = xsplitext(A__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: _lowerCamelCase = token_per_repo_id or {} _lowerCamelCase = path.split('''::''' )[-1] try: _lowerCamelCase = string_to_dict(A__ , config.HUB_DATASETS_URL )['''repo_id'''] _lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase = None with xopen(A__ , '''rb''' , use_auth_token=A__ ) as f: _lowerCamelCase , _lowerCamelCase = sf.read(A__ ) else: _lowerCamelCase , _lowerCamelCase = sf.read(A__ ) _lowerCamelCase = array.T if self.mono: _lowerCamelCase = librosa.to_mono(A__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase = librosa.resample(A__ , orig_sr=A__ , target_sr=self.sampling_rate ) _lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def UpperCamelCase_ ( self , A_ ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): _lowerCamelCase = pa.array([None] * len(A__ ) , type=pa.binary() ) _lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase = pa.array([None] * len(A__ ) , type=pa.string() ) _lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): _lowerCamelCase = pa.array([Audio().encode_example(A__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _lowerCamelCase = storage.field('''bytes''' ) else: _lowerCamelCase = pa.array([None] * len(A__ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _lowerCamelCase = storage.field('''path''' ) else: _lowerCamelCase = pa.array([None] * len(A__ ) , type=pa.string() ) _lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(A__ , self.pa_type ) def UpperCamelCase_ ( self , A_ ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(A_ ): with xopen(A__ , '''rb''' ) as f: _lowerCamelCase = f.read() return bytes_ _lowerCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCamelCase = pa.array( [os.path.basename(A__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(A__ , self.pa_type )
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
from math import factorial snake_case__ = {str(d): factorial(d) for d in range(10)} def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(_SCREAMING_SNAKE_CASE ) ) def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(_SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ = 16 snake_case__ = 32 def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = 16 ) -> Tuple: '''simple docstring''' _lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase = 8 else: _lowerCamelCase = None return tokenizer.pad( lowercase__ , padding='''longest''' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ = mocked_dataloaders # noqa: F811 def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase__ ) == "1": _lowerCamelCase = 2 # Initialize accelerator _lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase = config['''lr'''] _lowerCamelCase = int(config['''num_epochs'''] ) _lowerCamelCase = int(config['''seed'''] ) _lowerCamelCase = int(config['''batch_size'''] ) _lowerCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowerCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) _lowerCamelCase , _lowerCamelCase = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler _lowerCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase = model(**lowercase__ ) _lowerCamelCase = outputs.loss _lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _lowerCamelCase = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase = model(**lowercase__ ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) _lowerCamelCase , _lowerCamelCase = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) _lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase__ ) def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase__ , default=lowercase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ = """mask2former""" A_ = ["""swin"""] A_ = {"""hidden_size""": """hidden_dim"""} def __init__( self , A_ = None , A_ = 2_56 , A_ = 2_56 , A_ = 2_56 , A_ = 10_24 , A_ = "relu" , A_ = 6 , A_ = 10 , A_ = 8 , A_ = 0.0 , A_ = 20_48 , A_ = False , A_ = False , A_ = 4 , A_ = 2_55 , A_ = 1_00 , A_ = 0.1 , A_ = 2.0 , A_ = 5.0 , A_ = 5.0 , A_ = 1_25_44 , A_ = 3.0 , A_ = 0.75 , A_ = 0.02 , A_ = 1.0 , A_ = True , A_ = [4, 8, 16, 32] , A_ = None , **A_ , ) -> Dict: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) _lowerCamelCase = CONFIG_MAPPING["""swin"""]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(lowercase__ , lowercase__ ): _lowerCamelCase = backbone_config.pop('''model_type''' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(lowercase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' F'Supported model types: {",".join(self.backbones_supported )}' ) _lowerCamelCase = backbone_config _lowerCamelCase = feature_size _lowerCamelCase = mask_feature_size _lowerCamelCase = hidden_dim _lowerCamelCase = encoder_feedforward_dim _lowerCamelCase = activation_function _lowerCamelCase = encoder_layers _lowerCamelCase = decoder_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = dropout _lowerCamelCase = dim_feedforward _lowerCamelCase = pre_norm _lowerCamelCase = enforce_input_projection _lowerCamelCase = common_stride _lowerCamelCase = ignore_value _lowerCamelCase = num_queries _lowerCamelCase = no_object_weight _lowerCamelCase = class_weight _lowerCamelCase = mask_weight _lowerCamelCase = dice_weight _lowerCamelCase = train_num_points _lowerCamelCase = oversample_ratio _lowerCamelCase = importance_sample_ratio _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std _lowerCamelCase = use_auxiliary_loss _lowerCamelCase = feature_strides _lowerCamelCase = output_auxiliary_logits _lowerCamelCase = decoder_layers super().__init__(**lowercase__ ) @classmethod def UpperCamelCase_ ( cls , A_ , **A_ ) -> str: """simple docstring""" return cls( backbone_config=lowercase__ , **lowercase__ , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs snake_case__ = imread(R'digital_image_processing/image_data/lena_small.jpg') snake_case__ = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__( ): '''simple docstring''' _lowerCamelCase = cn.convert_to_negative(a_ ) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def __magic_name__( ): '''simple docstring''' _lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __magic_name__( ): '''simple docstring''' _lowerCamelCase = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase = canny.canny(a_ ) # assert canny array for at least one True assert canny_array.any() def __magic_name__( ): '''simple docstring''' assert gg.gaussian_filter(a_ , 5 , sigma=0.9 ).all() def __magic_name__( ): '''simple docstring''' _lowerCamelCase = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) _lowerCamelCase = conv.img_convolve(a_ , a_ ).astype(a_ ) assert res.any() def __magic_name__( ): '''simple docstring''' assert med.median_filter(a_ , 3 ).any() def __magic_name__( ): '''simple docstring''' _lowerCamelCase = sob.sobel_filter(a_ ) assert grad.any() and theta.any() def __magic_name__( ): '''simple docstring''' _lowerCamelCase = sp.make_sepia(a_ , 20 ) assert sepia.all() def __magic_name__( __UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCamelCase = bs.Burkes(imread(a_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __magic_name__( __UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' _lowerCamelCase = rs.NearestNeighbour(imread(a_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __magic_name__( ): '''simple docstring''' _lowerCamelCase = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. _lowerCamelCase = imread(a_ , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = image[x_coordinate][y_coordinate] _lowerCamelCase = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCamelCase = lbp.local_binary_value(a_ , a_ , a_ ) assert lbp_image.any()
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__UpperCAmelCase ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False if "vqa" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = 3129 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''vqa2-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = ViltForQuestionAnswering(__UpperCAmelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = 2 _lowerCamelCase = {0: '''False''', 1: '''True'''} _lowerCamelCase = {v: k for k, v in config.idalabel.items()} _lowerCamelCase = 3 _lowerCamelCase = ViltForImagesAndTextClassification(__UpperCAmelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = ViltForImageAndTextRetrieval(__UpperCAmelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = ViltForMaskedLM(__UpperCAmelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''state_dict'''] _lowerCamelCase = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) if mlm_model or irtr_model: _lowerCamelCase = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase , _lowerCamelCase = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__UpperCAmelCase ) # Define processor _lowerCamelCase = ViltImageProcessor(size=384 ) _lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowerCamelCase = ViltProcessor(__UpperCAmelCase , __UpperCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__UpperCAmelCase ).raw ) _lowerCamelCase = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__UpperCAmelCase ).raw ) _lowerCamelCase = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) _lowerCamelCase = processor(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) _lowerCamelCase = processor(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) _lowerCamelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__UpperCAmelCase ).raw ) if mlm_model: _lowerCamelCase = '''a bunch of [MASK] laying on a [MASK].''' else: _lowerCamelCase = '''How many cats are there?''' _lowerCamelCase = processor(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) _lowerCamelCase = model(**__UpperCAmelCase ) # Verify outputs if mlm_model: _lowerCamelCase = torch.Size([1, 11, 3_0522] ) _lowerCamelCase = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) # verify masked token prediction equals "cats" _lowerCamelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase = torch.Size([1, 3129] ) _lowerCamelCase = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) # verify vqa prediction equals "2" _lowerCamelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase = torch.Size([1, 2] ) _lowerCamelCase = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) snake_case__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch UpperCamelCase__ = 'sshleifer/bart-tiny-random' UpperCamelCase__ = 'patrickvonplaten/t5-tiny-random' @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return AutoConfig.from_pretrained(_snake_case ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" with self.assertRaises(_snake_case ): create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=_snake_case , d=_snake_case )
708
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = LxmertConfig.from_json_file(__UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCamelCase = LxmertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from math import loga def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
0
import numpy as np snake_case__ = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase : '''simple docstring''' def __init__( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = np.array(UpperCamelCase__ ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = np.where(letter == self.SQUARE ) _lowerCamelCase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCamelCase_ ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = message.lower() _lowerCamelCase = message.replace(''' ''' , '''''' ) _lowerCamelCase = message.replace('''j''' , '''i''' ) _lowerCamelCase = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): _lowerCamelCase = self.letter_to_numbers(message[letter_index] ) _lowerCamelCase = numbers[0] _lowerCamelCase = numbers[1] _lowerCamelCase = first_step.reshape(2 * len(UpperCamelCase__ ) ) _lowerCamelCase = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): _lowerCamelCase = int(second_step[numbers_index * 2] ) _lowerCamelCase = int(second_step[(numbers_index * 2) + 1] ) _lowerCamelCase = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) _lowerCamelCase = encoded_message + letter return encoded_message def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = message.lower() message.replace(''' ''' , '''''' ) _lowerCamelCase = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): _lowerCamelCase = self.letter_to_numbers(message[letter_index] ) _lowerCamelCase = numbers[0] _lowerCamelCase = numbers[1] _lowerCamelCase = first_step.reshape((2, len(UpperCamelCase__ )) ) _lowerCamelCase = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): _lowerCamelCase = int(second_step[0, numbers_index] ) _lowerCamelCase = int(second_step[1, numbers_index] ) _lowerCamelCase = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) _lowerCamelCase = decoded_message + letter return decoded_message
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } _lowerCamelCase , _lowerCamelCase = input_paths_and_base_extractors[compression_format] if input_path is None: _lowerCamelCase = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) assert base_extractor.is_extractable(lowerCamelCase_ ) _lowerCamelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCamelCase = file_path.read_text(encoding='''utf-8''' ) else: _lowerCamelCase = output_path.read_text(encoding='''utf-8''' ) _lowerCamelCase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: '''simple docstring''' _lowerCamelCase = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } _lowerCamelCase = input_paths[compression_format] if input_path is None: _lowerCamelCase = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) _lowerCamelCase = Extractor.infer_extractor_format(lowerCamelCase_ ) assert extractor_format is not None _lowerCamelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCamelCase = file_path.read_text(encoding='''utf-8''' ) else: _lowerCamelCase = output_path.read_text(encoding='''utf-8''' ) _lowerCamelCase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' import tarfile _lowerCamelCase = tmp_path / '''data_dot_dot''' directory.mkdir() _lowerCamelCase = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def __magic_name__( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' import tarfile _lowerCamelCase = tmp_path / '''data_sym_link''' directory.mkdir() _lowerCamelCase = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=lowerCamelCase_ ) with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } _lowerCamelCase = insecure_tar_files[insecure_tar_file] _lowerCamelCase = tmp_path / '''extracted''' TarExtractor.extract(lowerCamelCase_ , lowerCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 _lowerCamelCase = ( B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(lowerCamelCase_ ) assert zipfile.is_zipfile(str(lowerCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase_ ) # but we're right
712
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case__ = datasets.utils.logging.get_logger(__name__) snake_case__ = ["names", "prefix"] snake_case__ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] snake_case__ = ["encoding_errors", "on_bad_lines"] snake_case__ = ["date_format"] @dataclass class UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' A_ = ',' A_ = None A_ = 'infer' A_ = None A_ = None A_ = None A_ = None A_ = None A_ = True A_ = None A_ = None A_ = None A_ = None A_ = False A_ = None A_ = None A_ = None A_ = True A_ = True A_ = False A_ = True A_ = None A_ = '.' A_ = None A_ = '"' A_ = 0 A_ = None A_ = None A_ = None A_ = None A_ = True A_ = True A_ = 0 A_ = True A_ = False A_ = None A_ = 10_000 A_ = None A_ = 'strict' A_ = 'error' A_ = None def UpperCamelCase_ ( self ) -> str: """simple docstring""" if self.delimiter is not None: _lowerCamelCase = self.delimiter if self.column_names is not None: _lowerCamelCase = self.column_names @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , A_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' A_ = CsvConfig def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) _lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): _lowerCamelCase = data_files if isinstance(A_ , A_ ): _lowerCamelCase = [files] _lowerCamelCase = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): _lowerCamelCase = [files] _lowerCamelCase = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={'''files''': files} ) ) return splits def UpperCamelCase_ ( self , A_ ) -> pa.Table: """simple docstring""" if self.config.features is not None: _lowerCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(A_ ) for feature in self.config.features.values() ): # cheaper cast _lowerCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=A_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCamelCase = table_cast(A_ , A_ ) return pa_table def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ): _lowerCamelCase = pd.read_csv(A_ , iterator=A_ , dtype=A_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A_ ): _lowerCamelCase = pa.Table.from_pandas(A_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A_ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(A_ )}: {e}' ) raise
713
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json snake_case__ = 'sshleifer/mar_enro_6_3_student' class UpperCamelCase ( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().setUp() _lowerCamelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=__A , ) _lowerCamelCase = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script _lowerCamelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() _lowerCamelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): _lowerCamelCase = bash_script.replace(__A , str(__A ) ) _lowerCamelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCamelCase = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCamelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(__A , '''argv''' , __A ): _lowerCamelCase = argparse.ArgumentParser() _lowerCamelCase = pl.Trainer.add_argparse_args(__A ) _lowerCamelCase = SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = main(__A ) # Check metrics _lowerCamelCase = load_json(model.metrics_save_path ) _lowerCamelCase = metrics['''val'''][0] _lowerCamelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , __A ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCamelCase = os.listdir(__A ) _lowerCamelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] _lowerCamelCase = os.path.join(args.output_dir , __A ) _lowerCamelCase = torch.load(__A , map_location='''cpu''' ) _lowerCamelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCamelCase = {os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class UpperCamelCase ( __lowercase ): '''simple docstring''' @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = F'{self.test_file_dir_str}/test_data/wmt_en_ro' _lowerCamelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_28, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script _lowerCamelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) _lowerCamelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) _lowerCamelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): _lowerCamelCase = bash_script.replace(__A , str(__A ) ) _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = bash_script.replace('''--fp16''' , '''''' ) _lowerCamelCase = 6 _lowerCamelCase = ( ['''distillation.py'''] + bash_script.split() + [ F'--output_dir={output_dir}', '''--gpus=1''', '''--learning_rate=1e-3''', F'--num_train_epochs={epochs}', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(__A , '''argv''' , __A ): _lowerCamelCase = argparse.ArgumentParser() _lowerCamelCase = pl.Trainer.add_argparse_args(__A ) _lowerCamelCase = SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCamelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCamelCase = distill_main(__A ) # Check metrics _lowerCamelCase = load_json(model.metrics_save_path ) _lowerCamelCase = metrics['''val'''][0] _lowerCamelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCamelCase = os.listdir(__A ) _lowerCamelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] _lowerCamelCase = os.path.join(args.output_dir , __A ) _lowerCamelCase = torch.load(__A , map_location='''cpu''' ) _lowerCamelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCamelCase = {os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case__ = '''src/diffusers''' snake_case__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. snake_case__ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) snake_case__ = spec.loader.load_module() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return line.startswith(_UpperCAmelCase ) or len(_UpperCAmelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , _UpperCAmelCase ) is not None def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = object_name.split('''.''' ) _lowerCamelCase = 0 # First let's find the module where our object lives. _lowerCamelCase = parts[i] while i < len(_UpperCAmelCase ) and not os.path.isfile(os.path.join(_UpperCAmelCase , F'{module}.py' ) ): i += 1 if i < len(_UpperCAmelCase ): _lowerCamelCase = os.path.join(_UpperCAmelCase , parts[i] ) if i >= len(_UpperCAmelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_UpperCAmelCase , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase = '''''' _lowerCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCAmelCase ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCAmelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase = line_index while line_index < len(_UpperCAmelCase ) and _should_continue(lines[line_index] , _UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] return "".join(_UpperCAmelCase ) snake_case__ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') snake_case__ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') snake_case__ = re.compile(R'<FILL\s+[^>]*>') def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = code.split('''\n''' ) _lowerCamelCase = 0 while idx < len(_UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCAmelCase ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def __magic_name__( __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = len(get_indent(_UpperCAmelCase ) ) > 0 if has_indent: _lowerCamelCase = F'class Bla:\n{code}' _lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_UpperCAmelCase ) _lowerCamelCase = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = style_docstrings_in_code(_UpperCAmelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [] _lowerCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCAmelCase ): _lowerCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = search.groups() _lowerCamelCase = find_code_in_diffusers(_UpperCAmelCase ) _lowerCamelCase = get_indent(_UpperCAmelCase ) _lowerCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase = theoretical_indent _lowerCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase = True while line_index < len(_UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCAmelCase ): break _lowerCamelCase = lines[line_index] _lowerCamelCase = _should_continue(_UpperCAmelCase , _UpperCAmelCase ) and re.search(F'^{indent}# End copy' , _UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] _lowerCamelCase = ''''''.join(_UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(_UpperCAmelCase ) is None] _lowerCamelCase = '''\n'''.join(_UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCAmelCase ) > 0: _lowerCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowerCamelCase = [_re_replace_pattern.search(_UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = pattern.groups() _lowerCamelCase = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if option.strip() == "all-casing": _lowerCamelCase = re.sub(obja.lower() , obja.lower() , _UpperCAmelCase ) _lowerCamelCase = re.sub(obja.upper() , obja.upper() , _UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase = start_index + 1 if overwrite and len(_UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_UpperCAmelCase ) return diffs def __magic_name__( __UpperCAmelCase = False ) -> str: '''simple docstring''' _lowerCamelCase = glob.glob(os.path.join(_UpperCAmelCase , '''**/*.py''' ) , recursive=_UpperCAmelCase ) _lowerCamelCase = [] for filename in all_files: _lowerCamelCase = is_copy_consistent(_UpperCAmelCase , _UpperCAmelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join(_UpperCAmelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') snake_case__ = parser.parse_args() check_copies(args.fix_and_overwrite)
716
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(__a ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = RegNetModel(config=__a ) model.to(__a ) model.eval() _lowerCamelCase = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = RegNetForImageClassification(__a ) model.to(__a ) model.eval() _lowerCamelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = config_and_inputs _lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' A_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () A_ = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = RegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(__a ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(config=__a ) for name, module in model.named_modules(): if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): _lowerCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(__a , __a ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase = layer_type _lowerCamelCase = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = RegNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=__a , return_tensors='''pt''' ).to(__a ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**__a ) # verify the logits _lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) _lowerCamelCase = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
717
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = 'ssube/stable-diffusion-x4-upscaler-onnx' def UpperCamelCase_ ( self , A_=0 ) -> int: """simple docstring""" _lowerCamelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__A ) ) _lowerCamelCase = torch.manual_seed(__A ) _lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = self.get_dummy_inputs() _lowerCamelCase = pipe(**__A ).images _lowerCamelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = self.get_dummy_inputs() _lowerCamelCase = pipe(**__A ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = self.get_dummy_inputs() _lowerCamelCase = pipe(**__A ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = self.get_dummy_inputs() _lowerCamelCase = pipe(**__A ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = self.get_dummy_inputs() _lowerCamelCase = pipe(**__A ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = ort.SessionOptions() _lowerCamelCase = False return options def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = '''A fantasy landscape, trending on artstation''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase = init_image.resize((1_28, 1_28) ) _lowerCamelCase = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase = '''A fantasy landscape, trending on artstation''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=20 , generator=__A , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase ( __snake_case , __snake_case ): '''simple docstring''' A_ = 1 @register_to_config def __init__( self , A_ = 10_00 , A_ = None ) -> Tuple: """simple docstring""" self.set_timesteps(_lowercase ) # standard deviation of the initial noise distribution _lowerCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _lowerCamelCase = 4 # running values _lowerCamelCase = [] def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple: """simple docstring""" _lowerCamelCase = num_inference_steps _lowerCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _lowerCamelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _lowerCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _lowerCamelCase = torch.sin(steps * math.pi / 2 ) ** 2 _lowerCamelCase = (1.0 - self.betas**2) ** 0.5 _lowerCamelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _lowerCamelCase = timesteps.to(_lowercase ) _lowerCamelCase = [] def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ = True , ) -> int: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) _lowerCamelCase = (self.timesteps == timestep).nonzero().item() _lowerCamelCase = timestep_index + 1 _lowerCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowercase ) if len(self.ets ) == 1: _lowerCamelCase = self.ets[-1] elif len(self.ets ) == 2: _lowerCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _lowerCamelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _lowerCamelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _lowerCamelCase = self._get_prev_sample(_lowercase , _lowercase , _lowercase , _lowercase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowercase ) def UpperCamelCase_ ( self , A_ , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" return sample def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self.alphas[timestep_index] _lowerCamelCase = self.betas[timestep_index] _lowerCamelCase = self.alphas[prev_timestep_index] _lowerCamelCase = self.betas[prev_timestep_index] _lowerCamelCase = (sample - sigma * ets) / max(_lowercase , 1E-8 ) _lowerCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> int: """simple docstring""" return self.config.num_train_timesteps
719
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
0
import enum import shutil import sys snake_case__ = shutil.get_terminal_size() snake_case__ = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class UpperCamelCase ( enum.Enum ): '''simple docstring''' A_ = 0 A_ = 1 def __magic_name__( __UpperCAmelCase , __UpperCAmelCase="" ) -> int: '''simple docstring''' sys.stdout.write(str(lowercase_ ) + end ) sys.stdout.flush() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" ) -> Optional[Any]: '''simple docstring''' forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowercase_ ) def __magic_name__( ) -> Union[str, Any]: '''simple docstring''' forceWrite('''\r''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __magic_name__( ) -> int: '''simple docstring''' forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __magic_name__( ) -> Tuple: '''simple docstring''' reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCAmelCase__ : '''simple docstring''' @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return self.get_dummy_input() @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def UpperCamelCase_ ( self , A_=True , A_=False , A_=False , A_=False , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 4 _lowerCamelCase = 32 _lowerCamelCase = (32, 32) _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = torch.device(_a ) _lowerCamelCase = (batch_size, num_channels) + sizes _lowerCamelCase = randn_tensor(_a , generator=_a , device=_a ) _lowerCamelCase = {'''hidden_states''': hidden_states} if include_temb: _lowerCamelCase = 1_28 _lowerCamelCase = randn_tensor((batch_size, temb_channels) , generator=_a , device=_a ) if include_res_hidden_states_tuple: _lowerCamelCase = torch.manual_seed(1 ) _lowerCamelCase = (randn_tensor(_a , generator=_a , device=_a ),) if include_encoder_hidden_states: _lowerCamelCase = floats_tensor((batch_size, 32, 32) ).to(_a ) if include_skip_sample: _lowerCamelCase = randn_tensor(((batch_size, 3) + sizes) , generator=_a , device=_a ) return dummy_input def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 1_28, } if self.block_type == "up": _lowerCamelCase = 32 if self.block_type == "mid": init_dict.pop('''out_channels''' ) _lowerCamelCase = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.prepare_init_args_and_inputs_for_common() _lowerCamelCase = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): _lowerCamelCase = unet_block(**_a ) if isinstance(_a , _a ): _lowerCamelCase = output[0] self.assertEqual(output.shape , self.output_shape ) _lowerCamelCase = output[0, -1, -3:, -3:] _lowerCamelCase = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten() , _a , atol=5E-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.prepare_init_args_and_inputs_for_common() _lowerCamelCase = self.block_class(**_a ) model.to(_a ) model.train() _lowerCamelCase = model(**_a ) if isinstance(_a , _a ): _lowerCamelCase = output[0] _lowerCamelCase = torch.device(_a ) _lowerCamelCase = randn_tensor(output.shape , device=_a ) _lowerCamelCase = torch.nn.functional.mse_loss(_a , _a ) loss.backward()
721
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=2 , A_=True , A_=False , A_=10 , A_=3 , A_=32 * 8 , A_=32 * 8 , A_=4 , A_=64 , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = is_training _lowerCamelCase = use_auxiliary_loss _lowerCamelCase = num_queries _lowerCamelCase = num_channels _lowerCamelCase = min_size _lowerCamelCase = max_size _lowerCamelCase = num_labels _lowerCamelCase = hidden_dim _lowerCamelCase = hidden_dim def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase__ ) _lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase__ ) _lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase__ ) > 0.5 ).float() _lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase__ ) > 0.5).long() _lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _lowerCamelCase = self.num_queries _lowerCamelCase = self.num_labels _lowerCamelCase = [1, 1, 1, 1] _lowerCamelCase = self.num_channels _lowerCamelCase = 64 _lowerCamelCase = 1_28 _lowerCamelCase = self.hidden_dim _lowerCamelCase = self.hidden_dim _lowerCamelCase = self.hidden_dim return config def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCamelCase_ ( self , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = output.encoder_hidden_states _lowerCamelCase = output.pixel_decoder_hidden_states _lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ) , config.decoder_layers ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_=False ) -> Dict: """simple docstring""" with torch.no_grad(): _lowerCamelCase = MaskaFormerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowerCamelCase = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ ) _lowerCamelCase = model(UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = MaskaFormerForUniversalSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() def comm_check_on_output(A_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ ) _lowerCamelCase = model(UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) _lowerCamelCase = model( pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = MaskaFormerModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCamelCase__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(UpperCamelCase__ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCamelCase = MaskaFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = (self.model_tester.min_size,) * 2 _lowerCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=UpperCamelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=UpperCamelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=UpperCamelCase__ ).long(), } _lowerCamelCase = self.model_tester.get_config() _lowerCamelCase = MaskaFormerForUniversalSegmentation(UpperCamelCase__ ).to(UpperCamelCase__ ) _lowerCamelCase = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(UpperCamelCase__ ).to(UpperCamelCase__ ) _lowerCamelCase = model(**UpperCamelCase__ , output_attentions=UpperCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return _lowerCamelCase = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() _lowerCamelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _lowerCamelCase = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__ ).loss loss.backward() def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = model_class(UpperCamelCase__ ).to(UpperCamelCase__ ) model.train() _lowerCamelCase = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__ ) _lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ = 1E-4 def __magic_name__( ): '''simple docstring''' _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(UpperCamelCase__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) _lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): _lowerCamelCase = model(**UpperCamelCase__ ) _lowerCamelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) _lowerCamelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) _lowerCamelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCamelCase__ ).eval() _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) _lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): _lowerCamelCase = model(**UpperCamelCase__ ) # masks_queries_logits _lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _lowerCamelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _lowerCamelCase = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) # class_queries_logits _lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCamelCase__ ).eval() _lowerCamelCase = self.default_image_processor _lowerCamelCase = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCamelCase = inputs['''pixel_values'''].to(UpperCamelCase__ ) _lowerCamelCase = [el.to(UpperCamelCase__ ) for el in inputs['''mask_labels''']] _lowerCamelCase = [el.to(UpperCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCamelCase = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None )
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
import re def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' _lowerCamelCase = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": snake_case__ = """0094702343221""" print(is_sri_lankan_phone_number(phone))
701
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP snake_case__ = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=8 ) -> str: '''simple docstring''' _lowerCamelCase = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 _lowerCamelCase = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_ , ) -> str: """simple docstring""" super().__init__() self.register_modules( text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) _lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" if latents is None: _lowerCamelCase = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase = latents.to(lowercase__ ) _lowerCamelCase = latents * scheduler.init_noise_sigma return latents def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_=None , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = len(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else 1 # get prompt text embeddings _lowerCamelCase = self.tokenizer( lowercase__ , padding='''max_length''' , truncation=lowercase__ , max_length=77 , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors='''pt''' , ) _lowerCamelCase = text_inputs.input_ids _lowerCamelCase = self.tokenizer(lowercase__ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowercase__ , lowercase__ ): _lowerCamelCase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCamelCase = text_input_ids.to(lowercase__ ) _lowerCamelCase = text_inputs.attention_mask.to(lowercase__ ) _lowerCamelCase = self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) _lowerCamelCase = prompt_embeds.repeat_interleave(lowercase__ , dim=0 ) _lowerCamelCase = text_encoder_hidden_states.repeat_interleave(lowercase__ , dim=0 ) _lowerCamelCase = text_mask.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: _lowerCamelCase = 42 if negative_prompt is None: _lowerCamelCase = [""] * batch_size elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=' F' {type(lowercase__ )}.' ) elif isinstance(lowercase__ , lowercase__ ): _lowerCamelCase = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: _lowerCamelCase = negative_prompt _lowerCamelCase = self.tokenizer( lowercase__ , padding='''max_length''' , max_length=77 , truncation=lowercase__ , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors='''pt''' , ) _lowerCamelCase = uncond_input.input_ids.to(lowercase__ ) _lowerCamelCase = uncond_input.attention_mask.to(lowercase__ ) _lowerCamelCase = self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCamelCase = negative_prompt_embeds.shape[1] _lowerCamelCase = negative_prompt_embeds.repeat(1 , lowercase__ ) _lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase__ ) _lowerCamelCase = uncond_text_encoder_hidden_states.shape[1] _lowerCamelCase = uncond_text_encoder_hidden_states.repeat(1 , lowercase__ , 1 ) _lowerCamelCase = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowercase__ , -1 ) _lowerCamelCase = uncond_text_mask.repeat_interleave(lowercase__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) _lowerCamelCase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) _lowerCamelCase = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCamelCase_ ( self , A_=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) _lowerCamelCase = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) def UpperCamelCase_ ( self , A_=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: _lowerCamelCase = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__ ) if self.safety_checker is not None: _lowerCamelCase = cpu_offload_with_hook(self.safety_checker , lowercase__ , prev_module_hook=lowercase__ ) # We'll offload the last model manually. _lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self , A_ , A_ , A_ , A_ = None , A_ = 5_12 , A_ = 5_12 , A_ = 1_00 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ) -> Dict: """simple docstring""" if isinstance(lowercase__ , lowercase__ ): _lowerCamelCase = 1 elif isinstance(lowercase__ , lowercase__ ): _lowerCamelCase = len(lowercase__ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}' ) _lowerCamelCase = self._execution_device _lowerCamelCase = batch_size * num_images_per_prompt _lowerCamelCase = guidance_scale > 1.0 _lowerCamelCase = self._encode_prompt( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , lowercase__ ): _lowerCamelCase = torch.cat(lowercase__ , dim=0 ) if isinstance(lowercase__ , lowercase__ ): _lowerCamelCase = torch.cat(lowercase__ , dim=0 ) if do_classifier_free_guidance: _lowerCamelCase = image_embeds.repeat_interleave(lowercase__ , dim=0 ) _lowerCamelCase = negative_image_embeds.repeat_interleave(lowercase__ , dim=0 ) _lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowercase__ ) self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) _lowerCamelCase = self.scheduler.timesteps _lowerCamelCase = self.unet.config.in_channels _lowerCamelCase = get_new_h_w(lowercase__ , lowercase__ , self.movq_scale_factor ) # create initial latent _lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} _lowerCamelCase = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: _lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCamelCase = noise_pred.chunk(2 ) _lowerCamelCase = variance_pred.chunk(2 ) _lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , ).prev_sample # post-processing _lowerCamelCase = self.movq.decode(lowercase__ , force_not_quantize=lowercase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _lowerCamelCase = image * 0.5 + 0.5 _lowerCamelCase = image.clamp(0 , 1 ) _lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCamelCase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
702
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> Tuple: """simple docstring""" warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
703
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case__ = logging.get_logger(__name__) snake_case__ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) snake_case__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCamelCase = model_type_to_module_name(__lowercase ) _lowerCamelCase = importlib.import_module(F'.{module_name}' , '''transformers.models''' ) try: return getattr(__lowercase , __lowercase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowercase , '''__name__''' , __lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCamelCase = importlib.import_module('''transformers''' ) if hasattr(__lowercase , __lowercase ): return getattr(__lowercase , __lowercase ) return None def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = get_file_from_repo( __lowercase , __lowercase , cache_dir=__lowercase , force_download=__lowercase , resume_download=__lowercase , proxies=__lowercase , use_auth_token=__lowercase , revision=__lowercase , local_files_only=__lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(__lowercase , encoding='''utf-8''' ) as reader: return json.load(__lowercase ) class UpperCamelCase : '''simple docstring''' def __init__( self ) -> List[str]: """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A_ ) def UpperCamelCase_ ( cls , A_ , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = kwargs.pop('''config''' , A_ ) _lowerCamelCase = kwargs.pop('''trust_remote_code''' , A_ ) _lowerCamelCase = True _lowerCamelCase = ImageProcessingMixin.get_image_processor_dict(A_ , **A_ ) _lowerCamelCase = config_dict.get('''image_processor_type''' , A_ ) _lowerCamelCase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _lowerCamelCase = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowerCamelCase = config_dict.pop('''feature_extractor_type''' , A_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _lowerCamelCase = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _lowerCamelCase = config_dict['auto_map']['AutoFeatureExtractor'] _lowerCamelCase = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(A_ , A_ ): _lowerCamelCase = AutoConfig.from_pretrained(A_ , **A_ ) # It could be in `config.image_processor_type`` _lowerCamelCase = getattr(A_ , '''image_processor_type''' , A_ ) if hasattr(A_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _lowerCamelCase = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _lowerCamelCase = image_processor_class_from_name(A_ ) _lowerCamelCase = image_processor_auto_map is not None _lowerCamelCase = image_processor_class is not None or type(A_ ) in IMAGE_PROCESSOR_MAPPING _lowerCamelCase = resolve_trust_remote_code( A_ , A_ , A_ , A_ ) if has_remote_code and trust_remote_code: _lowerCamelCase = get_class_from_dynamic_module( A_ , A_ , **A_ ) _lowerCamelCase = kwargs.pop('''code_revision''' , A_ ) if os.path.isdir(A_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(A_ , **A_ ) elif image_processor_class is not None: return image_processor_class.from_dict(A_ , **A_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(A_ ) in IMAGE_PROCESSOR_MAPPING: _lowerCamelCase = IMAGE_PROCESSOR_MAPPING[type(A_ )] return image_processor_class.from_dict(A_ , **A_ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> Tuple: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(A_ , A_ )
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import random from .binary_exp_mod import bin_exp_mod def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _lowerCamelCase = n - 1 _lowerCamelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _lowerCamelCase = 0 while count < prec: _lowerCamelCase = random.randint(2 , n - 1 ) _lowerCamelCase = bin_exp_mod(__snake_case , __snake_case , __snake_case ) if b != 1: _lowerCamelCase = True for _ in range(__snake_case ): if b == n - 1: _lowerCamelCase = False break _lowerCamelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": snake_case__ = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
705
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
0