code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_( a__ ): @staticmethod @abstractmethod def lowerCamelCase__ ( UpperCamelCase_ : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCamelCase__ ( self : Optional[Any] ): raise NotImplementedError()
714
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
637
0
"""simple docstring""" def _snake_case ( _snake_case : Optional[Any] ): stooge(_snake_case , 0 , len(_snake_case ) - 1 ) return arr def _snake_case ( _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[Any] ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase : Union[str, Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase : str = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_snake_case , _snake_case , (h - t) ) # Recursively sort last 2/3 elements stooge(_snake_case , i + t , (_snake_case) ) # Recursively sort first 2/3 elements stooge(_snake_case , _snake_case , (h - t) ) if __name__ == "__main__": snake_case__ : Any = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
715
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : List[Any] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): lowerCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase : str = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : int = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : List[str] = set() lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Optional[Any] = char return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Tuple="<mask>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCamelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[int] = errors # how to handle errors in decoding lowerCAmelCase : List[Any] = bytes_to_unicode() lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if token in self.cache: return self.cache[token] lowerCAmelCase : List[str] = tuple(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase, lowerCAmelCase : Any = bigram lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : int = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Tuple = tuple(UpperCamelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ''' '''.join(UpperCamelCase_ ) lowerCAmelCase : List[str] = word return word def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = [] for token in re.findall(self.pat , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCAmelCase : Optional[int] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase : Tuple = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Dict = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : int = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
637
0
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ) -> Tuple: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : int = [0, 1] lowerCAmelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase : int = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
637
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class snake_case_( a__ ): __UpperCamelCase = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase = Features({'''audio''': Audio()} ) __UpperCamelCase = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase = '''audio''' __UpperCamelCase = '''transcription''' def lowerCamelCase__ ( self : str , UpperCamelCase_ : str ): if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , UpperCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) lowerCAmelCase : Tuple = copy.deepcopy(self ) lowerCAmelCase : Any = self.input_schema.copy() lowerCAmelCase : str = features[self.audio_column] lowerCAmelCase : str = input_schema return task_template @property def lowerCamelCase__ ( self : int ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
717
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
637
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case_( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): def __init__( self : str , UpperCamelCase_ : int=None , **UpperCamelCase_ : str ): super().__init__(features=UpperCamelCase_ ) lowerCAmelCase : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCamelCase__ ( self : str , UpperCamelCase_ : int ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase : str = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase : List[Any] = {'''dtype''': torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase : Optional[Any] = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowerCAmelCase : Dict = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , '''__array__''' ) and not isinstance(UpperCamelCase_ , torch.Tensor ): lowerCAmelCase : List[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : dict ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : pa.Table ): lowerCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : pa.Table ): lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) lowerCAmelCase : Dict = self.recursive_tensorize(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self._consolidate(UpperCamelCase_ ) return column def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : pa.Table ): lowerCAmelCase : List[str] = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.python_features_decoder.decode_batch(UpperCamelCase_ ) lowerCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: lowerCAmelCase : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
718
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] , _snake_case : int ): if len(_snake_case ) == 0: return False lowerCAmelCase : List[Any] = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() snake_case__ : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] snake_case__ : Dict = int(input('''Enter the number to be found in the list:\n''').strip()) snake_case__ : str = '''''' if binary_search(sequence, target) else '''not ''' print(f"""{target} was {not_str}found in {sequence}""")
637
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline snake_case__ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Optional[int] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 1_0_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[float] = None , UpperCamelCase_ : bool = True , ): if audio_length_in_s is None: lowerCAmelCase : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate lowerCAmelCase : int = audio_length_in_s * self.unet.config.sample_rate lowerCAmelCase : Optional[int] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCAmelCase : List[Any] = int(UpperCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCAmelCase : List[str] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) lowerCAmelCase : Optional[int] = int(UpperCamelCase_ ) lowerCAmelCase : str = next(iter(self.unet.parameters() ) ).dtype lowerCAmelCase : Optional[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=UpperCamelCase_ ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , device=audio.device ) lowerCAmelCase : Any = self.scheduler.timesteps.to(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCAmelCase : Optional[Any] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample lowerCAmelCase : List[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCAmelCase : Dict = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCamelCase_ )
719
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict snake_case__ : Optional[Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _snake_case ( _snake_case : Any ): lowerCAmelCase : Union[str, Any] = _TestCommandArgs(dataset=_snake_case , all_configs=_snake_case , save_infos=_snake_case ) lowerCAmelCase : str = TestCommand(*_snake_case ) test_command.run() lowerCAmelCase : str = os.path.join(_snake_case , '''README.md''' ) assert os.path.exists(_snake_case ) lowerCAmelCase : Tuple = DatasetInfosDict.from_directory(_snake_case ) lowerCAmelCase : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = getattr(dataset_infos['''default'''] , _snake_case ), getattr(expected_dataset_infos['''default'''] , _snake_case ) if key == "num_bytes": assert is_apercent_close(_snake_case , _snake_case ) elif key == "splits": assert list(_snake_case ) == list(_snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
637
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class snake_case_( a__ ): '''simple docstring''' __UpperCamelCase = '''data2vec-text''' def __init__( self : int , UpperCamelCase_ : Optional[int]=3_0_5_2_2 , UpperCamelCase_ : List[Any]=7_6_8 , UpperCamelCase_ : Any=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : Union[str, Any]=3_0_7_2 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Tuple=5_1_2 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : int=1E-12 , UpperCamelCase_ : str=1 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : List[Any]="absolute" , UpperCamelCase_ : Any=True , UpperCamelCase_ : Any=None , **UpperCamelCase_ : List[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : str = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : str = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class snake_case_( a__ ): '''simple docstring''' @property def lowerCamelCase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
720
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ): return base * power(_snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case__ : Union[str, Any] = int(input('''Enter the base: ''').strip()) snake_case__ : Optional[Any] = int(input('''Enter the exponent: ''').strip()) snake_case__ : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case__ : Dict = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
637
0
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=1_0_0 , UpperCamelCase_ : List[str]=1_3 , UpperCamelCase_ : Optional[int]=3_0 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[Any]=3_2 , UpperCamelCase_ : Union[str, Any]=4 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : int=1_0 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Dict=[0, 1, 2, 3] , ): lowerCAmelCase : Dict = parent lowerCAmelCase : List[Any] = 1_0_0 lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = patch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : List[Any] = is_training lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : Tuple = out_indices lowerCAmelCase : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 lowerCAmelCase : List[Any] = num_patches + 1 def lowerCamelCase__ ( self : str ): lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ ( self : Any ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ): lowerCAmelCase : Union[str, Any] = BeitModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = BeitForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ): lowerCAmelCase : Union[str, Any] = self.type_sequence_label_size lowerCAmelCase : Union[str, Any] = BeitForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : List[str] = 1 lowerCAmelCase : str = BeitForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = self.num_labels lowerCAmelCase : int = BeitForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Any ): lowerCAmelCase : str = BeitModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def lowerCamelCase__ ( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowerCamelCase__ ( self : Optional[int] ): pass def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = model_class(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[Any] = [*signature.parameters.keys()] lowerCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): if not self.model_tester.is_training: return lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCamelCase_ ), BeitForMaskedImageModeling]: continue lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() lowerCAmelCase : str = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCAmelCase : List[Any] = model(**UpperCamelCase_ ).loss loss.backward() def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase : Any = False lowerCAmelCase : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCamelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase : str = model_class(UpperCamelCase_ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase_ ) model.train() lowerCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ ).loss loss.backward() def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCamelCase__ ( self : Any ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Tuple = BeitModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( ): lowerCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Dict ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).pixel_values.to(UpperCamelCase_ ) # prepare bool_masked_pos lowerCAmelCase : List[Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : List[Any] = model(pixel_values=UpperCamelCase_ , bool_masked_pos=UpperCamelCase_ ) lowerCAmelCase : List[str] = outputs.logits # verify the logits lowerCAmelCase : List[Any] = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase_ , atol=1E-2 ) ) @slow def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : int = model(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = outputs.logits # verify the logits lowerCAmelCase : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) lowerCAmelCase : Optional[int] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : Optional[int] = prepare_img() lowerCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**UpperCamelCase_ ) lowerCAmelCase : Tuple = outputs.logits # verify the logits lowerCAmelCase : Tuple = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) lowerCAmelCase : Optional[int] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowerCAmelCase : str = model.to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = BeitImageProcessor(do_resize=UpperCamelCase_ , size=6_4_0 , do_center_crop=UpperCamelCase_ ) lowerCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowerCAmelCase : int = Image.open(ds[0]['''file'''] ) lowerCAmelCase : Tuple = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : List[Any] = model(**UpperCamelCase_ ) lowerCAmelCase : Any = outputs.logits # verify the logits lowerCAmelCase : List[str] = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , UpperCamelCase_ ) lowerCAmelCase : List[str] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowerCAmelCase : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=UpperCamelCase_ , ) else: lowerCAmelCase : Tuple = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=UpperCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowerCAmelCase : Optional[int] = model.to(UpperCamelCase_ ) lowerCAmelCase : Dict = BeitImageProcessor(do_resize=UpperCamelCase_ , size=6_4_0 , do_center_crop=UpperCamelCase_ ) lowerCAmelCase : Dict = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowerCAmelCase : str = Image.open(ds[0]['''file'''] ) lowerCAmelCase : List[str] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**UpperCamelCase_ ) lowerCAmelCase : List[str] = outputs.logits.detach().cpu() lowerCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(5_0_0, 3_0_0)] ) lowerCAmelCase : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ ) lowerCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ ) lowerCAmelCase : str = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ )
721
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : int = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str=None , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=None , ): if attention_mask is None: lowerCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case_: def __init__( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Dict=9_9 , UpperCamelCase_ : Optional[int]=1_6 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0.02 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = eos_token_id lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : Optional[Any] = bos_token_id lowerCAmelCase : List[str] = initializer_range def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = 2_0 lowerCAmelCase : Tuple = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = 2_0 lowerCAmelCase : List[Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Dict = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class snake_case_( unittest.TestCase ): __UpperCamelCase = 99 def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : List[Any] = input_ids.shape[0] lowerCAmelCase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self._get_config_and_data() lowerCAmelCase : Any = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = lm_model(input_ids=UpperCamelCase_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[Any] = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowerCAmelCase : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Optional[int] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : str = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case_( a__ , unittest.TestCase , a__ ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = FlaxBlenderbotModelTester(self ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : List[str] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : List[str] = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : int = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : List[Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : str = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : List[str] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} lowerCAmelCase : List[str] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase : List[Any] = ['''Sam'''] lowerCAmelCase : str = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowerCAmelCase : Union[str, Any] = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
637
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available snake_case__ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = '▁' snake_case__ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } snake_case__ = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } snake_case__ = { 'facebook/m2m100_418M': 1024, } # fmt: off snake_case__ = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = ['input_ids', 'attention_mask'] A_ = [] A_ = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: """simple docstring""" _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase = language_codes _lowerCamelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCamelCase = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCamelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) _lowerCamelCase = vocab_file _lowerCamelCase = load_json(A_ ) _lowerCamelCase = {v: k for k, v in self.encoder.items()} _lowerCamelCase = spm_file _lowerCamelCase = load_spm(A_ , self.sp_model_kwargs ) _lowerCamelCase = len(self.encoder ) _lowerCamelCase = { self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } _lowerCamelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} _lowerCamelCase = {v: k for k, v in self.lang_token_to_id.items()} _lowerCamelCase = src_lang if src_lang is not None else '''en''' _lowerCamelCase = tgt_lang _lowerCamelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCamelCase = num_madeup_words @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token _lowerCamelCase = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) _lowerCamelCase = [1] * len(self.prefix_tokens ) _lowerCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = Path(A_ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) _lowerCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _lowerCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def UpperCamelCase_ ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: """simple docstring""" _lowerCamelCase = src_lang _lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ , **A_ ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _lowerCamelCase = src_lang _lowerCamelCase = self(A_ , add_special_tokens=A_ , **A_ ) _lowerCamelCase = self.get_lang_id(A_ ) _lowerCamelCase = tgt_lang_id return inputs def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = self.get_lang_token(A_ ) _lowerCamelCase = self.lang_token_to_id[lang_token] _lowerCamelCase = [self.cur_lang_id] _lowerCamelCase = [self.eos_token_id] def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = self.get_lang_token(A_ ) _lowerCamelCase = self.lang_token_to_id[lang_token] _lowerCamelCase = [self.cur_lang_id] _lowerCamelCase = [self.eos_token_id] def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' _lowerCamelCase = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def __magic_name__( __UpperCAmelCase ) -> Union[Dict, List]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
snake_case__ = 'Alexander Joslin' import operator as op from .stack import Stack def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _lowerCamelCase = Stack() _lowerCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCAmelCase ) elif i == ")": # RULE 4 _lowerCamelCase = operator_stack.peek() operator_stack.pop() _lowerCamelCase = operand_stack.peek() operand_stack.pop() _lowerCamelCase = operand_stack.peek() operand_stack.pop() _lowerCamelCase = operators[opr](__UpperCAmelCase , __UpperCAmelCase ) operand_stack.push(__UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case__ = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
638
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
from typing import Any class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = data _lowerCamelCase = None def __repr__( self ) -> str: """simple docstring""" return F'Node({self.data})' class UpperCamelCase : '''simple docstring''' def __init__( self ) -> int: """simple docstring""" _lowerCamelCase = None def __iter__( self ) -> Any: """simple docstring""" _lowerCamelCase = self.head while node: yield node.data _lowerCamelCase = node.next def __len__( self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self ) -> str: """simple docstring""" return "->".join([str(A_ ) for item in self] ) def __getitem__( self , A_ ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , A_ , A_ ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) _lowerCamelCase = self.head for _ in range(A_ ): _lowerCamelCase = current.next _lowerCamelCase = data def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" self.insert_nth(len(self ) , A_ ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" self.insert_nth(0 , A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) _lowerCamelCase = Node(A_ ) if self.head is None: _lowerCamelCase = new_node elif index == 0: _lowerCamelCase = self.head # link new_node to head _lowerCamelCase = new_node else: _lowerCamelCase = self.head for _ in range(index - 1 ): _lowerCamelCase = temp.next _lowerCamelCase = temp.next _lowerCamelCase = new_node def UpperCamelCase_ ( self ) -> None: # print every node data """simple docstring""" print(self ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase_ ( self ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self , A_ = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) _lowerCamelCase = self.head # default first node if index == 0: _lowerCamelCase = self.head.next else: _lowerCamelCase = self.head for _ in range(index - 1 ): _lowerCamelCase = temp.next _lowerCamelCase = temp.next _lowerCamelCase = temp.next.next return delete_node.data def UpperCamelCase_ ( self ) -> bool: """simple docstring""" return self.head is None def UpperCamelCase_ ( self ) -> None: """simple docstring""" _lowerCamelCase = None _lowerCamelCase = self.head while current: # Store the current node's next node. _lowerCamelCase = current.next # Make the current node's next point backwards _lowerCamelCase = prev # Make the previous node be the current node _lowerCamelCase = current # Make the current node the next node (to progress iteration) _lowerCamelCase = next_node # Return prev in order to put the head at the end _lowerCamelCase = prev def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCAmelCase ) == i linked_list.insert_nth(__UpperCAmelCase , i + 1 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCAmelCase ) == 9 assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _lowerCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(-8 , 1 ) ) def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = [ -9, 100, Node(7734_5112 ), '''dlrow olleH''', 7, 5555, 0, -1_9_2.5_5_5_5_5, '''Hello, world!''', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _lowerCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _lowerCamelCase = linked_list.delete_head() assert result == -9 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _lowerCamelCase = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _lowerCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCAmelCase ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __magic_name__( ) -> Optional[Any]: '''simple docstring''' from doctest import testmod testmod() _lowerCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__UpperCAmelCase ) print('''\nReading/changing Node data using indexing:''' ) print(F'Element at Position 1: {linked_list[1]}' ) _lowerCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__UpperCAmelCase ) print(F'length of linked_list is : {len(__UpperCAmelCase )}' ) if __name__ == "__main__": main()
638
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
1
def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = len(matrix[0] ) _lowerCamelCase = min(__UpperCAmelCase , __UpperCAmelCase ) for row in range(__UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __UpperCAmelCase ): _lowerCamelCase = matrix[col][row] / matrix[row][row] for i in range(__UpperCAmelCase , __UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _lowerCamelCase = True for i in range(row + 1 , __UpperCAmelCase ): if matrix[i][row] != 0: _lowerCamelCase , _lowerCamelCase = matrix[i], matrix[row] _lowerCamelCase = False break if reduce: rank -= 1 for i in range(__UpperCAmelCase ): _lowerCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
638
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar snake_case__ = TypeVar('T') class UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self , A_ , A_ ) -> None: """simple docstring""" _lowerCamelCase = None _lowerCamelCase = len(A_ ) _lowerCamelCase = [any_type for _ in range(self.N )] + arr _lowerCamelCase = fnc self.build() def UpperCamelCase_ ( self ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): _lowerCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCamelCase_ ( self , A_ , A_ ) -> None: """simple docstring""" p += self.N _lowerCamelCase = v while p > 1: _lowerCamelCase = p // 2 _lowerCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCamelCase_ ( self , A_ , A_ ) -> T | None: # noqa: E741 """simple docstring""" _lowerCamelCase , _lowerCamelCase = l + self.N, r + self.N _lowerCamelCase = None while l <= r: if l % 2 == 1: _lowerCamelCase = self.st[l] if res is None else self.fn(A_ , self.st[l] ) if r % 2 == 0: _lowerCamelCase = self.st[r] if res is None else self.fn(A_ , self.st[r] ) _lowerCamelCase , _lowerCamelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce snake_case__ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] snake_case__ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } snake_case__ = SegmentTree(test_array, min) snake_case__ = SegmentTree(test_array, max) snake_case__ = SegmentTree(test_array, lambda a, b: a + b) def __magic_name__( ) -> None: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ): _lowerCamelCase = reduce(__UpperCAmelCase , test_array[i : j + 1] ) _lowerCamelCase = reduce(__UpperCAmelCase , test_array[i : j + 1] ) _lowerCamelCase = reduce(lambda __UpperCAmelCase , __UpperCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCAmelCase , __UpperCAmelCase ) assert max_range == max_segment_tree.query(__UpperCAmelCase , __UpperCAmelCase ) assert sum_range == sum_segment_tree.query(__UpperCAmelCase , __UpperCAmelCase ) test_all_segments() for index, value in test_updates.items(): snake_case__ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
638
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
638
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
1
import unittest from knapsack import greedy_knapsack as kp class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = [10, 20, 30, 40, 50, 60] _lowerCamelCase = [2, 4, 6, 8, 10, 12] _lowerCamelCase = 1_00 self.assertEqual(kp.calc_profit(A_ , A_ , A_ ) , 2_10 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" self.assertRaisesRegex(A_ , '''max_weight must greater than zero.''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self.assertRaisesRegex(A_ , '''Weight can not be negative.''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.assertRaisesRegex(A_ , '''Profit can not be negative.''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" self.assertRaisesRegex(A_ , '''max_weight must greater than zero.''' ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.assertRaisesRegex( A_ , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
638
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
1
def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [0] * len(__UpperCAmelCase ) _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCAmelCase ) ): if indegree[i] == 0: queue.append(__UpperCAmelCase ) while queue: _lowerCamelCase = queue.pop(0 ) cnt += 1 topo.append(__UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCAmelCase ) if cnt != len(__UpperCAmelCase ): print('''Cycle exists''' ) else: print(__UpperCAmelCase ) # Adjacency List of Graph snake_case__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
638
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ = Features({'image': Image()} ) A_ = Features({'labels': ClassLabel} ) A_ = "image" A_ = "labels" def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , A_ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _lowerCamelCase = copy.deepcopy(self ) _lowerCamelCase = self.label_schema.copy() _lowerCamelCase = features[self.label_column] _lowerCamelCase = label_schema return task_template @property def UpperCamelCase_ ( self ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
638
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } snake_case__ = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } snake_case__ = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = SqueezeBertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> int: """simple docstring""" super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(A_ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**A_ ) _lowerCamelCase = do_lower_case def UpperCamelCase_ ( self , A_ , A_=None ) -> int: """simple docstring""" _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
638
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __magic_name__( __UpperCAmelCase ) -> List[Tuple[int, ...]]: '''simple docstring''' _lowerCamelCase = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple[int, ...]: '''simple docstring''' _lowerCamelCase = [] for d in reversed(__UpperCAmelCase ): idx.append(flat_idx % d ) _lowerCamelCase = flat_idx // d return tuple(reversed(__UpperCAmelCase ) ) @torch.jit.ignore def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(__UpperCAmelCase ) -> None: _lowerCamelCase = True for i in range(len(__UpperCAmelCase ) ): _lowerCamelCase = -1 * (i + 1) l[reversed_idx] &= tally _lowerCamelCase = l[reversed_idx] if start_edges is None: _lowerCamelCase = [s == 0 for s in start] reduce_edge_list(__UpperCAmelCase ) if end_edges is None: _lowerCamelCase = [e == (d - 1) for e, d in zip(__UpperCAmelCase , __UpperCAmelCase )] reduce_edge_list(__UpperCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCAmelCase ) == 0: return [()] elif len(__UpperCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowerCamelCase = [] _lowerCamelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCAmelCase , __UpperCAmelCase ): if s == e: path_list.append(slice(__UpperCAmelCase , s + 1 ) ) else: break _lowerCamelCase = tuple(__UpperCAmelCase ) _lowerCamelCase = len(__UpperCAmelCase ) # start == end, and we're done if divergence_idx == len(__UpperCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCamelCase = start[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCamelCase = end[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowerCamelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' _lowerCamelCase = t.shape[:no_batch_dims] _lowerCamelCase = list(_flat_idx_to_idx(__UpperCAmelCase , __UpperCAmelCase ) ) # _get_minimal_slice_set is inclusive _lowerCamelCase = list(_flat_idx_to_idx(flat_end - 1 , __UpperCAmelCase ) ) # Get an ordered list of slices to perform _lowerCamelCase = _get_minimal_slice_set( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) _lowerCamelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Any: '''simple docstring''' if not (len(__UpperCAmelCase ) > 0): raise ValueError('''Must provide at least one input''' ) _lowerCamelCase = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCAmelCase )] _lowerCamelCase = tuple([max(__UpperCAmelCase ) for s in zip(*__UpperCAmelCase )] ) def _prep_inputs(__UpperCAmelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowerCamelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowerCamelCase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowerCamelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowerCamelCase = tensor_tree_map(_prep_inputs , __UpperCAmelCase ) _lowerCamelCase = None if _out is not None: _lowerCamelCase = tensor_tree_map(lambda __UpperCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowerCamelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowerCamelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCAmelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowerCamelCase = 0 _lowerCamelCase = prepped_outputs for _ in range(__UpperCAmelCase ): # Chunk the input if not low_mem: _lowerCamelCase = _select_chunk else: _lowerCamelCase = partial( _chunk_slice , flat_start=__UpperCAmelCase , flat_end=min(__UpperCAmelCase , i + chunk_size ) , no_batch_dims=len(__UpperCAmelCase ) , ) _lowerCamelCase = tensor_tree_map(__UpperCAmelCase , __UpperCAmelCase ) # Run the layer on the chunk _lowerCamelCase = layer(**__UpperCAmelCase ) # Allocate space for the output if out is None: _lowerCamelCase = tensor_tree_map(lambda __UpperCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCAmelCase , __UpperCAmelCase ): def assign(__UpperCAmelCase , __UpperCAmelCase ) -> None: for k, v in da.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): assign(__UpperCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowerCamelCase = da[k] assign(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for xa, xa in zip(__UpperCAmelCase , __UpperCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowerCamelCase = xa elif isinstance(__UpperCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowerCamelCase = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size _lowerCamelCase = tensor_tree_map(lambda __UpperCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCAmelCase ) return out class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = 5_12 , ) -> str: """simple docstring""" _lowerCamelCase = max_chunk_size _lowerCamelCase = None _lowerCamelCase = None def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> int: """simple docstring""" logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowerCamelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _lowerCamelCase = [c for c in candidates if c > min_chunk_size] _lowerCamelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(A_ ) -> bool: try: with torch.no_grad(): fn(*A_ , chunk_size=A_ ) return True except RuntimeError: return False _lowerCamelCase = 0 _lowerCamelCase = len(A_ ) - 1 while i > min_viable_chunk_size_index: _lowerCamelCase = test_chunk_size(candidates[i] ) if not viable: _lowerCamelCase = (min_viable_chunk_size_index + i) // 2 else: _lowerCamelCase = i _lowerCamelCase = (i + len(A_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase_ ( self , A_ , A_ ) -> bool: """simple docstring""" _lowerCamelCase = True for aa, aa in zip(A_ , A_ ): assert type(A_ ) == type(A_ ) if isinstance(A_ , (list, tuple) ): consistent &= self._compare_arg_caches(A_ , A_ ) elif isinstance(A_ , A_ ): _lowerCamelCase = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] _lowerCamelCase = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] consistent &= self._compare_arg_caches(A_ , A_ ) else: consistent &= aa == aa return consistent def UpperCamelCase_ ( self , A_ , A_ , A_ , ) -> int: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = tree_map(lambda A_ : a.shape if isinstance(A_ , torch.Tensor ) else a , A_ , A_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A_ ) _lowerCamelCase = self._compare_arg_caches(self.cached_arg_data , A_ ) else: # Otherwise, we can reuse the precomputed value _lowerCamelCase = False if not consistent: _lowerCamelCase = self._determine_favorable_chunk_size( A_ , A_ , A_ , ) _lowerCamelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
638
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'autoformer' A_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = True , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 32 , A_ = 32 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 1_00 , A_ = 0.02 , A_ = True , A_=True , A_ = 10 , A_ = 25 , A_ = 3 , **A_ , ) -> str: """simple docstring""" # time series specific configuration _lowerCamelCase = prediction_length _lowerCamelCase = context_length if context_length is not None else prediction_length _lowerCamelCase = distribution_output _lowerCamelCase = loss _lowerCamelCase = input_size _lowerCamelCase = num_time_features _lowerCamelCase = lags_sequence _lowerCamelCase = scaling _lowerCamelCase = num_dynamic_real_features _lowerCamelCase = num_static_real_features _lowerCamelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _lowerCamelCase = cardinality else: _lowerCamelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _lowerCamelCase = embedding_dimension else: _lowerCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _lowerCamelCase = num_parallel_samples # Transformer architecture configuration _lowerCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features _lowerCamelCase = d_model _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_attention_heads _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = decoder_layers _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = encoder_layerdrop _lowerCamelCase = decoder_layerdrop _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = use_cache # Autoformer _lowerCamelCase = label_length _lowerCamelCase = moving_average _lowerCamelCase = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
638
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for part_id in partition_order: _lowerCamelCase = df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__UpperCAmelCase ): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Any: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(100 ).repartition(1 ) _lowerCamelCase = Spark(__UpperCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(10 ).repartition(2 ) _lowerCamelCase = [1, 0] _lowerCamelCase = _generate_iterable_examples(__UpperCAmelCase , __UpperCAmelCase ) # Reverse the partitions. _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , __UpperCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Dict: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(10 ).repartition(1 ) _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: _lowerCamelCase = lambda __UpperCAmelCase : x.reverse() _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [2, 1, 0] ) _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ).shuffle_data_sources(__UpperCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCamelCase = SparkExamplesIterable(__UpperCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): _lowerCamelCase , _lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__( ) -> str: '''simple docstring''' _lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _lowerCamelCase = spark.range(100 ).repartition(1 ) _lowerCamelCase = Spark(__UpperCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
638
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(A_ , A_ , A_ ) self.assertEqual(A_ , ['''c'''] ) self.assertEqual(A_ , [2] ) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , A_ , A_ ) self.assertEqual(A_ , ['''a''', '''c'''] ) self.assertEqual(A_ , [0, 2] ) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(A_ , [0, 2] , A_ ) self.assertEqual(A_ , ['''a''', '''c'''] ) self.assertEqual(A_ , [0, 2] ) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices(A_ , [-3, -1] , A_ ) self.assertEqual(A_ , ['''a''', '''c'''] ) self.assertEqual(A_ , [-3, -1] ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" # Stage names must be set with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A_ ) # Out features must be a list with self.assertRaises(A_ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A_ ): verify_out_features_out_indices(A_ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A_ ): verify_out_features_out_indices(A_ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A_ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = BackboneMixin() _lowerCamelCase = ['''a''', '''b''', '''c'''] _lowerCamelCase = ['''a''', '''c'''] _lowerCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _lowerCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _lowerCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
from __future__ import annotations import math import random from typing import Any class UpperCamelCase : '''simple docstring''' def __init__( self ) -> None: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = 0 def UpperCamelCase_ ( self ) -> bool: """simple docstring""" return self.head == self.tail def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" self.data.append(A_ ) _lowerCamelCase = self.tail + 1 def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.data[self.head] _lowerCamelCase = self.head + 1 return ret def UpperCamelCase_ ( self ) -> int: """simple docstring""" return self.tail - self.head def UpperCamelCase_ ( self ) -> None: """simple docstring""" print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = data _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = 1 def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return self.data def UpperCamelCase_ ( self ) -> MyNode | None: """simple docstring""" return self.left def UpperCamelCase_ ( self ) -> MyNode | None: """simple docstring""" return self.right def UpperCamelCase_ ( self ) -> int: """simple docstring""" return self.height def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = data def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = node def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = node def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = height def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if a > b: return a return b def __magic_name__( __UpperCAmelCase ) -> MyNode: '''simple docstring''' print('''left rotation node:''' , node.get_data() ) _lowerCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__UpperCAmelCase ) _lowerCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCAmelCase ) _lowerCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCAmelCase ) return ret def __magic_name__( __UpperCAmelCase ) -> MyNode: '''simple docstring''' print('''right rotation node:''' , node.get_data() ) _lowerCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__UpperCAmelCase ) _lowerCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCAmelCase ) _lowerCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCAmelCase ) return ret def __magic_name__( __UpperCAmelCase ) -> MyNode: '''simple docstring''' _lowerCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCAmelCase ) ) return right_rotation(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> MyNode: '''simple docstring''' _lowerCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCAmelCase ) ) return left_rotation(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(__UpperCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _lowerCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _lowerCamelCase = right_rotation(__UpperCAmelCase ) else: _lowerCamelCase = lr_rotation(__UpperCAmelCase ) else: node.set_right(insert_node(node.get_right() , __UpperCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _lowerCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _lowerCamelCase = rl_rotation(__UpperCAmelCase ) else: _lowerCamelCase = left_rotation(__UpperCAmelCase ) _lowerCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCAmelCase ) return node def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' while True: _lowerCamelCase = root.get_right() if right_child is None: break _lowerCamelCase = right_child return root.get_data() def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' while True: _lowerCamelCase = root.get_left() if left_child is None: break _lowerCamelCase = left_child return root.get_data() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> MyNode | None: '''simple docstring''' _lowerCamelCase = root.get_left() _lowerCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _lowerCamelCase = get_left_most(__UpperCAmelCase ) root.set_data(__UpperCAmelCase ) root.set_right(del_node(__UpperCAmelCase , __UpperCAmelCase ) ) elif left_child is not None: _lowerCamelCase = left_child elif right_child is not None: _lowerCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(__UpperCAmelCase , __UpperCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCAmelCase , __UpperCAmelCase ) ) if get_height(__UpperCAmelCase ) - get_height(__UpperCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _lowerCamelCase = left_rotation(__UpperCAmelCase ) else: _lowerCamelCase = rl_rotation(__UpperCAmelCase ) elif get_height(__UpperCAmelCase ) - get_height(__UpperCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _lowerCamelCase = right_rotation(__UpperCAmelCase ) else: _lowerCamelCase = lr_rotation(__UpperCAmelCase ) _lowerCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__UpperCAmelCase ) return root class UpperCamelCase : '''simple docstring''' def __init__( self ) -> None: """simple docstring""" _lowerCamelCase = None def UpperCamelCase_ ( self ) -> int: """simple docstring""" return get_height(self.root ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" print('''insert:''' + str(A_ ) ) _lowerCamelCase = insert_node(self.root , A_ ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" print('''delete:''' + str(A_ ) ) if self.root is None: print('''Tree is empty!''' ) return _lowerCamelCase = del_node(self.root , A_ ) def __str__( self , ) -> str: # a level traversale, gives a more intuitive look on the tree """simple docstring""" _lowerCamelCase = '''''' _lowerCamelCase = MyQueue() q.push(self.root ) _lowerCamelCase = self.get_height() if layer == 0: return output _lowerCamelCase = 0 while not q.is_empty(): _lowerCamelCase = q.pop() _lowerCamelCase = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(A_ ) q.push(A_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _lowerCamelCase = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , A_ ) - 1: _lowerCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() snake_case__ = AVLtree() snake_case__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
638
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case__ = logging.get_logger(__name__) snake_case__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } snake_case__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } snake_case__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _lowerCamelCase = bs[:] _lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _lowerCamelCase = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = set() _lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase = char return pairs class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> Tuple: """simple docstring""" _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='''utf-8''' ) as vocab_handle: _lowerCamelCase = json.load(A_ ) _lowerCamelCase = {v: k for k, v in self.encoder.items()} _lowerCamelCase = errors # how to handle errors in decoding _lowerCamelCase = bytes_to_unicode() _lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: _lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] _lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = {} _lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return len(self.encoder ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] _lowerCamelCase = tuple(A_ ) _lowerCamelCase = get_pairs(A_ ) if not pairs: return token while True: _lowerCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase , _lowerCamelCase = bigram _lowerCamelCase = [] _lowerCamelCase = 0 while i < len(A_ ): try: _lowerCamelCase = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase = tuple(A_ ) _lowerCamelCase = new_word if len(A_ ) == 1: break else: _lowerCamelCase = get_pairs(A_ ) _lowerCamelCase = ''' '''.join(A_ ) _lowerCamelCase = word return word def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = [] for token in re.findall(self.pat , A_ ): _lowerCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(''' ''' ) ) return bpe_tokens def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" return self.decoder.get(A_ ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ) _lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '''\n''' ) _lowerCamelCase = 0 with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _lowerCamelCase = token_index writer.write(''' '''.join(A_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self , A_ , A_=False , **A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): _lowerCamelCase = ''' ''' + text return (text, kwargs) def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple: """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self , A_ ) -> List[int]: """simple docstring""" _lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) _lowerCamelCase = ''' '''.join(A_ ) _lowerCamelCase = self.encode(A_ ) if len(A_ ) > self.model_max_length: _lowerCamelCase = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'marian' A_ = ['past_key_values'] A_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_81_01 , A_=None , A_=10_24 , A_=12 , A_=40_96 , A_=16 , A_=12 , A_=40_96 , A_=16 , A_=0.0 , A_=0.0 , A_=True , A_=True , A_="gelu" , A_=10_24 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=5_81_00 , A_=False , A_=5_81_00 , A_=0 , A_=0 , A_=True , **A_ , ) -> int: """simple docstring""" _lowerCamelCase = vocab_size _lowerCamelCase = decoder_vocab_size or vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = d_model _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = encoder_layerdrop _lowerCamelCase = decoder_layerdrop _lowerCamelCase = use_cache _lowerCamelCase = encoder_layers _lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) class UpperCamelCase ( __lowercase ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase = {0: '''batch'''} _lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase , _lowerCamelCase = self.num_layers for i in range(A_ ): _lowerCamelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _lowerCamelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase = super().outputs else: _lowerCamelCase = super(A_ , self ).outputs if self.use_past: _lowerCamelCase , _lowerCamelCase = self.num_layers for i in range(A_ ): _lowerCamelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCamelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" _lowerCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs _lowerCamelCase = seq_length if not self.use_past else 1 _lowerCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) _lowerCamelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase , _lowerCamelCase = common_inputs['''input_ids'''].shape _lowerCamelCase = common_inputs['''decoder_input_ids'''].shape[1] _lowerCamelCase , _lowerCamelCase = self.num_attention_heads _lowerCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase = decoder_seq_length + 3 _lowerCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(A_ , A_ )] , dim=1 ) _lowerCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase , _lowerCamelCase = self.num_layers _lowerCamelCase = min(A_ , A_ ) _lowerCamelCase = max(A_ , A_ ) - min_num_layers _lowerCamelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. _lowerCamelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def UpperCamelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" _lowerCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase , _lowerCamelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCamelCase = seqlen + 2 _lowerCamelCase , _lowerCamelCase = self.num_layers _lowerCamelCase , _lowerCamelCase = self.num_attention_heads _lowerCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase = common_inputs['''attention_mask'''].dtype _lowerCamelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) _lowerCamelCase = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def UpperCamelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase = tokenizer.num_special_tokens_to_add(A_ ) _lowerCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def UpperCamelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: _lowerCamelCase = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: _lowerCamelCase = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1E-4
638
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
1
from __future__ import annotations class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = text, pattern _lowerCamelCase , _lowerCamelCase = len(A_ ), len(A_ ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase_ ( self ) -> list[int]: """simple docstring""" # searches pattern in text and returns index positions _lowerCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: _lowerCamelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case__ = 'ABAABA' snake_case__ = 'AB' snake_case__ = BoyerMooreSearch(text, pattern) snake_case__ = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
1
import numpy as np def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' A_ = 'swin' A_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , A_=2_24 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.02 , A_=1E-5 , A_=32 , A_=None , A_=None , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = embed_dim _lowerCamelCase = depths _lowerCamelCase = len(A_ ) _lowerCamelCase = num_heads _lowerCamelCase = window_size _lowerCamelCase = mlp_ratio _lowerCamelCase = qkv_bias _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = drop_path_rate _lowerCamelCase = hidden_act _lowerCamelCase = use_absolute_embeddings _lowerCamelCase = layer_norm_eps _lowerCamelCase = initializer_range _lowerCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase = int(embed_dim * 2 ** (len(A_ ) - 1) ) _lowerCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(A_ ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1E-4
638
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
638
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=50 , A_=0.02 , A_=True , A_=None , ) -> List[str]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = initializer_range _lowerCamelCase = use_labels _lowerCamelCase = scope def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=A_ , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = self.prepare_config_and_inputs() _lowerCamelCase = True _lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , **A_ , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = BertGenerationEncoder(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ ) _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , **A_ , ) -> str: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = BertGenerationEncoder(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) _lowerCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , **A_ , ) -> Dict: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = BertGenerationDecoder(config=A_ ).to(A_ ).eval() # first forward pass _lowerCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) _lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] _lowerCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , *A_ , ) -> int: """simple docstring""" _lowerCamelCase = BertGenerationDecoder(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () A_ = (BertGenerationDecoder,) if is_torch_available() else () A_ = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = BertGenerationEncoderTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() _lowerCamelCase = '''bert''' self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # This regression test was failing with PyTorch < 1.3 ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder( A_ , A_ , A_ , A_ , A_ , A_ , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*A_ ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(A_ ) @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _lowerCamelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): _lowerCamelCase = model(A_ )[0] _lowerCamelCase = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , A_ ) _lowerCamelCase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _lowerCamelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): _lowerCamelCase = model(A_ )[0] _lowerCamelCase = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , A_ ) _lowerCamelCase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) )
638
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' A_ = 'resnet' A_ = ['basic', 'bottleneck'] def __init__( self , A_=3 , A_=64 , A_=[2_56, 5_12, 10_24, 20_48] , A_=[3, 4, 6, 3] , A_="bottleneck" , A_="relu" , A_=False , A_=None , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) _lowerCamelCase = num_channels _lowerCamelCase = embedding_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = layer_type _lowerCamelCase = hidden_act _lowerCamelCase = downsample_in_first_stage _lowerCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(A_ ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1E-3
638
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'segformer' def __init__( self , A_=3 , A_=4 , A_=[2, 2, 2, 2] , A_=[8, 4, 2, 1] , A_=[32, 64, 1_60, 2_56] , A_=[7, 3, 3, 3] , A_=[4, 2, 2, 2] , A_=[1, 2, 5, 8] , A_=[4, 4, 4, 4] , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.02 , A_=0.1 , A_=1E-6 , A_=2_56 , A_=2_55 , **A_ , ) -> Any: """simple docstring""" super().__init__(**A_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , A_ , ) _lowerCamelCase = num_channels _lowerCamelCase = num_encoder_blocks _lowerCamelCase = depths _lowerCamelCase = sr_ratios _lowerCamelCase = hidden_sizes _lowerCamelCase = patch_sizes _lowerCamelCase = strides _lowerCamelCase = mlp_ratios _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = drop_path_rate _lowerCamelCase = layer_norm_eps _lowerCamelCase = decoder_hidden_size _lowerCamelCase = kwargs.get('''reshape_last_stage''' , A_ ) _lowerCamelCase = semantic_loss_ignore_index class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1E-4 @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 12
638
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} snake_case__ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } snake_case__ = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = collections.OrderedDict() _lowerCamelCase = collections.OrderedDict() _lowerCamelCase = collections.OrderedDict() with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__UpperCAmelCase ): _lowerCamelCase = b _lowerCamelCase = idx for wd in b: _lowerCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self , A_ , A_ , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|startoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ) -> Dict: """simple docstring""" super().__init__( unk_token=A_ , pad_token=A_ , bos_token=A_ , eos_token=A_ , do_clean_text=A_ , **A_ , ) if not os.path.isfile(A_ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(A_ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) _lowerCamelCase = do_clean_text _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = load_vocab_and_emoji(A_ , A_ ) _lowerCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" return self.subword_tokenizer.tokenize(A_ , clean=self.do_clean_text ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(A_ ) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> List[int]: """simple docstring""" _lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: _lowerCamelCase = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = 0 if os.path.isdir(A_ ): _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: _lowerCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) _lowerCamelCase = token_index writer.write(''','''.join(A_ ) + '''\n''' ) index += 1 with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , A_ ) return vocab_file, emoji_file class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = vocab # same as swe _lowerCamelCase = ids_to_tokens # same as bpe _lowerCamelCase = emoji _lowerCamelCase = np.max([len(A_ ) for w in self.vocab.keys()] ) _lowerCamelCase = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) _lowerCamelCase = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) _lowerCamelCase = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) _lowerCamelCase = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _lowerCamelCase = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _lowerCamelCase = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) _lowerCamelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' _lowerCamelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' _lowerCamelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.content_repattera.sub('''<URL>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<EMAIL>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<TEL>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<DATE>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<DATE>''' , A_ ) _lowerCamelCase = self.content_repattera.sub('''<PRICE>''' , A_ ) _lowerCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _lowerCamelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def UpperCamelCase_ ( self , A_ , A_=False ) -> Dict: """simple docstring""" _lowerCamelCase = text.replace(''' ''' , '''<SP>''' ) _lowerCamelCase = text.replace(''' ''' , '''<SP>''' ) _lowerCamelCase = text.replace('''\r\n''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\n''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\r''' , '''<BR>''' ) _lowerCamelCase = text.replace('''\t''' , '''<TAB>''' ) _lowerCamelCase = text.replace('''—''' , '''ー''' ) _lowerCamelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: _lowerCamelCase = text.replace(A_ , A_ ) if clean: _lowerCamelCase = self.clean_text(A_ ) def check_simbol(A_ ): _lowerCamelCase = x.encode() if len(A_ ) == 1 and len(A_ ) == 2: _lowerCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(A_ ): _lowerCamelCase = x.encode() if len(A_ ) == 1 and len(A_ ) == 3: _lowerCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False _lowerCamelCase = 0 _lowerCamelCase = [] while pos < len(A_ ): _lowerCamelCase = min(len(A_ ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 _lowerCamelCase = [] # (token_id, token, pos) for e in range(A_ , A_ , -1 ): _lowerCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(A_ ) > 2: _lowerCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(A_ ) > 0: # the smallest token_id is adopted _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = sorted(A_ , key=lambda A_ : x[0] )[0] result.append(A_ ) _lowerCamelCase = e else: _lowerCamelCase = pos + 1 _lowerCamelCase = text[pos:end] if check_simbol(A_ ): result.append('''<KIGOU>''' ) elif checkuae(A_ ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) _lowerCamelCase = end return result def UpperCamelCase_ ( self , A_ , A_="\n" ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(A_ ) > 0: words.append(bytearray(A_ ).decode('''utf-8''' , errors='''replace''' ) ) _lowerCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(A_ ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(A_ ) if len(A_ ) > 0: words.append(bytearray(A_ ).decode('''utf-8''' , errors='''replace''' ) ) _lowerCamelCase = ''''''.join(A_ ) return text
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } snake_case__ = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] A_ = RobertaTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , A_=True , **A_ , ) -> List[Any]: """simple docstring""" super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: _lowerCamelCase = getattr(A_ , pre_tok_state.pop('''type''' ) ) _lowerCamelCase = add_prefix_space _lowerCamelCase = pre_tok_class(**A_ ) _lowerCamelCase = add_prefix_space _lowerCamelCase = '''post_processor''' _lowerCamelCase = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: _lowerCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase = tuple(state['''sep'''] ) if "cls" in state: _lowerCamelCase = tuple(state['''cls'''] ) _lowerCamelCase = False if state.get('''add_prefix_space''' , A_ ) != add_prefix_space: _lowerCamelCase = add_prefix_space _lowerCamelCase = True if state.get('''trim_offsets''' , A_ ) != trim_offsets: _lowerCamelCase = trim_offsets _lowerCamelCase = True if changes_to_apply: _lowerCamelCase = getattr(A_ , state.pop('''type''' ) ) _lowerCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value _lowerCamelCase = value def UpperCamelCase_ ( self , *A_ , **A_ ) -> BatchEncoding: """simple docstring""" _lowerCamelCase = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def UpperCamelCase_ ( self , *A_ , **A_ ) -> BatchEncoding: """simple docstring""" _lowerCamelCase = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def UpperCamelCase_ ( self , A_ , A_=None ) -> int: """simple docstring""" _lowerCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
638
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case__ = 'facebook/wmt19-en-de' snake_case__ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case__ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case__ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test snake_case__ = tokenizer(['Making tiny model'], return_tensors='pt') snake_case__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save snake_case__ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
638
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
1
from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __magic_name__( __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase = [] for i in range(len(__UpperCAmelCase ) ): _lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__UpperCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__UpperCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__UpperCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__UpperCAmelCase ) return next_generation def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> list[Image.Image]: '''simple docstring''' _lowerCamelCase = [] for _ in range(__UpperCAmelCase ): # Create output image _lowerCamelCase = Image.new('''RGB''' , (len(cells[0] ), len(__UpperCAmelCase )) ) _lowerCamelCase = img.load() # Save cells to image for x in range(len(__UpperCAmelCase ) ): for y in range(len(cells[0] ) ): _lowerCamelCase = 255 - cells[y][x] * 255 _lowerCamelCase = (colour, colour, colour) # Save image images.append(__UpperCAmelCase ) _lowerCamelCase = new_generation(__UpperCAmelCase ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
638
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case__ = logging.getLogger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self , A_ , A_ , A_=None , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.layer[current_layer](A_ , A_ , head_mask[current_layer] ) _lowerCamelCase = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __lowercase , ) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ ) -> int: """simple docstring""" super().__init__(A_ ) _lowerCamelCase = BertEncoderWithPabee(A_ ) self.init_weights() _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = threshold def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = patience def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = 0 _lowerCamelCase = 0 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.inference_layers_num / self.inference_instances_num _lowerCamelCase = ( F'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =' F' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' ) print(A_ ) @add_start_docstrings_to_model_forward(A_ ) def UpperCamelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , ) -> Tuple: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _lowerCamelCase = input_ids.size() elif inputs_embeds is not None: _lowerCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _lowerCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCamelCase = torch.ones(A_ , device=A_ ) if token_type_ids is None: _lowerCamelCase = torch.zeros(A_ , dtype=torch.long , device=A_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCamelCase = self.get_extended_attention_mask(A_ , A_ , A_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = encoder_hidden_states.size() _lowerCamelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowerCamelCase = torch.ones(A_ , device=A_ ) _lowerCamelCase = self.invert_attention_mask(A_ ) else: _lowerCamelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCamelCase = self.get_head_mask(A_ , self.config.num_hidden_layers ) _lowerCamelCase = self.embeddings( input_ids=A_ , position_ids=A_ , token_type_ids=A_ , inputs_embeds=A_ ) _lowerCamelCase = embedding_output if self.training: _lowerCamelCase = [] for i in range(self.config.num_hidden_layers ): _lowerCamelCase = self.encoder.adaptive_forward( A_ , current_layer=A_ , attention_mask=A_ , head_mask=A_ ) _lowerCamelCase = self.pooler(A_ ) _lowerCamelCase = output_layers[i](output_dropout(A_ ) ) res.append(A_ ) elif self.patience == 0: # Use all layers for inference _lowerCamelCase = self.encoder( A_ , attention_mask=A_ , head_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) _lowerCamelCase = self.pooler(encoder_outputs[0] ) _lowerCamelCase = [output_layers[self.config.num_hidden_layers - 1](A_ )] else: _lowerCamelCase = 0 _lowerCamelCase = None _lowerCamelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowerCamelCase = self.encoder.adaptive_forward( A_ , current_layer=A_ , attention_mask=A_ , head_mask=A_ ) _lowerCamelCase = self.pooler(A_ ) _lowerCamelCase = output_layers[i](A_ ) if regression: _lowerCamelCase = logits.detach() if patient_result is not None: _lowerCamelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowerCamelCase = 0 else: _lowerCamelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: _lowerCamelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A_ ) ): patient_counter += 1 else: _lowerCamelCase = 0 _lowerCamelCase = logits if patient_counter == self.patience: break _lowerCamelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __lowercase , ) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ ) -> Union[str, Any]: """simple docstring""" super().__init__(A_ ) _lowerCamelCase = config.num_labels _lowerCamelCase = BertModelWithPabee(A_ ) _lowerCamelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCamelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A_ ) def UpperCamelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , ) -> str: """simple docstring""" _lowerCamelCase = self.bert( input_ids=A_ , attention_mask=A_ , token_type_ids=A_ , position_ids=A_ , head_mask=A_ , inputs_embeds=A_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowerCamelCase = (logits[-1],) if labels is not None: _lowerCamelCase = None _lowerCamelCase = 0 for ix, logits_item in enumerate(A_ ): if self.num_labels == 1: # We are doing regression _lowerCamelCase = MSELoss() _lowerCamelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowerCamelCase = CrossEntropyLoss() _lowerCamelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowerCamelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowerCamelCase = (total_loss / total_weights,) + outputs return outputs
638
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart snake_case__ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } snake_case__ = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __magic_name__( ) -> Dict: '''simple docstring''' _lowerCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _lowerCamelCase = bs[:] _lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _lowerCamelCase = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = set() _lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase = char return pairs class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> str: """simple docstring""" _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='''utf-8''' ) as vocab_handle: _lowerCamelCase = json.load(A_ ) _lowerCamelCase = {v: k for k, v in self.encoder.items()} _lowerCamelCase = errors # how to handle errors in decoding _lowerCamelCase = bytes_to_unicode() _lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: _lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] _lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = {} _lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return len(self.encoder ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" if token in self.cache: return self.cache[token] _lowerCamelCase = tuple(A_ ) _lowerCamelCase = get_pairs(A_ ) if not pairs: return token while True: _lowerCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase , _lowerCamelCase = bigram _lowerCamelCase = [] _lowerCamelCase = 0 while i < len(A_ ): try: _lowerCamelCase = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase = tuple(A_ ) _lowerCamelCase = new_word if len(A_ ) == 1: break else: _lowerCamelCase = get_pairs(A_ ) _lowerCamelCase = ''' '''.join(A_ ) _lowerCamelCase = word return word def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" _lowerCamelCase = [] for token in re.findall(self.pat , A_ ): _lowerCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(''' ''' ) ) return bpe_tokens def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" return self.decoder.get(A_ ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ) _lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '''\n''' ) _lowerCamelCase = 0 with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _lowerCamelCase = token_index writer.write(''' '''.join(A_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self , A_ , A_=False , **A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): _lowerCamelCase = ''' ''' + text return (text, kwargs)
638
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' A_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = TextaTextGenerationPipeline(model=A_ , tokenizer=A_ ) return generator, ["Something to write", "Something else"] def UpperCamelCase_ ( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = generator('''Something there''' ) self.assertEqual(A_ , [{'''generated_text''': ANY(A_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) _lowerCamelCase = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], ] , ) _lowerCamelCase = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): generator(4 ) @require_torch def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility _lowerCamelCase = generator('''Something there''' , do_sample=A_ ) self.assertEqual(A_ , [{'''generated_text''': ''''''}] ) _lowerCamelCase = 3 _lowerCamelCase = generator( '''Something there''' , num_return_sequences=A_ , num_beams=A_ , ) _lowerCamelCase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(A_ , A_ ) _lowerCamelCase = generator('''This is a test''' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) _lowerCamelCase = generator.model.config.eos_token_id _lowerCamelCase = '''<pad>''' _lowerCamelCase = generator( ['''This is a test''', '''This is a second test'''] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility _lowerCamelCase = generator('''Something there''' , do_sample=A_ ) self.assertEqual(A_ , [{'''generated_text''': ''''''}] )
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
from __future__ import annotations def __magic_name__( __UpperCAmelCase ) -> bool: '''simple docstring''' if len(__UpperCAmelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) _lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 snake_case__ = 0B101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 snake_case__ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class UpperCamelCase : '''simple docstring''' def __init__( self ) -> Dict: """simple docstring""" _lowerCamelCase = WATERMARK_BITS _lowerCamelCase = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images _lowerCamelCase = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCamelCase = [self.encoder.encode(A_ , '''dwtDct''' ) for image in images] _lowerCamelCase = torch.from_numpy(np.array(A_ ) ).permute(0 , 3 , 1 , 2 ) _lowerCamelCase = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 ) return images
638
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ = 1.0 , A_ = None , ) -> Optional[int]: """simple docstring""" super().__init__() _lowerCamelCase = initial_learning_rate _lowerCamelCase = warmup_steps _lowerCamelCase = power _lowerCamelCase = decay_schedule_fn _lowerCamelCase = name def __call__( self , A_ ) -> Any: """simple docstring""" with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _lowerCamelCase = tf.cast(A_ , tf.floataa ) _lowerCamelCase = tf.cast(self.warmup_steps , tf.floataa ) _lowerCamelCase = global_step_float / warmup_steps_float _lowerCamelCase = self.initial_learning_rate * tf.math.pow(A_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=A_ , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 0.9 , __UpperCAmelCase = 0.9_9_9 , __UpperCAmelCase = 1E-8 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = None , ) -> str: '''simple docstring''' _lowerCamelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__UpperCAmelCase , ) if num_warmup_steps: _lowerCamelCase = WarmUp( initial_learning_rate=__UpperCAmelCase , decay_schedule_fn=__UpperCAmelCase , warmup_steps=__UpperCAmelCase , ) if weight_decay_rate > 0.0: _lowerCamelCase = AdamWeightDecay( learning_rate=__UpperCAmelCase , weight_decay_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=__UpperCAmelCase , ) else: _lowerCamelCase = tf.keras.optimizers.Adam( learning_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ = 0.001 , A_ = 0.9 , A_ = 0.999 , A_ = 1E-7 , A_ = False , A_ = 0.0 , A_ = None , A_ = None , A_ = "AdamWeightDecay" , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__(A_ , A_ , A_ , A_ , A_ , A_ , **A_ ) _lowerCamelCase = weight_decay_rate _lowerCamelCase = include_in_weight_decay _lowerCamelCase = exclude_from_weight_decay @classmethod def UpperCamelCase_ ( cls , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = {'''WarmUp''': WarmUp} return super(A_ , cls ).from_config(A_ , custom_objects=A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> int: """simple docstring""" super(A_ , self )._prepare_local(A_ , A_ , A_ ) _lowerCamelCase = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def UpperCamelCase_ ( self , A_ , A_=None , **A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = list(zip(*A_ ) ) return super(A_ , self ).apply_gradients(zip(A_ , A_ ) , name=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> int: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} _lowerCamelCase = apply_state or {} _lowerCamelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: _lowerCamelCase = self._fallback_apply_state(A_ , A_ ) _lowerCamelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self._get_lr(var.device , var.dtype.base_dtype , A_ ) _lowerCamelCase = self._decay_weights_op(A_ , A_ , A_ ) with tf.control_dependencies([decay] ): return super(A_ , self )._resource_apply_dense(A_ , A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_=None ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self._get_lr(var.device , var.dtype.base_dtype , A_ ) _lowerCamelCase = self._decay_weights_op(A_ , A_ , A_ ) with tf.control_dependencies([decay] ): return super(A_ , self )._resource_apply_sparse(A_ , A_ , A_ , **A_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(A_ , A_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(A_ , A_ ) is not None: return False return True class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self ) -> str: """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = None @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" if self._accum_steps is None: _lowerCamelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=A_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , A_ ) -> List[str]: """simple docstring""" if not self._gradients: _lowerCamelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(A_ ) , trainable=A_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(A_ ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(A_ )}' ) for accum_gradient, gradient in zip(self._gradients , A_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(A_ ) self._accum_steps.assign_add(1 ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(A_ ) )
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def __magic_name__( ) -> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
638
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
1
def __magic_name__( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _lowerCamelCase = 6 _lowerCamelCase = 1 _lowerCamelCase = 1901 _lowerCamelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCamelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _lowerCamelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 _lowerCamelCase = day - days_per_month[month - 2] if month > 12: year += 1 _lowerCamelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case__ = 'src/diffusers' snake_case__ = '.' # This is to make sure the diffusers module imported is the one in the repo. snake_case__ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) snake_case__ = spec.loader.load_module() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return line.startswith(__UpperCAmelCase ) or len(__UpperCAmelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , __UpperCAmelCase ) is not None def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = object_name.split('''.''' ) _lowerCamelCase = 0 # First let's find the module where our object lives. _lowerCamelCase = parts[i] while i < len(__UpperCAmelCase ) and not os.path.isfile(os.path.join(__UpperCAmelCase , F'{module}.py' ) ): i += 1 if i < len(__UpperCAmelCase ): _lowerCamelCase = os.path.join(__UpperCAmelCase , parts[i] ) if i >= len(__UpperCAmelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__UpperCAmelCase , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase = '''''' _lowerCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(__UpperCAmelCase ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__UpperCAmelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase = line_index while line_index < len(__UpperCAmelCase ) and _should_continue(lines[line_index] , __UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] return "".join(__UpperCAmelCase ) snake_case__ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') snake_case__ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') snake_case__ = re.compile(R'<FILL\s+[^>]*>') def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = code.split('''\n''' ) _lowerCamelCase = 0 while idx < len(__UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__UpperCAmelCase ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def __magic_name__( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = len(get_indent(__UpperCAmelCase ) ) > 0 if has_indent: _lowerCamelCase = F'class Bla:\n{code}' _lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__UpperCAmelCase ) _lowerCamelCase = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = style_docstrings_in_code(__UpperCAmelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [] _lowerCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__UpperCAmelCase ): _lowerCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = search.groups() _lowerCamelCase = find_code_in_diffusers(__UpperCAmelCase ) _lowerCamelCase = get_indent(__UpperCAmelCase ) _lowerCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase = theoretical_indent _lowerCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase = True while line_index < len(__UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(__UpperCAmelCase ): break _lowerCamelCase = lines[line_index] _lowerCamelCase = _should_continue(__UpperCAmelCase , __UpperCAmelCase ) and re.search(F'^{indent}# End copy' , __UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] _lowerCamelCase = ''''''.join(__UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__UpperCAmelCase ) is None] _lowerCamelCase = '''\n'''.join(__UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__UpperCAmelCase ) > 0: _lowerCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowerCamelCase = [_re_replace_pattern.search(__UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = pattern.groups() _lowerCamelCase = re.sub(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if option.strip() == "all-casing": _lowerCamelCase = re.sub(obja.lower() , obja.lower() , __UpperCAmelCase ) _lowerCamelCase = re.sub(obja.upper() , obja.upper() , __UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase = start_index + 1 if overwrite and len(__UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCAmelCase ) return diffs def __magic_name__( __UpperCAmelCase = False ) -> Tuple: '''simple docstring''' _lowerCamelCase = glob.glob(os.path.join(__UpperCAmelCase , '''**/*.py''' ) , recursive=__UpperCAmelCase ) _lowerCamelCase = [] for filename in all_files: _lowerCamelCase = is_copy_consistent(__UpperCAmelCase , __UpperCAmelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join(__UpperCAmelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') snake_case__ = parser.parse_args() check_copies(args.fix_and_overwrite)
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 3 _lowerCamelCase = (32, 32) _lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.dummy_cond_unet_upscale _lowerCamelCase = DDPMScheduler() _lowerCamelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCamelCase = self.dummy_vae _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCamelCase = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) _lowerCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger''' _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = output.images _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=A_ , )[0] _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] _lowerCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCamelCase = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.dummy_cond_unet_upscale _lowerCamelCase = DDPMScheduler() _lowerCamelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCamelCase = self.dummy_vae _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCamelCase = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) _lowerCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger''' _lowerCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = output.images assert image.shape[0] == 2 _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.dummy_cond_unet_upscale _lowerCamelCase = DDPMScheduler() _lowerCamelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCamelCase = self.dummy_vae _lowerCamelCase = self.dummy_text_encoder _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCamelCase = unet.half() _lowerCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCamelCase = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) _lowerCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCamelCase = '''A painting of a squirrel eating a burger''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ).images _lowerCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _lowerCamelCase = '''a cat sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _lowerCamelCase = '''a cat sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase = '''a cat sitting on a park bench''' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type='''np''' , ) _lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
638
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' if not is_accelerate_available(): return method _lowerCamelCase = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCAmelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *__UpperCAmelCase , **__UpperCAmelCase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCAmelCase , **__UpperCAmelCase ) return wrapper
638
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
1
import os from collections.abc import Iterator def __magic_name__( __UpperCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__UpperCAmelCase ): _lowerCamelCase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__UpperCAmelCase , __UpperCAmelCase ).lstrip('''./''' ) def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' return F'{i * " "}*' if i else "\n##" def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(__UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def __magic_name__( __UpperCAmelCase = "." ) -> None: '''simple docstring''' _lowerCamelCase = '''''' for filepath in sorted(good_file_paths(__UpperCAmelCase ) ): _lowerCamelCase , _lowerCamelCase = os.path.split(__UpperCAmelCase ) if filepath != old_path: _lowerCamelCase = print_path(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 _lowerCamelCase = F'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) _lowerCamelCase = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F'{md_prefix(__UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('.')
638
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
1
snake_case__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = input('''Enter message: ''' ) _lowerCamelCase = input('''Enter key [alphanumeric]: ''' ) _lowerCamelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): _lowerCamelCase = '''encrypt''' _lowerCamelCase = encrypt_message(__UpperCAmelCase , __UpperCAmelCase ) elif mode.lower().startswith('''d''' ): _lowerCamelCase = '''decrypt''' _lowerCamelCase = decrypt_message(__UpperCAmelCase , __UpperCAmelCase ) print(F'\n{mode.title()}ed message:' ) print(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return translate_message(__UpperCAmelCase , __UpperCAmelCase , '''encrypt''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return translate_message(__UpperCAmelCase , __UpperCAmelCase , '''decrypt''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = key.upper() for symbol in message: _lowerCamelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__UpperCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__UpperCAmelCase ): _lowerCamelCase = 0 else: translated.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) if __name__ == "__main__": main()
638
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = None def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _lowerCamelCase = [] for i in range(__UpperCAmelCase ): _lowerCamelCase = i / num_diffusion_timesteps _lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 10_00 , A_ = "fixed_small_log" , A_ = True , A_ = 1.0 , A_ = "epsilon" , A_ = "squaredcos_cap_v2" , ) -> str: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) _lowerCamelCase = betas_for_alpha_bar(A_ ) _lowerCamelCase = 1.0 - self.betas _lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) _lowerCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase = 1.0 # setable values _lowerCamelCase = None _lowerCamelCase = torch.from_numpy(np.arange(0 , A_ )[::-1].copy() ) _lowerCamelCase = variance_type def UpperCamelCase_ ( self , A_ , A_ = None ) -> torch.FloatTensor: """simple docstring""" return sample def UpperCamelCase_ ( self , A_ , A_ = None ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = num_inference_steps _lowerCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase = (np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase = torch.from_numpy(A_ ).to(A_ ) def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=None ) -> List[Any]: """simple docstring""" if prev_timestep is None: _lowerCamelCase = t - 1 _lowerCamelCase = self.alphas_cumprod[t] _lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase = self.betas[t] else: _lowerCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase = torch.log(torch.clamp(A_ , min=1E-2_0 ) ) _lowerCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase = variance.log() _lowerCamelCase = beta.log() _lowerCamelCase = (predicted_variance + 1) / 2 _lowerCamelCase = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ = None , A_=None , A_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase , _lowerCamelCase = torch.split(A_ , sample.shape[1] , dim=1 ) else: _lowerCamelCase = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase = t - 1 _lowerCamelCase = self.alphas_cumprod[t] _lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase = self.betas[t] _lowerCamelCase = self.alphas[t] else: _lowerCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase = torch.clamp( A_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase = 0 if t > 0: _lowerCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device ) _lowerCamelCase = self._get_variance( A_ , predicted_variance=A_ , prev_timestep=A_ , ) if self.variance_type == "fixed_small_log": _lowerCamelCase = variance elif self.variance_type == "learned_range": _lowerCamelCase = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ''' for the UnCLIPScheduler.''' ) _lowerCamelCase = variance * variance_noise _lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ , ) -> torch.FloatTensor: """simple docstring""" # Make sure alphas_cumprod and timestep have same device and dtype as original_samples _lowerCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) _lowerCamelCase = timesteps.to(original_samples.device ) _lowerCamelCase = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
638
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=6 , A_=17 , A_=23 , A_=11 , A_=True , ) -> Tuple: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = act_dim _lowerCamelCase = state_dim _lowerCamelCase = hidden_size _lowerCamelCase = max_length _lowerCamelCase = is_training def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) _lowerCamelCase = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = DecisionTransformerModel(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ , A_ , A_ , A_ , A_ , A_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (DecisionTransformerModel,) if is_torch_available() else () A_ = () A_ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids A_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = DecisionTransformerModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = DecisionTransformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A_ )] , A_ ) @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = 2 # number of steps of autoregressive prediction we will perform _lowerCamelCase = 10 # defined by the RL environment, may be normalized _lowerCamelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _lowerCamelCase = model.to(A_ ) _lowerCamelCase = model.config torch.manual_seed(0 ) _lowerCamelCase = torch.randn(1 , 1 , config.state_dim ).to(device=A_ , dtype=torch.floataa ) # env.reset() _lowerCamelCase = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A_ ) _lowerCamelCase = torch.tensor(A_ , device=A_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCamelCase = state _lowerCamelCase = torch.zeros(1 , 0 , config.act_dim , device=A_ , dtype=torch.floataa ) _lowerCamelCase = torch.zeros(1 , 0 , device=A_ , dtype=torch.floataa ) _lowerCamelCase = torch.tensor(0 , device=A_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(A_ ): _lowerCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A_ )] , dim=1 ) _lowerCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=A_ )] , dim=1 ) _lowerCamelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = model( states=A_ , actions=A_ , rewards=A_ , returns_to_go=A_ , timesteps=A_ , attention_mask=A_ , return_dict=A_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A_ , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCamelCase = action_pred[0, -1] _lowerCamelCase = torch.cat([states, state] , dim=1 ) _lowerCamelCase = returns_to_go[0, -1] - reward _lowerCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=A_ , dtype=torch.long ) * (step + 1)] , dim=1 )
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ = Features({'question': Value('string' ), 'context': Value('string' )} ) A_ = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) A_ = "question" A_ = "context" A_ = "answers" @property def UpperCamelCase_ ( self ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
638
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' with open(__UpperCAmelCase ) as metadata_file: _lowerCamelCase = json.load(__UpperCAmelCase ) _lowerCamelCase = LukeConfig(use_entity_aware_attention=__UpperCAmelCase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _lowerCamelCase = torch.load(__UpperCAmelCase , map_location='''cpu''' )['''module'''] # Load the entity vocab file _lowerCamelCase = load_original_entity_vocab(__UpperCAmelCase ) # add an entry for [MASK2] _lowerCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowerCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCamelCase = AddedToken('''<ent>''' , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) _lowerCamelCase = AddedToken('''<ent2>''' , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , '''tokenizer_config.json''' ) , '''r''' ) as f: _lowerCamelCase = json.load(__UpperCAmelCase ) _lowerCamelCase = '''MLukeTokenizer''' with open(os.path.join(__UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = MLukeTokenizer.from_pretrained(__UpperCAmelCase ) # Initialize the embeddings of the special tokens _lowerCamelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _lowerCamelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _lowerCamelCase = state_dict['''embeddings.word_embeddings.weight'''] _lowerCamelCase = word_emb[ent_init_index].unsqueeze(0 ) _lowerCamelCase = word_emb[enta_init_index].unsqueeze(0 ) _lowerCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowerCamelCase = state_dict[bias_name] _lowerCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _lowerCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _lowerCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCamelCase = F'encoder.layer.{layer_index}.attention.self.' _lowerCamelCase = state_dict[prefix + matrix_name] _lowerCamelCase = state_dict[prefix + matrix_name] _lowerCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _lowerCamelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _lowerCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowerCamelCase = state_dict['''entity_predictions.bias'''] _lowerCamelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _lowerCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowerCamelCase = LukeForMaskedLM(config=__UpperCAmelCase ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _lowerCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _lowerCamelCase = state_dict[key] else: _lowerCamelCase = state_dict[key] _lowerCamelCase , _lowerCamelCase = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if set(__UpperCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(__UpperCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowerCamelCase = MLukeTokenizer.from_pretrained(__UpperCAmelCase , task='''entity_classification''' ) _lowerCamelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _lowerCamelCase = (0, 9) _lowerCamelCase = tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors='''pt''' ) _lowerCamelCase = model(**__UpperCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCamelCase = torch.Size((1, 33, 768) ) _lowerCamelCase = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCamelCase = torch.Size((1, 1, 768) ) _lowerCamelCase = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _lowerCamelCase = MLukeTokenizer.from_pretrained(__UpperCAmelCase ) _lowerCamelCase = '''Tokyo is the capital of <mask>.''' _lowerCamelCase = (24, 30) _lowerCamelCase = tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors='''pt''' ) _lowerCamelCase = model(**__UpperCAmelCase ) _lowerCamelCase = encoding['''input_ids'''][0].tolist() _lowerCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _lowerCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__UpperCAmelCase ) _lowerCamelCase = outputs.entity_logits[0][0].argmax().item() _lowerCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__UpperCAmelCase ) ) model.save_pretrained(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _lowerCamelCase = [json.loads(__UpperCAmelCase ) for line in open(__UpperCAmelCase )] _lowerCamelCase = {} for entry in data: _lowerCamelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowerCamelCase = entity_id break _lowerCamelCase = F'{language}:{entity_name}' _lowerCamelCase = entity_id return new_mapping if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) snake_case__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
638
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' def run_func(__UpperCAmelCase ): @wraps(__UpperCAmelCase ) def run_in_eager_mode(*__UpperCAmelCase , **__UpperCAmelCase ): return func(*__UpperCAmelCase , **__UpperCAmelCase ) @wraps(__UpperCAmelCase ) @tf.function(experimental_compile=__UpperCAmelCase ) def run_in_graph_mode(*__UpperCAmelCase , **__UpperCAmelCase ): return func(*__UpperCAmelCase , **__UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> ["tf.Tensor"]: '''simple docstring''' _lowerCamelCase = random.Random() _lowerCamelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = 42 A_ = "TensorFlow" @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return tf.__version__ def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> float: """simple docstring""" # initialize GPU on separate process _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_inference_func(A_ , A_ , A_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> float: """simple docstring""" _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_train_func(A_ , A_ , A_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A_ ) _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_inference_func(A_ , A_ , A_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A_ ) _lowerCamelCase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _lowerCamelCase = self._prepare_train_func(A_ , A_ , A_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Callable[[], None]: """simple docstring""" _lowerCamelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _lowerCamelCase = ( hasattr(A_ , '''architectures''' ) and isinstance(config.architectures , A_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCamelCase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCamelCase = __import__('''transformers''' , fromlist=[model_class] ) _lowerCamelCase = getattr(A_ , A_ ) _lowerCamelCase = model_cls(A_ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _lowerCamelCase = TF_MODEL_MAPPING[config.__class__](A_ ) # encoder-decoder has vocab size saved differently _lowerCamelCase = config.vocab_size if hasattr(A_ , '''vocab_size''' ) else config.encoder.vocab_size _lowerCamelCase = random_input_ids(A_ , A_ , A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A_ , decoder_input_ids=A_ , training=A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A_ , training=A_ ) _lowerCamelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Callable[[], None]: """simple docstring""" _lowerCamelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _lowerCamelCase = ( hasattr(A_ , '''architectures''' ) and isinstance(config.architectures , A_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCamelCase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCamelCase = __import__('''transformers''' , fromlist=[model_class] ) _lowerCamelCase = getattr(A_ , A_ ) _lowerCamelCase = model_cls(A_ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _lowerCamelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A_ ) # encoder-decoder has vocab size saved differently _lowerCamelCase = config.vocab_size if hasattr(A_ , '''vocab_size''' ) else config.encoder.vocab_size _lowerCamelCase = random_input_ids(A_ , A_ , A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCamelCase = model(A_ , decoder_input_ids=A_ , labels=A_ , training=A_ )[0] _lowerCamelCase = tf.gradients(A_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCamelCase = model(A_ , labels=A_ , training=A_ )[0] _lowerCamelCase = tf.gradients(A_ , model.trainable_variables ) return gradients _lowerCamelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self , A_ ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCamelCase = timeit.repeat( A_ , repeat=self.args.repeat , number=10 , ) return min(A_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def UpperCamelCase_ ( self , A_ ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) _lowerCamelCase = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) _lowerCamelCase = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() _lowerCamelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCamelCase = nvml.nvmlDeviceGetMemoryInfo(A_ ) _lowerCamelCase = meminfo.used _lowerCamelCase = Memory(A_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) _lowerCamelCase = None else: _lowerCamelCase = measure_peak_memory_cpu(A_ ) _lowerCamelCase = Memory(A_ ) if isinstance(A_ , A_ ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCamelCase = stop_memory_tracing(A_ ) if memory is None: _lowerCamelCase = summary.total else: _lowerCamelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
638
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version snake_case__ = get_logger(__name__) class UpperCamelCase : '''simple docstring''' A_ = 'dummy_data' A_ = 'datasets' A_ = False def __init__( self , A_ , A_ , A_ , A_ = None , A_ = False , A_ = True , A_ = None , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 0 _lowerCamelCase = dataset_name _lowerCamelCase = cache_dir _lowerCamelCase = use_local_dummy_data _lowerCamelCase = config # download_callbacks take a single url as input _lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase = str(A_ ) # to be downloaded _lowerCamelCase = None _lowerCamelCase = None @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if self._dummy_file is None: _lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase = cached_path( A_ , cache_dir=self.cache_dir , extract_compressed_file=A_ , force_extract=A_ ) return os.path.join(A_ , self.dummy_file_name ) @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" if self._bucket_url is None: _lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def UpperCamelCase_ ( self , A_ , *A_ ) -> List[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(A_ , A_ ): return self.create_dummy_data_dict(A_ , A_ ) elif isinstance(A_ , (list, tuple) ): return self.create_dummy_data_list(A_ , A_ ) else: return self.create_dummy_data_single(A_ , A_ ) def UpperCamelCase_ ( self , A_ , *A_ ) -> List[Any]: """simple docstring""" return self.download_and_extract(A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(A_ ) def UpperCamelCase_ ( self , A_ , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" return path def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return {} def UpperCamelCase_ ( self , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A_ , A_ ): for single_url in single_urls: download_callback(A_ ) else: _lowerCamelCase = single_urls download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A_ , A_ ): _lowerCamelCase = [os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) for x in single_urls] else: _lowerCamelCase = single_urls _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) _lowerCamelCase = value # make sure that values are unique if all(isinstance(A_ , A_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A_ ) ) for url in data_url ) _lowerCamelCase = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase = [data_url[0]] * len(A_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A_ ) return dummy_data_list def UpperCamelCase_ ( self , A_ , A_ ) -> Any: """simple docstring""" for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase = os.path.join(A_ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass def UpperCamelCase_ ( self , A_ ) -> List[Any]: """simple docstring""" def _iter_archive_members(A_ ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase = Path(self.dummy_file ).parent _lowerCamelCase = path.relative_to(A_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A_ ) _lowerCamelCase = Path(A_ ) _lowerCamelCase = _iter_archive_members(A_ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A_ ).as_posix(), file_path.open('''rb''' ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ): _lowerCamelCase = [paths] for path in paths: if os.path.isfile(A_ ): if os.path.basename(A_ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A_ ): if os.path.basename(A_ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A_ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A_ , A_ )
638
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if "resnet-50" in model_name: _lowerCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: _lowerCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) _lowerCamelCase = DetrConfig(use_timm_backbone=__UpperCAmelCase , backbone_config=__UpperCAmelCase ) # set label attributes _lowerCamelCase = '''panoptic''' in model_name if is_panoptic: _lowerCamelCase = 250 else: _lowerCamelCase = 91 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''coco-detection-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = state_dict.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''''' if is_panoptic: _lowerCamelCase = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _lowerCamelCase = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[:256, :] _lowerCamelCase = in_proj_bias[:256] _lowerCamelCase = in_proj_weight[256:512, :] _lowerCamelCase = in_proj_bias[256:512] _lowerCamelCase = in_proj_weight[-256:, :] _lowerCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCamelCase = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _lowerCamelCase = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[:256, :] _lowerCamelCase = in_proj_bias[:256] _lowerCamelCase = in_proj_weight[256:512, :] _lowerCamelCase = in_proj_bias[256:512] _lowerCamelCase = in_proj_weight[-256:, :] _lowerCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowerCamelCase = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _lowerCamelCase = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCamelCase = in_proj_weight_cross_attn[:256, :] _lowerCamelCase = in_proj_bias_cross_attn[:256] _lowerCamelCase = in_proj_weight_cross_attn[256:512, :] _lowerCamelCase = in_proj_bias_cross_attn[256:512] _lowerCamelCase = in_proj_weight_cross_attn[-256:, :] _lowerCamelCase = in_proj_bias_cross_attn[-256:] def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' _lowerCamelCase , _lowerCamelCase = get_detr_config(__UpperCAmelCase ) # load original model from torch hub _lowerCamelCase = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F'Converting model {model_name}...' ) _lowerCamelCase = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCAmelCase ): if is_panoptic: _lowerCamelCase = '''detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): _lowerCamelCase = state_dict.pop(__UpperCAmelCase ) _lowerCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCamelCase = state_dict.pop(__UpperCAmelCase ) _lowerCamelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: _lowerCamelCase = state_dict.pop(__UpperCAmelCase ) _lowerCamelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _lowerCamelCase = state_dict.pop(__UpperCAmelCase ) _lowerCamelCase = val # finally, create HuggingFace model and load state dict _lowerCamelCase = DetrForSegmentation(__UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # verify our conversion on an image _lowerCamelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' _lowerCamelCase = DetrImageProcessor(format=__UpperCAmelCase ) _lowerCamelCase = processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = detr(__UpperCAmelCase ) _lowerCamelCase = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F'nielsr/{model_name}' ) processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') snake_case__ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 @flax_register_to_config class UpperCamelCase ( nn.Module , __lowercase , __lowercase ): '''simple docstring''' A_ = 32 A_ = 4 A_ = 4 A_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") A_ = False A_ = (320, 640, 1_280, 1_280) A_ = 2 A_ = 8 A_ = None A_ = 1_280 A_ = 0.0 A_ = False A_ = jnp.floataa A_ = True A_ = 0 A_ = False def UpperCamelCase_ ( self , A_ ) -> FrozenDict: """simple docstring""" # init input tensors _lowerCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCamelCase = jnp.zeros(A_ , dtype=jnp.floataa ) _lowerCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _lowerCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowerCamelCase , _lowerCamelCase = jax.random.split(A_ ) _lowerCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A_ , A_ , A_ , A_ )["params"] def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.block_out_channels _lowerCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCamelCase = self.num_attention_heads or self.attention_head_dim # input _lowerCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowerCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowerCamelCase = FlaxTimestepEmbedding(A_ , dtype=self.dtype ) _lowerCamelCase = self.only_cross_attention if isinstance(A_ , A_ ): _lowerCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A_ , A_ ): _lowerCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _lowerCamelCase = [] _lowerCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] _lowerCamelCase = i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCamelCase = FlaxCrossAttnDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCamelCase = FlaxDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A_ ) _lowerCamelCase = down_blocks # mid _lowerCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _lowerCamelCase = [] _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _lowerCamelCase = output_channel _lowerCamelCase = reversed_block_out_channels[i] _lowerCamelCase = reversed_block_out_channels[min(i + 1 , len(A_ ) - 1 )] _lowerCamelCase = i == len(A_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowerCamelCase = FlaxCrossAttnUpBlockaD( in_channels=A_ , out_channels=A_ , prev_output_channel=A_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCamelCase = FlaxUpBlockaD( in_channels=A_ , out_channels=A_ , prev_output_channel=A_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(A_ ) _lowerCamelCase = output_channel _lowerCamelCase = up_blocks # out _lowerCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _lowerCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , A_ , A_ , A_ , A_=None , A_=None , A_ = True , A_ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: """simple docstring""" # 1. time if not isinstance(A_ , jnp.ndarray ): _lowerCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A_ , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps.astype(dtype=jnp.floataa ) _lowerCamelCase = jnp.expand_dims(A_ , 0 ) _lowerCamelCase = self.time_proj(A_ ) _lowerCamelCase = self.time_embedding(A_ ) # 2. pre-process _lowerCamelCase = jnp.transpose(A_ , (0, 2, 3, 1) ) _lowerCamelCase = self.conv_in(A_ ) # 3. down _lowerCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(A_ , A_ ): _lowerCamelCase , _lowerCamelCase = down_block(A_ , A_ , A_ , deterministic=not train ) else: _lowerCamelCase , _lowerCamelCase = down_block(A_ , A_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowerCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( A_ , A_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowerCamelCase = new_down_block_res_samples # 4. mid _lowerCamelCase = self.mid_block(A_ , A_ , A_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowerCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _lowerCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(A_ , A_ ): _lowerCamelCase = up_block( A_ , temb=A_ , encoder_hidden_states=A_ , res_hidden_states_tuple=A_ , deterministic=not train , ) else: _lowerCamelCase = up_block(A_ , temb=A_ , res_hidden_states_tuple=A_ , deterministic=not train ) # 6. post-process _lowerCamelCase = self.conv_norm_out(A_ ) _lowerCamelCase = nn.silu(A_ ) _lowerCamelCase = self.conv_out(A_ ) _lowerCamelCase = jnp.transpose(A_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=A_ )
638
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCamelCase ( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = 5 # Realm tok _lowerCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCamelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(A_ , exist_ok=A_ ) _lowerCamelCase = os.path.join(A_ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _lowerCamelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(A_ , exist_ok=A_ ) def UpperCamelCase_ ( self ) -> RealmTokenizer: """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=A_ , ) return block_records def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_config() _lowerCamelCase = self.get_dummy_retriever() _lowerCamelCase = retriever.tokenizer _lowerCamelCase = np.array([0, 3] , dtype='''long''' ) _lowerCamelCase = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase = tokenizer( ['''the fourth'''] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids _lowerCamelCase = config.reader_seq_len _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors='''np''' ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.get_config() _lowerCamelCase = self.get_dummy_retriever() _lowerCamelCase = retriever.tokenizer _lowerCamelCase = np.array([0, 3, 5] , dtype='''long''' ) _lowerCamelCase = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids _lowerCamelCase = config.reader_seq_len _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors='''np''' ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _lowerCamelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _lowerCamelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCamelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] snake_case__ = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
def __magic_name__( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 , __UpperCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
638
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run snake_case__ = True except (ImportError, AttributeError): snake_case__ = object def __magic_name__( *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' pass snake_case__ = False snake_case__ = logging.get_logger('transformers-cli/serving') def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCAmelCase , args.host , args.port , args.workers ) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=A_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=A_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=A_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=A_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=A_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=A_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=A_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=A_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = pipeline _lowerCamelCase = host _lowerCamelCase = port _lowerCamelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'Serving model over {host}:{port}' ) _lowerCamelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=A_ , response_class=A_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=A_ , response_class=A_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=A_ , response_class=A_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=A_ , response_class=A_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCamelCase_ ( self , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) ) -> str: """simple docstring""" try: _lowerCamelCase = self._pipeline.tokenizer.tokenize(A_ ) if return_ids: _lowerCamelCase = self._pipeline.tokenizer.convert_tokens_to_ids(A_ ) return ServeTokenizeResult(tokens=A_ , tokens_ids=A_ ) else: return ServeTokenizeResult(tokens=A_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(A_ )} ) def UpperCamelCase_ ( self , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) , ) -> int: """simple docstring""" try: _lowerCamelCase = self._pipeline.tokenizer.decode(A_ , A_ , A_ ) return ServeDeTokenizeResult(model='''''' , text=A_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(A_ )} ) async def UpperCamelCase_ ( self , A_=Body(A_ , embed=A_ ) ) -> Any: """simple docstring""" # Check we don't have empty string if len(A_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _lowerCamelCase = self._pipeline(A_ ) return ServeForwardResult(output=A_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(A_ )} )
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
1
from typing import List from .keymap import KEYMAP, get_character def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' def decorator(__UpperCAmelCase ): _lowerCamelCase = getattr(__UpperCAmelCase , '''handle_key''' , [] ) handle += [key] setattr(__UpperCAmelCase , '''handle_key''' , __UpperCAmelCase ) return func return decorator def __magic_name__( *__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' def decorator(__UpperCAmelCase ): _lowerCamelCase = getattr(__UpperCAmelCase , '''handle_key''' , [] ) handle += keys setattr(__UpperCAmelCase , '''handle_key''' , __UpperCAmelCase ) return func return decorator class UpperCamelCase ( __lowercase ): '''simple docstring''' def __new__( cls , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = super().__new__(cls , A_ , A_ , A_ ) if not hasattr(A_ , '''key_handler''' ): setattr(A_ , '''key_handler''' , {} ) setattr(A_ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _lowerCamelCase = getattr(A_ , '''handle_key''' , [] ) for key in handled_keys: _lowerCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls ) -> Optional[int]: """simple docstring""" _lowerCamelCase = get_character() if char != KEYMAP["undefined"]: _lowerCamelCase = ord(A_ ) _lowerCamelCase = cls.key_handler.get(A_ ) if handler: _lowerCamelCase = char return handler(cls ) else: return None def __magic_name__( cls ) -> List[Any]: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
638
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __magic_name__( __UpperCAmelCase=32 , __UpperCAmelCase=10 , __UpperCAmelCase=100 , __UpperCAmelCase=1026 , __UpperCAmelCase=True , __UpperCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , __UpperCAmelCase="igf_context_pairs.jbl" , ) -> Dict: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _lowerCamelCase , _lowerCamelCase = generate_datasets( __UpperCAmelCase , __UpperCAmelCase , number=__UpperCAmelCase , min_len=1026 , trim=__UpperCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowerCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model _lowerCamelCase = load_gpta('''gpt2''' ).to(__UpperCAmelCase ) print('''computing perplexity on objective set''' ) _lowerCamelCase = compute_perplexity(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).item() print('''perplexity on objective set:''' , __UpperCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=15 , __UpperCAmelCase=128 , __UpperCAmelCase=100 , __UpperCAmelCase="igf_model.pt" , ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) # Load pre-trained model _lowerCamelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model _lowerCamelCase = SecondaryLearner(__UpperCAmelCase ) # Train secondary learner _lowerCamelCase = train_secondary_learner( __UpperCAmelCase , __UpperCAmelCase , max_epochs=__UpperCAmelCase , batch_size=__UpperCAmelCase , eval_freq=100 , igf_model_path=__UpperCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=32 , __UpperCAmelCase=1000 , __UpperCAmelCase=16 , __UpperCAmelCase=1.0 , __UpperCAmelCase=recopy_gpta , __UpperCAmelCase=None , __UpperCAmelCase=10 , __UpperCAmelCase="gpt2_finetuned.pt" , ) -> str: '''simple docstring''' _lowerCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) _lowerCamelCase = RandomSampler(__UpperCAmelCase ) _lowerCamelCase = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase ) _lowerCamelCase = max_steps // (len(__UpperCAmelCase )) + 1 _lowerCamelCase = 0 _lowerCamelCase = torch.zeros((1, context_len) , dtype=torch.long , device=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = recopy_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(__UpperCAmelCase ) secondary_learner.eval() _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = [] _lowerCamelCase = [] # Compute the performance of the transformer model at the beginning _lowerCamelCase = compute_perplexity(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) test_perps.append(__UpperCAmelCase ) print('''Test perplexity, step''' , __UpperCAmelCase , ''':''' , __UpperCAmelCase ) for epoch in range(int(__UpperCAmelCase ) ): for step, example in enumerate(__UpperCAmelCase ): torch.cuda.empty_cache() _lowerCamelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowerCamelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowerCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) _lowerCamelCase = True if secondary_learner is not None: _lowerCamelCase = secondary_learner.forward( torch.tensor(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__UpperCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowerCamelCase = -1 if predicted_q < threshold: _lowerCamelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowerCamelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowerCamelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowerCamelCase = compute_perplexity(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) test_perps.append(__UpperCAmelCase ) print('''Test perplexity, step''' , __UpperCAmelCase , ''':''' , __UpperCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __UpperCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=__UpperCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=__UpperCAmelCase , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=__UpperCAmelCase , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=__UpperCAmelCase , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=__UpperCAmelCase , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=__UpperCAmelCase , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=__UpperCAmelCase , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=__UpperCAmelCase , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=__UpperCAmelCase , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=__UpperCAmelCase , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=__UpperCAmelCase , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=__UpperCAmelCase , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__UpperCAmelCase , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner _lowerCamelCase = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner _lowerCamelCase = training_secondary_learner( __UpperCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model _lowerCamelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowerCamelCase , _lowerCamelCase = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=__UpperCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__UpperCAmelCase , secondary_learner=__UpperCAmelCase , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
638
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> float: '''simple docstring''' _lowerCamelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: _lowerCamelCase = 1 - (matter_density + radiation_density + dark_energy) _lowerCamelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _lowerCamelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
638
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
import numpy class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> None: """simple docstring""" _lowerCamelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCamelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCamelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCamelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCamelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCamelCase = numpy.zeros(output_array.shape ) def UpperCamelCase_ ( self ) -> numpy.ndarray: """simple docstring""" _lowerCamelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCamelCase_ ( self ) -> None: """simple docstring""" _lowerCamelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCamelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCamelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): _lowerCamelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCamelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'Iteration {iteration} Loss: {loss}' ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = input_arr _lowerCamelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __magic_name__( __UpperCAmelCase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def __magic_name__( __UpperCAmelCase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def __magic_name__( ) -> int: '''simple docstring''' _lowerCamelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCamelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCamelCase = TwoHiddenLayerNeuralNetwork( input_array=__UpperCAmelCase , output_array=__UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__UpperCAmelCase , iterations=10 , give_loss=__UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
638
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=14 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=4 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=0.02 , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = rotary_dim _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = initializer_range _lowerCamelCase = None _lowerCamelCase = vocab_size - 1 _lowerCamelCase = vocab_size - 1 _lowerCamelCase = vocab_size - 1 def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = 20 _lowerCamelCase = model_class_name(A_ ) _lowerCamelCase = model.init_cache(input_ids.shape[0] , A_ ) _lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCamelCase = model( input_ids[:, :-1] , attention_mask=A_ , past_key_values=A_ , position_ids=A_ , ) _lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) _lowerCamelCase = model( input_ids[:, -1:] , attention_mask=A_ , past_key_values=outputs_cache.past_key_values , position_ids=A_ , ) _lowerCamelCase = model(A_ ) _lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = 20 _lowerCamelCase = model_class_name(A_ ) _lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _lowerCamelCase = model.init_cache(input_ids.shape[0] , A_ ) _lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCamelCase = model( input_ids[:, :-1] , attention_mask=A_ , past_key_values=A_ , position_ids=A_ , ) _lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) _lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=A_ , position_ids=A_ , ) _lowerCamelCase = model(A_ , attention_mask=A_ ) _lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = FlaxGPTJModelTester(self ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(A_ , A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( A_ , A_ , A_ , A_ ) @tooslow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) _lowerCamelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=A_ , truncation=A_ ) _lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) _lowerCamelCase = False _lowerCamelCase = model.config.eos_token_id _lowerCamelCase = jax.jit(model.generate ) _lowerCamelCase = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences _lowerCamelCase = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) _lowerCamelCase = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(A_ , A_ ) @is_pt_flax_cross_test def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCamelCase = self._prepare_for_class(A_ , A_ ) _lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase = getattr(A_ , A_ ) _lowerCamelCase , _lowerCamelCase = pt_inputs['''input_ids'''].shape _lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = pt_model_class(A_ ).eval() _lowerCamelCase = model_class(A_ , dtype=jnp.floataa ) _lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , A_ ) _lowerCamelCase = fx_state with torch.no_grad(): _lowerCamelCase = pt_model(**A_ ).to_tuple() _lowerCamelCase = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(A_ ) _lowerCamelCase = model_class.from_pretrained(A_ , from_pt=A_ ) _lowerCamelCase = fx_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) , len(A_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCamelCase = self._prepare_for_class(A_ , A_ ) _lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase = getattr(A_ , A_ ) _lowerCamelCase = pt_model_class(A_ ).eval() _lowerCamelCase = model_class(A_ , dtype=jnp.floataa ) _lowerCamelCase = load_flax_weights_in_pytorch_model(A_ , fx_model.params ) _lowerCamelCase , _lowerCamelCase = pt_inputs['''input_ids'''].shape _lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = 0 _lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _lowerCamelCase = pt_model(**A_ ).to_tuple() _lowerCamelCase = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(A_ ) _lowerCamelCase = pt_model_class.from_pretrained(A_ , from_flax=A_ ) with torch.no_grad(): _lowerCamelCase = pt_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) , len(A_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) _lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ )
638
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp snake_case__ = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } snake_case__ = { 'RUCAIBox/mvp': 1024, } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] A_ = MvpTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , A_=True , **A_ , ) -> Dict: """simple docstring""" super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: _lowerCamelCase = getattr(A_ , pre_tok_state.pop('''type''' ) ) _lowerCamelCase = add_prefix_space _lowerCamelCase = pre_tok_class(**A_ ) _lowerCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase = '''post_processor''' _lowerCamelCase = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: _lowerCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase = tuple(state['''sep'''] ) if "cls" in state: _lowerCamelCase = tuple(state['''cls'''] ) _lowerCamelCase = False if state.get('''add_prefix_space''' , A_ ) != add_prefix_space: _lowerCamelCase = add_prefix_space _lowerCamelCase = True if state.get('''trim_offsets''' , A_ ) != trim_offsets: _lowerCamelCase = trim_offsets _lowerCamelCase = True if changes_to_apply: _lowerCamelCase = getattr(A_ , state.pop('''type''' ) ) _lowerCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def UpperCamelCase_ ( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value _lowerCamelCase = value def UpperCamelCase_ ( self , *A_ , **A_ ) -> BatchEncoding: """simple docstring""" _lowerCamelCase = kwargs.get('''is_split_into_words''' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*A_ , **A_ ) def UpperCamelCase_ ( self , *A_ , **A_ ) -> BatchEncoding: """simple docstring""" _lowerCamelCase = kwargs.get('''is_split_into_words''' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def UpperCamelCase_ ( self , A_ , A_=None ) -> int: """simple docstring""" _lowerCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
638
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter snake_case__ = True except ImportError: snake_case__ = False snake_case__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCamelCase ( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=A_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=A_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , A_=None , *A_ ) -> int: """simple docstring""" _lowerCamelCase = testing _lowerCamelCase = testing_file _lowerCamelCase = path def UpperCamelCase_ ( self ) -> str: """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowerCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(A_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) _lowerCamelCase = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _lowerCamelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: _lowerCamelCase = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=A_ , extra_context=A_ , ) _lowerCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: _lowerCamelCase = json.load(A_ ) _lowerCamelCase = configuration['''lowercase_modelname'''] _lowerCamelCase = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F'{directory}/configuration.json' ) _lowerCamelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ , exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , '''w''' ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(A_ ): with open(A_ , '''r''' ) as f: _lowerCamelCase = f.readlines() with open(A_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ , A_ , A_ ): # Create temp file _lowerCamelCase , _lowerCamelCase = mkstemp() _lowerCamelCase = False with fdopen(A_ , '''w''' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: _lowerCamelCase = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ , A_ ) # Remove original file remove(A_ ) # Move new file move(A_ , A_ ) def skip_units(A_ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ ): with open(A_ ) as datafile: _lowerCamelCase = [] _lowerCamelCase = False _lowerCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowerCamelCase = line.split('''"''' )[1] _lowerCamelCase = skip_units(A_ ) elif "# Below: " in line and "##" not in line: _lowerCamelCase = line.split('''"''' )[1] _lowerCamelCase = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ , A_ , A_ ) _lowerCamelCase = [] elif "# Replace with" in line and "##" not in line: _lowerCamelCase = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
638
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCamelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) # load decoder from hub _lowerCamelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase_ ( self , **A_ ) -> str: """simple docstring""" _lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = feature_extractor(A_ , return_tensors='''np''' ) _lowerCamelCase = processor(A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = '''This is a test string''' _lowerCamelCase = processor(text=A_ ) _lowerCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self , A_=(2, 10, 16) , A_=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(A_ ) return np.random.rand(*A_ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCamelCase = processor.decode(A_ ) _lowerCamelCase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCamelCase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: _lowerCamelCase = processor.batch_decode(A_ , A_ ) _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as p: _lowerCamelCase = decoder.decode_beams_batch(A_ , A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 15 _lowerCamelCase = -20.0 _lowerCamelCase = -4.0 _lowerCamelCase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] _lowerCamelCase = [d[0][2] for d in decoded_decoder_out] _lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , A_ , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = 2.0 _lowerCamelCase = 5.0 _lowerCamelCase = -20.0 _lowerCamelCase = True _lowerCamelCase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) _lowerCamelCase = decoded_processor_out.text _lowerCamelCase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context('''fork''' ).Pool() as pool: _lowerCamelCase = decoder.decode_beams_batch( A_ , A_ , ) _lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(A_ ) _lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCamelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _lowerCamelCase = os.listdir(A_ ) _lowerCamelCase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = floats_list((3, 10_00) ) _lowerCamelCase = processor_wavaveca(A_ , return_tensors='''np''' ) _lowerCamelCase = processor_auto(A_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor_wavaveca.batch_decode(A_ ) _lowerCamelCase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = self.get_feature_extractor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_decoder() _lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase_ ( A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits()[0] _lowerCamelCase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _lowerCamelCase = self._get_dummy_logits() _lowerCamelCase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" import torch _lowerCamelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A_ ) _lowerCamelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCamelCase = iter(A_ ) _lowerCamelCase = next(A_ ) _lowerCamelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _lowerCamelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCamelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _lowerCamelCase = model(A_ ).logits.cpu().numpy() _lowerCamelCase = processor.decode(logits[0] , output_word_offsets=A_ ) _lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCamelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCamelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , A_ ) self.assertEqual(''' '''.join(self.get_from_offsets(A_ , '''word''' ) ) , output.text ) # output times _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''start_time''' ) ) _lowerCamelCase = torch.tensor(self.get_from_offsets(A_ , '''end_time''' ) ) # fmt: off _lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
638
1
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask snake_case__ = logging.getLogger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_=-1 ) -> Dict: """simple docstring""" # in NER datasets, the last column is usually reserved for NER label _lowerCamelCase = label_idx def UpperCamelCase_ ( self , A_ , A_ ) -> List[InputExample]: """simple docstring""" if isinstance(A_ , A_ ): _lowerCamelCase = mode.value _lowerCamelCase = os.path.join(A_ , F'{mode}.txt' ) _lowerCamelCase = 1 _lowerCamelCase = [] with open(A_ , encoding='''utf-8''' ) as f: _lowerCamelCase = [] _lowerCamelCase = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=A_ , labels=A_ ) ) guid_index += 1 _lowerCamelCase = [] _lowerCamelCase = [] else: _lowerCamelCase = line.split(''' ''' ) words.append(splits[0] ) if len(A_ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=A_ , labels=A_ ) ) return examples def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(A_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCamelCase = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(A_ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" if path: with open(A_ , '''r''' ) as f: _lowerCamelCase = f.read().splitlines() if "O" not in labels: _lowerCamelCase = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self ) -> List[str]: """simple docstring""" # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" if path: with open(A_ , '''r''' ) as f: _lowerCamelCase = f.read().splitlines() if "O" not in labels: _lowerCamelCase = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase ( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self , A_ , A_ ) -> List[InputExample]: """simple docstring""" if isinstance(A_ , A_ ): _lowerCamelCase = mode.value _lowerCamelCase = os.path.join(A_ , F'{mode}.txt' ) _lowerCamelCase = 1 _lowerCamelCase = [] with open(A_ , encoding='''utf-8''' ) as f: for sentence in parse_incr(A_ ): _lowerCamelCase = [] _lowerCamelCase = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(A_ ) == len(A_ ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=A_ , labels=A_ ) ) guid_index += 1 return examples def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = 0 for sentence in parse_incr(A_ ): _lowerCamelCase = preds_list[example_id] _lowerCamelCase = '''''' for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(A_ ) example_id += 1 def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" if path: with open(A_ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
638
from typing import List import numpy as np def __magic_name__( __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = {key: len(__UpperCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[range]: '''simple docstring''' _lowerCamelCase = [] for group_idx in range(__UpperCAmelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(__UpperCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__UpperCAmelCase ) return shards_indices_per_group def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[dict]: '''simple docstring''' _lowerCamelCase = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) if num_shards == 1: return [dict(__UpperCAmelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=__UpperCAmelCase , max_num_jobs=__UpperCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCAmelCase ) ) ] def __magic_name__( __UpperCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __UpperCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' _lowerCamelCase = {len(__UpperCAmelCase ) for value in gen_kwargs.values() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(__UpperCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(__UpperCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(__UpperCAmelCase )]] return shuffled_kwargs
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCamelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCamelCase = min(__UpperCAmelCase , __UpperCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
638
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 2_55 , A_=True , ) -> List[Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , A_ , A_=False ) -> List[str]: """simple docstring""" if not batched: _lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] _lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(A_ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # Initialize image_processings _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = self.image_processing_class(do_resize=A_ , do_normalize=A_ , do_rescale=A_ ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _lowerCamelCase = image_processing_a.pad(A_ , return_tensors='''pt''' ) _lowerCamelCase = image_processing_a(A_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = YolosImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
638
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 't5' A_ = ['past_key_values'] A_ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , A_=3_21_28 , A_=5_12 , A_=64 , A_=20_48 , A_=6 , A_=None , A_=8 , A_=32 , A_=1_28 , A_=0.1 , A_=1E-6 , A_=1.0 , A_="relu" , A_=True , A_=True , A_=0 , A_=1 , **A_ , ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = vocab_size _lowerCamelCase = d_model _lowerCamelCase = d_kv _lowerCamelCase = d_ff _lowerCamelCase = num_layers _lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase = num_heads _lowerCamelCase = relative_attention_num_buckets _lowerCamelCase = relative_attention_max_distance _lowerCamelCase = dropout_rate _lowerCamelCase = layer_norm_epsilon _lowerCamelCase = initializer_factor _lowerCamelCase = feed_forward_proj _lowerCamelCase = use_cache _lowerCamelCase = self.feed_forward_proj.split('''-''' ) _lowerCamelCase = act_info[-1] _lowerCamelCase = act_info[0] == '''gated''' if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCamelCase = '''gelu_new''' super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , ) class UpperCamelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _lowerCamelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _lowerCamelCase = '''past_encoder_sequence + sequence''' _lowerCamelCase = {0: '''batch'''} _lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A_ , direction='''inputs''' ) return common_inputs @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 13
638
import argparse import json from tqdm import tqdm def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCAmelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCAmelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCAmelCase , help='''where to store parsed gold_data_path file''' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowerCamelCase = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowerCamelCase = dpr_record['''question'''] _lowerCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
638
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
638
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : '''simple docstring''' def __init__( self , A_ = "cpu" , A_ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _lowerCamelCase = device _lowerCamelCase = CLIPTokenizerFast.from_pretrained(A_ ) _lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] _lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] _lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase = torchvision.transforms.Resize(2_24 ) _lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.resize(A_ ) _lowerCamelCase = self.center_crop(A_ ) _lowerCamelCase = self.normalize(A_ ) return images def __call__( self , A_=None , A_=None , **A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer(text=A_ , **A_ ) _lowerCamelCase = self.preprocess_img(A_ ) _lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , A_=10 , A_=0.01 , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , A_=True , A_="image" , A_=True , A_=False , A_=False , A_=False , ) -> None: """simple docstring""" super().__init__() _lowerCamelCase = None _lowerCamelCase = device if device else get_device() if vqgan: _lowerCamelCase = vqgan else: _lowerCamelCase = load_vqgan(self.device , conf_path=A_ , ckpt_path=A_ ) self.vqgan.eval() if clip: _lowerCamelCase = clip else: _lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase = ProcessorGradientFlow(device=self.device ) _lowerCamelCase = iterations _lowerCamelCase = lr _lowerCamelCase = log _lowerCamelCase = make_grid _lowerCamelCase = return_val _lowerCamelCase = quantize _lowerCamelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , A_=None , A_=None , A_=5 , A_=True ) -> Any: """simple docstring""" _lowerCamelCase = [] if output_path is None: _lowerCamelCase = '''./animation.gif''' if input_path is None: _lowerCamelCase = self.save_path _lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(A_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(A_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase = total_duration / len(A_ ) _lowerCamelCase = [frame_duration] * len(A_ ) if extend_frames: _lowerCamelCase = 1.5 _lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(A_ ) ) imageio.mimsave(A_ , A_ , duration=A_ ) print(F'gif saved to {output_path}' ) def UpperCamelCase_ ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase = preprocess(Image.open(A_ ) , target_image_size=2_56 ).to(self.device ) _lowerCamelCase = preprocess_vqgan(A_ ) _lowerCamelCase , *_lowerCamelCase = self.vqgan.encode(A_ ) return z def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = self.latent.detach().requires_grad_() _lowerCamelCase = base_latent + transform_vector if self.quantize: _lowerCamelCase , *_lowerCamelCase = self.vqgan.quantize(A_ ) else: _lowerCamelCase = trans_latent return self.vqgan.decode(A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_=None ) -> Any: """simple docstring""" _lowerCamelCase = self.clip_preprocessor(text=A_ , images=A_ , return_tensors='''pt''' , padding=A_ ) _lowerCamelCase = self.clip(**A_ ) _lowerCamelCase = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , A_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , A_ , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase = torch.tensor([1] , device=self.device ) _lowerCamelCase = -torch.log(A_ ) + torch.log(A_ ) return loss def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = torch.randn_like(self.latent , requires_grad=A_ , device=self.device ) _lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase = self._add_vector(A_ ) _lowerCamelCase = loop_post_process(A_ ) _lowerCamelCase = self._get_CLIP_loss(A_ , A_ , A_ ) print('''CLIP loss''' , A_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=A_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" wandb.init(reinit=A_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase = Image.open(A_ ) _lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(A_ ) ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if not prompts: return [] _lowerCamelCase = [] _lowerCamelCase = [] if isinstance(A_ , A_ ): _lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(A_ , (tuple, list) ): _lowerCamelCase = prompt[0] _lowerCamelCase = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase , _lowerCamelCase = prompt.split(''':''' ) _lowerCamelCase = float(A_ ) else: _lowerCamelCase = prompt _lowerCamelCase = 1.0 processed_prompts.append(A_ ) weights.append(A_ ) return { "prompts": processed_prompts, "weights": torch.tensor(A_ , device=self.device ), } def UpperCamelCase_ ( self , A_ , A_=None , A_=None , A_=True , A_=False , A_=True , A_=True , A_=None , ) -> str: """simple docstring""" if image_path: _lowerCamelCase = self._get_latent(A_ ) else: _lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A_ , A_ , A_ ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase = self.process_prompts(A_ ) _lowerCamelCase = self.process_prompts(A_ ) if save_final and save_path is None: _lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(A_ ) _lowerCamelCase = save_path _lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(A_ ) ) _lowerCamelCase = loop_post_process(A_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(A_ , A_ , A_ ) ): if show_intermediate: show_pil(A_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(A_ )} ) if show_final: show_pil(A_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
638
1
class UpperCamelCase : '''simple docstring''' def __init__( self ) -> None: """simple docstring""" _lowerCamelCase = {} # Mapping from char to TrieNode _lowerCamelCase = False def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" for word in words: self.insert(A_ ) def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" _lowerCamelCase = self for char in word: if char not in curr.nodes: _lowerCamelCase = TrieNode() _lowerCamelCase = curr.nodes[char] _lowerCamelCase = True def UpperCamelCase_ ( self , A_ ) -> bool: """simple docstring""" _lowerCamelCase = self for char in word: if char not in curr.nodes: return False _lowerCamelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase_ ( self , A_ ) -> None: """simple docstring""" def _delete(A_ , A_ , A_ ) -> bool: if index == len(A_ ): # If word does not exist if not curr.is_leaf: return False _lowerCamelCase = False return len(curr.nodes ) == 0 _lowerCamelCase = word[index] _lowerCamelCase = curr.nodes.get(A_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCamelCase = _delete(A_ , A_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A_ , 0 ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' if node.is_leaf: print(__UpperCAmelCase , end=''' ''' ) for key, value in node.nodes.items(): print_words(__UpperCAmelCase , word + key ) def __magic_name__( ) -> bool: '''simple docstring''' _lowerCamelCase = '''banana bananas bandana band apple all beast'''.split() _lowerCamelCase = TrieNode() root.insert_many(__UpperCAmelCase ) # print_words(root, "") assert all(root.find(__UpperCAmelCase ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' print(str(__UpperCAmelCase ) , '''works!''' if passes else '''doesn\'t work :(''' ) def __magic_name__( ) -> None: '''simple docstring''' assert test_trie() def __magic_name__( ) -> None: '''simple docstring''' print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
638
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
snake_case__ = range(2, 20 + 1) snake_case__ = [10**k for k in range(ks[-1] + 1)] snake_case__ = {} def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase = sum(a_i[j] for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ) ) _lowerCamelCase = sum(a_i[j] * base[j] for j in range(min(len(__UpperCAmelCase ) , __UpperCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase = 0, 0 _lowerCamelCase = n - i _lowerCamelCase = memo.get(__UpperCAmelCase ) if sub_memo is not None: _lowerCamelCase = sub_memo.get(__UpperCAmelCase ) if jumps is not None and len(__UpperCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase = -1 for _k in range(len(__UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase = diff + c for j in range(min(__UpperCAmelCase , len(__UpperCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) if new_c > 0: add(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _lowerCamelCase = [] else: _lowerCamelCase = {c: []} _lowerCamelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase = next_term(__UpperCAmelCase , k - 1 , i + dn , __UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase = compute(__UpperCAmelCase , __UpperCAmelCase , i + dn , __UpperCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase = 0 while j < len(__UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' if i >= n: return 0, i if k > len(__UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(__UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0, 0, 0 for j in range(len(__UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase = ds_c + ds_b diff += addend _lowerCamelCase = 0 for j in range(__UpperCAmelCase ): _lowerCamelCase = a_i[j] + addend _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return diff, i - start_i def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ): _lowerCamelCase = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) _lowerCamelCase = addend // 10 + quotient else: _lowerCamelCase = s _lowerCamelCase = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase = divmod(__UpperCAmelCase , 10 ) digits.append(__UpperCAmelCase ) def __magic_name__( __UpperCAmelCase = 10**15 ) -> int: '''simple docstring''' _lowerCamelCase = [1] _lowerCamelCase = 1 _lowerCamelCase = 0 while True: _lowerCamelCase , _lowerCamelCase = next_term(__UpperCAmelCase , 20 , i + dn , __UpperCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase = 0 for j in range(len(__UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
638
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __magic_name__( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.mean(1 ) # Centralize the data of class i _lowerCamelCase = data - column_reshape(__UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' _lowerCamelCase = features.mean(1 ) _lowerCamelCase = np.nan for i in range(__UpperCAmelCase ): _lowerCamelCase = features[:, labels == i] _lowerCamelCase = data.shape[1] _lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCamelCase = device_data * np.dot( column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase ) , (column_reshape(__UpperCAmelCase ) - column_reshape(__UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' if features.any(): _lowerCamelCase = features.mean(1 ) # Center the dataset _lowerCamelCase = features - np.reshape(__UpperCAmelCase , (data_mean.size, 1) ) _lowerCamelCase = np.dot(__UpperCAmelCase , centered_data.T ) / features.shape[1] _lowerCamelCase , _lowerCamelCase = np.linalg.eigh(__UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCamelCase = np.dot(filtered_eigenvectors.T , __UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCamelCase , _lowerCamelCase = eigh( covariance_between_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , covariance_within_classes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) _lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = np.linalg.svd(__UpperCAmelCase ) _lowerCamelCase = svd_matrix[:, 0:dimensions] _lowerCamelCase = np.dot(filtered_svd_matrix.T , __UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCamelCase = np.array([0, 0, 0, 1, 1] ) _lowerCamelCase = 2 _lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = linear_discriminant_analysis( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __magic_name__( ) -> None: '''simple docstring''' _lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCamelCase = 2 _lowerCamelCase = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__UpperCAmelCase ) as error_info: _lowerCamelCase = principal_component_analysis(__UpperCAmelCase , __UpperCAmelCase ) if not np.allclose(__UpperCAmelCase , __UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
638
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=0.6 , A_=None , ) -> Dict: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = mask_ratio _lowerCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase = (image_size // patch_size) ** 2 _lowerCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = ViTMAEModel(config=A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = ViTMAEForPreTraining(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = model(A_ ) _lowerCamelCase = (self.image_size // self.patch_size) ** 2 _lowerCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase = 1 _lowerCamelCase = ViTMAEForPreTraining(A_ ) model.to(A_ ) model.eval() _lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase = model(A_ ) _lowerCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A_ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = ViTMAEModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> str: """simple docstring""" # make masks reproducible np.random.seed(2 ) _lowerCamelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase = torch.from_numpy(A_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase = pt_noise super().check_pt_tf_models(A_ , A_ , A_ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(A_ ) model.to(A_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) _lowerCamelCase = outputs[0].cpu().numpy() _lowerCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) _lowerCamelCase = model_class.from_pretrained(A_ ) model.to(A_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) # Make sure we don't have nans _lowerCamelCase = after_outputs[0].cpu().numpy() _lowerCamelCase = 0 _lowerCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = ViTMAEModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __magic_name__( ) -> Tuple: '''simple docstring''' _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowerCamelCase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(A_ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=A_ , return_tensors='''pt''' ).to(A_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase = ViTMAEConfig() _lowerCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**A_ , noise=torch.from_numpy(A_ ).to(device=A_ ) ) # verify the logits _lowerCamelCase = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , A_ ) _lowerCamelCase = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(A_ ) , atol=1E-4 ) )
638
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['vqvae'] def __init__( self , A_ , A_ , A_ , A_ , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_ ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , A_ ) else 10_00 @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 0 , A_ = 0 , A_ = None , A_ = 0 , A_ = None , A_ = None , A_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(A_ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_ ) _lowerCamelCase = self.mel.audio_slice_to_image(A_ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(A_ , 0 ) ).latent_dist.sample( generator=A_ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A_ ): _lowerCamelCase = self.unet(A_ , A_ , A_ )['''sample'''] else: _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] if isinstance(self.scheduler , A_ ): _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: _lowerCamelCase = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(A_ )['''sample'''] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(A_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(A_ ) ) @torch.no_grad() def UpperCamelCase_ ( self , A_ , A_ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , A_ ) self.scheduler.set_timesteps(A_ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(A_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(A_ , A_ )['''sample'''] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( A_ , A_ , A_ ) -> torch.Tensor: """simple docstring""" _lowerCamelCase = acos(torch.dot(torch.flatten(A_ ) , torch.flatten(A_ ) ) / torch.norm(A_ ) / torch.norm(A_ ) ) return sin((1 - alpha) * theta ) * xa / sin(A_ ) + sin(alpha * theta ) * xa / sin(A_ )
638
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case__ = '\nHuman: <<task>>\n\nAssistant: ' snake_case__ = 'huggingface-tools/default-prompts' snake_case__ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="run" ) -> Optional[Any]: '''simple docstring''' if prompt_or_repo_id is None: _lowerCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , __UpperCAmelCase ) is not None: return prompt_or_repo_id _lowerCamelCase = cached_file( __UpperCAmelCase , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: return f.read()
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = AutoencoderKL A_ = 'sample' A_ = 1E-2 @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = 4 _lowerCamelCase = 3 _lowerCamelCase = (32, 32) _lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) return {"sample": image} @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" return (3, 32, 32) @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return (3, 32, 32) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _lowerCamelCase = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" pass def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" # enable deterministic behavior for gradient checkpointing _lowerCamelCase , _lowerCamelCase = self.prepare_init_args_and_inputs_for_common() _lowerCamelCase = self.model_class(**A_ ) model.to(A_ ) assert not model.is_gradient_checkpointing and model.training _lowerCamelCase = model(**A_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCamelCase = torch.randn_like(A_ ) _lowerCamelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCamelCase = self.model_class(**A_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(A_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCamelCase = model_a(**A_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCamelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCamelCase = dict(model.named_parameters() ) _lowerCamelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(A_ ) _lowerCamelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) _lowerCamelCase = model.to(A_ ) model.eval() if torch_device == "mps": _lowerCamelCase = torch.manual_seed(0 ) else: _lowerCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCamelCase = image.to(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ , sample_posterior=A_ , generator=A_ ).sample _lowerCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCamelCase = torch.tensor( [ -4.0_0_7_8E-0_1, -3.8_3_2_3E-0_4, -1.2_6_8_1E-0_1, -1.1_4_6_2E-0_1, 2.0_0_9_5E-0_1, 1.0_8_9_3E-0_1, -8.8_2_4_7E-0_2, -3.0_3_6_1E-0_1, -9.8_6_4_4E-0_3, ] ) elif torch_device == "cpu": _lowerCamelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCamelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-2 ) ) @slow class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" return F'gaussian_noise_s={seed}_shape={"_".join([str(A_ ) for s in shape] )}.npy' def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self , A_=0 , A_=(4, 3, 5_12, 5_12) , A_=False ) -> Optional[int]: """simple docstring""" _lowerCamelCase = torch.floataa if fpaa else torch.floataa _lowerCamelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(A_ , A_ ) ) ).to(A_ ).to(A_ ) return image def UpperCamelCase_ ( self , A_="CompVis/stable-diffusion-v1-4" , A_=False ) -> Any: """simple docstring""" _lowerCamelCase = '''fp16''' if fpaa else None _lowerCamelCase = torch.floataa if fpaa else torch.floataa _lowerCamelCase = AutoencoderKL.from_pretrained( A_ , subfolder='''vae''' , torch_dtype=A_ , revision=A_ , ) model.to(A_ ).eval() return model def UpperCamelCase_ ( self , A_=0 ) -> int: """simple docstring""" if torch_device == "mps": return torch.manual_seed(A_ ) return torch.Generator(device=A_ ).manual_seed(A_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model() _lowerCamelCase = self.get_sd_image(A_ ) _lowerCamelCase = self.get_generator(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ , generator=A_ , sample_posterior=A_ ).sample assert sample.shape == image.shape _lowerCamelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCamelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(A_ , A_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model(fpaa=A_ ) _lowerCamelCase = self.get_sd_image(A_ , fpaa=A_ ) _lowerCamelCase = self.get_generator(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ , generator=A_ , sample_posterior=A_ ).sample assert sample.shape == image.shape _lowerCamelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCamelCase = torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model() _lowerCamelCase = self.get_sd_image(A_ ) with torch.no_grad(): _lowerCamelCase = model(A_ ).sample assert sample.shape == image.shape _lowerCamelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCamelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(A_ , A_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model() _lowerCamelCase = self.get_sd_image(A_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCamelCase = model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] _lowerCamelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCamelCase = torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model(fpaa=A_ ) _lowerCamelCase = self.get_sd_image(A_ , shape=(3, 4, 64, 64) , fpaa=A_ ) with torch.no_grad(): _lowerCamelCase = model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] _lowerCamelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCamelCase = torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model(fpaa=A_ ) _lowerCamelCase = self.get_sd_image(A_ , shape=(3, 4, 64, 64) , fpaa=A_ ) with torch.no_grad(): _lowerCamelCase = model.decode(A_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCamelCase = model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(A_ , A_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model() _lowerCamelCase = self.get_sd_image(A_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCamelCase = model.decode(A_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCamelCase = model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(A_ , A_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_sd_vae_model() _lowerCamelCase = self.get_sd_image(A_ ) _lowerCamelCase = self.get_generator(A_ ) with torch.no_grad(): _lowerCamelCase = model.encode(A_ ).latent_dist _lowerCamelCase = dist.sample(generator=A_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCamelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCamelCase = torch.tensor(A_ ) _lowerCamelCase = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(A_ , A_ , atol=A_ )
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 3 , A_ = 3 , A_ = ("DownEncoderBlock2D",) , A_ = ("UpDecoderBlock2D",) , A_ = (64,) , A_ = 1 , A_ = "silu" , A_ = 3 , A_ = 32 , A_ = 2_56 , A_ = 32 , A_ = None , A_ = 0.18215 , A_ = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder _lowerCamelCase = Encoder( in_channels=A_ , out_channels=A_ , down_block_types=A_ , block_out_channels=A_ , layers_per_block=A_ , act_fn=A_ , norm_num_groups=A_ , double_z=A_ , ) _lowerCamelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCamelCase = nn.Convad(A_ , A_ , 1 ) _lowerCamelCase = VectorQuantizer(A_ , A_ , beta=0.25 , remap=A_ , sane_index_shape=A_ ) _lowerCamelCase = nn.Convad(A_ , A_ , 1 ) # pass init params to Decoder _lowerCamelCase = Decoder( in_channels=A_ , out_channels=A_ , up_block_types=A_ , block_out_channels=A_ , layers_per_block=A_ , act_fn=A_ , norm_num_groups=A_ , norm_type=A_ , ) @apply_forward_hook def UpperCamelCase_ ( self , A_ , A_ = True ) -> VQEncoderOutput: """simple docstring""" _lowerCamelCase = self.encoder(A_ ) _lowerCamelCase = self.quant_conv(A_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=A_ ) @apply_forward_hook def UpperCamelCase_ ( self , A_ , A_ = False , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" # also go through quantization layer if not force_not_quantize: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.quantize(A_ ) else: _lowerCamelCase = h _lowerCamelCase = self.post_quant_conv(A_ ) _lowerCamelCase = self.decoder(A_ , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=A_ ) def UpperCamelCase_ ( self , A_ , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" _lowerCamelCase = sample _lowerCamelCase = self.encode(A_ ).latents _lowerCamelCase = self.decode(A_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A_ )
638
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } snake_case__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCamelCase = '''lm_head''' _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _lowerCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: _lowerCamelCase = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCamelCase = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase = target_dict.pad_index _lowerCamelCase = target_dict.bos_index _lowerCamelCase = target_dict.eos_index _lowerCamelCase = len(target_dict.symbols ) _lowerCamelCase = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase = 42 _lowerCamelCase = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) _lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _lowerCamelCase = UniSpeechForCTC(__UpperCAmelCase ) else: _lowerCamelCase = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
638
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=A_ , ) assert hasattr(self , '''env''' ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" # configuration for running training on smdistributed Model Parallel _lowerCamelCase = { '''enabled''': True, '''processes_per_host''': 8, } _lowerCamelCase = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } _lowerCamelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} _lowerCamelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=A_ , py_version='''py36''' , ) def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" TrainingJobAnalytics(A_ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" # create estimator _lowerCamelCase = self.create_estimator(A_ ) # run training estimator.fit() # result dataframe _lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A_ )
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> List[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> str: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> int: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Tuple: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Tuple: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class UpperCamelCase ( metaclass=__lowercase ): '''simple docstring''' A_ = ['flax'] def __init__( self , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCamelCase_ ( cls , *A_ , **A_ ) -> str: """simple docstring""" requires_backends(cls , ['''flax'''] )
638
import argparse import json import subprocess def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' _lowerCamelCase = [] _lowerCamelCase = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _lowerCamelCase = subprocess.run(__UpperCAmelCase , shell=__UpperCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase = output.stdout.decode('''utf-8''' ) _lowerCamelCase = json.loads(__UpperCAmelCase ) _lowerCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__UpperCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' return values.split(''',''' ) snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) snake_case__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
638
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = RobertaTokenizer A_ = RobertaTokenizerFast A_ = True A_ = {'cls_token': '<s>'} def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _lowerCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase = {'''unk_token''': '''<unk>'''} _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) def UpperCamelCase_ ( self , **A_ ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , **A_ ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = '''lower newer''' _lowerCamelCase = '''lower newer''' return input_text, output_text def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase = '''lower newer''' _lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase = tokenizer.tokenize(A_ ) # , add_prefix_space=True) self.assertListEqual(A_ , A_ ) _lowerCamelCase = tokens + [tokenizer.unk_token] _lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=A_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=A_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.tokenizer_class.from_pretrained('''roberta-base''' ) _lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=A_ ) _lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_ ) _lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) _lowerCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = '''Encode this sequence.''' _lowerCamelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A_ , A_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A_ , A_ ) # Testing spaces after special tokens _lowerCamelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(A_ , lstrip=A_ , rstrip=A_ )} ) # mask token has a left space _lowerCamelCase = tokenizer.convert_tokens_to_ids(A_ ) _lowerCamelCase = '''Encode <mask> sequence''' _lowerCamelCase = '''Encode <mask>sequence''' _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = encoded.index(A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = encoded.index(A_ ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A_ , A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) _lowerCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) _lowerCamelCase = '''A, <mask> AllenNLP sentence.''' _lowerCamelCase = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) _lowerCamelCase = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , A_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , A_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , A_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase = F'{text_of_1_token} {text_of_1_token}' _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ) + 1, 1 + len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , ) _lowerCamelCase = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) _lowerCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , )
638
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Optional[int]: """simple docstring""" _lowerCamelCase = parent _lowerCamelCase = 13 _lowerCamelCase = 7 _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = 99 _lowerCamelCase = 32 _lowerCamelCase = 2 _lowerCamelCase = 4 _lowerCamelCase = 37 _lowerCamelCase = '''gelu''' _lowerCamelCase = 0.1 _lowerCamelCase = 0.1 _lowerCamelCase = 5_12 _lowerCamelCase = 16 _lowerCamelCase = 2 _lowerCamelCase = 0.02 _lowerCamelCase = 3 _lowerCamelCase = 4 _lowerCamelCase = None def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = TFRoFormerModel(config=A_ ) _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase = [input_ids, input_mask] _lowerCamelCase = model(A_ ) _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = True _lowerCamelCase = TFRoFormerForCausalLM(config=A_ ) _lowerCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowerCamelCase = model(A_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = TFRoFormerForMaskedLM(config=A_ ) _lowerCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = TFRoFormerForSequenceClassification(config=A_ ) _lowerCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" _lowerCamelCase = self.num_choices _lowerCamelCase = TFRoFormerForMultipleChoice(config=A_ ) _lowerCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.num_labels _lowerCamelCase = TFRoFormerForTokenClassification(config=A_ ) _lowerCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = TFRoFormerForQuestionAnswering(config=A_ ) _lowerCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowerCamelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A_ = False A_ = False def UpperCamelCase_ ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = TFRoFormerModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" _lowerCamelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(A_ ) @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) _lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase = model(A_ )[0] # TODO Replace vocab size _lowerCamelCase = 5_00_00 _lowerCamelCase = [1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowerCamelCase = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' A_ = 1E-4 def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" _lowerCamelCase = tf.constant([[4, 10]] ) _lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _lowerCamelCase = emba(input_ids.shape ) _lowerCamelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _lowerCamelCase = emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' A_ = 1E-4 def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" # 2,12,16,64 _lowerCamelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _lowerCamelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _lowerCamelCase = embed_positions([2, 16, 7_68] )[None, None, :, :] _lowerCamelCase , _lowerCamelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) _lowerCamelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowerCamelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
638
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = 0 while b > 0: if b & 1: _lowerCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' def get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) -> str: _lowerCamelCase = [] _lowerCamelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCamelCase = int(max(0 , i - limit ) ) _lowerCamelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCAmelCase ) _lowerCamelCase = F'{_stra[0:_stra.index(__UpperCAmelCase )]} {_stra[_stra.index(__UpperCAmelCase ) + 1:]}' return "".join(__UpperCAmelCase ) # matching characters _lowerCamelCase = get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = len(__UpperCAmelCase ) # transposition _lowerCamelCase = ( len([(ca, ca) for ca, ca in zip(__UpperCAmelCase , __UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _lowerCamelCase = 0.0 else: _lowerCamelCase = ( 1 / 3 * ( match_count / len(__UpperCAmelCase ) + match_count / len(__UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCamelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' A_ = XGLMTokenizer A_ = XGLMTokenizerFast A_ = True A_ = True def UpperCamelCase_ ( self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase = XGLMTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = '''<pad>''' _lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(A_ ) , 10_08 ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" _lowerCamelCase = XGLMTokenizer(A_ , keep_accents=A_ ) _lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A_ , f.name ) _lowerCamelCase = XGLMTokenizer(f.name , keep_accents=A_ ) _lowerCamelCase = pickle.dumps(A_ ) pickle.loads(A_ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = '''I was born in 92000, and this is falsé.''' _lowerCamelCase = tokenizer.tokenize(A_ ) _lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = tokenizer.encode(A_ ) _lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" _lowerCamelCase = '''Hello World!''' _lowerCamelCase = [2, 3_12_27, 44_47, 35] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" _lowerCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off _lowerCamelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" # fmt: off _lowerCamelCase = { '''input_ids''': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''facebook/xglm-564M''' , padding=A_ , )
638
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
1