code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case__ : Union[str, Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case__ : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class snake_case_: __UpperCamelCase = 42 __UpperCamelCase = 42 class snake_case_: def __init__( self : List[str] , UpperCamelCase_ : Iterable[int] ): lowerCAmelCase : Node | None = None for i in sorted(UpperCamelCase_ , reverse=UpperCamelCase_ ): lowerCAmelCase : Dict = Node(UpperCamelCase_ , self.head ) def __iter__( self : Optional[int] ): lowerCAmelCase : Optional[int] = self.head while node: yield node.data lowerCAmelCase : List[str] = node.next_node def __len__( self : Optional[int] ): return sum(1 for _ in self ) def __str__( self : List[str] ): return " -> ".join([str(UpperCamelCase_ ) for node in self] ) def _snake_case ( _snake_case : SortedLinkedList , _snake_case : SortedLinkedList ): return SortedLinkedList(list(_snake_case ) + list(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
702
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( a__ ): pass class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None def __iter__( self : int ): lowerCAmelCase : Any = self lowerCAmelCase : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowerCAmelCase : Optional[int] = node.next_node @property def lowerCamelCase__ ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Dict = Node(1) snake_case__ : Any = Node(2) snake_case__ : int = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Tuple = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : int = Node(6) snake_case__ : List[Any] = Node(5) snake_case__ : Dict = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
637
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class snake_case_( a__ ): __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''BlipImageProcessor''' __UpperCamelCase = '''AutoTokenizer''' def __init__( self : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) # add QFormer tokenizer lowerCAmelCase : str = qformer_tokenizer def __call__( self : Optional[Any] , UpperCamelCase_ : ImageInput = None , UpperCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : str , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowerCAmelCase : Optional[Any] = BatchFeature() if text is not None: lowerCAmelCase : int = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) encoding.update(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.qformer_tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : int = qformer_text_encoding.pop('''input_ids''' ) lowerCAmelCase : List[Any] = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowerCAmelCase : str = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) encoding.update(UpperCamelCase_ ) return encoding def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[str] ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = self.tokenizer.model_input_names lowerCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , **UpperCamelCase_ : Optional[int] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase : Tuple = os.path.join(UpperCamelCase_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(UpperCamelCase_ ) return super().save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( cls : Optional[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , subfolder='''qformer_tokenizer''' ) lowerCAmelCase : Union[str, Any] = cls._get_arguments_from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) args.append(UpperCamelCase_ ) return cls(*UpperCamelCase_ )
703
"""simple docstring""" from torch import nn class snake_case_( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase : int = self.mlp(UpperCamelCase_ ) return logits
637
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def _snake_case ( _snake_case : str , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Optional[Any] ): lowerCAmelCase : Optional[int] = sorted(zip(_snake_case , _snake_case ) , key=lambda _snake_case : x[0] / x[1] , reverse=_snake_case ) lowerCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase : Optional[Any] = list(accumulate(_snake_case ) ) lowerCAmelCase : str = bisect(_snake_case , _snake_case ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( a__ ): pass class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None def __iter__( self : int ): lowerCAmelCase : Any = self lowerCAmelCase : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowerCAmelCase : Optional[int] = node.next_node @property def lowerCamelCase__ ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Dict = Node(1) snake_case__ : Any = Node(2) snake_case__ : int = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Tuple = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : int = Node(6) snake_case__ : List[Any] = Node(5) snake_case__ : Dict = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=2_2_4 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Dict=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Optional[Any]=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : Any=[1_6, 1_6, 1_6] , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : Optional[Any]=[2, 2, 2] , UpperCamelCase_ : str=0.02 , **UpperCamelCase_ : List[str] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Tuple = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Dict = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = depths lowerCAmelCase : Dict = key_dim lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): return 1E-4
637
0
"""simple docstring""" from torch import nn class snake_case_( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase : int = self.mlp(UpperCamelCase_ ) return logits
706
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : str = 3 lowerCAmelCase : Tuple = 2_5_0 lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) lowerCAmelCase : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self._get_tensors(5 ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
637
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class snake_case_( unittest.TestCase ): __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __UpperCamelCase = ['''accelerate''', '''launch'''] __UpperCamelCase = Path.home() / '''.cache/huggingface/accelerate''' __UpperCamelCase = '''default_config.yaml''' __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / '''_default_config.yaml''' __UpperCamelCase = Path('''tests/test_configs''' ) @classmethod def lowerCamelCase__ ( cls : Dict ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase__ ( self : int ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=UpperCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(UpperCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase__ ( self : List[str] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class snake_case_( unittest.TestCase ): __UpperCamelCase = '''test-tpu''' __UpperCamelCase = '''us-central1-a''' __UpperCamelCase = '''ls''' __UpperCamelCase = ['''accelerate''', '''tpu-config'''] __UpperCamelCase = '''cd /usr/share''' __UpperCamelCase = '''tests/test_samples/test_command_file.sh''' __UpperCamelCase = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=UpperCamelCase_ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , )
707
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = None def _snake_case ( _snake_case : Dict , _snake_case : List[str]=0.999 , _snake_case : Dict="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : List[Any] = [] for i in range(_snake_case ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 1_0_0_0 , UpperCamelCase_ : str = "fixed_small_log" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[float] = 1.0 , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCAmelCase : Any = betas_for_alpha_bar(UpperCamelCase_ ) lowerCAmelCase : str = 1.0 - self.betas lowerCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Any = 1.0 # setable values lowerCAmelCase : Any = None lowerCAmelCase : Any = torch.from_numpy(np.arange(0 , UpperCamelCase_ )[::-1].copy() ) lowerCAmelCase : List[str] = variance_type def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Any = num_inference_steps lowerCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : int = self.alphas_cumprod[t] lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] else: lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Optional[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Any = torch.log(torch.clamp(UpperCamelCase_ , min=1E-20 ) ) lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Optional[Any] = variance.log() lowerCAmelCase : Union[str, Any] = beta.log() lowerCAmelCase : Dict = (predicted_variance + 1) / 2 lowerCAmelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase, lowerCAmelCase : List[Any] = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t] lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : int = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : List[Any] = self.betas[t] lowerCAmelCase : Optional[int] = self.alphas[t] else: lowerCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Dict = torch.clamp( UpperCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : int = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ , device=model_output.device ) lowerCAmelCase : Any = self._get_variance( UpperCamelCase_ , predicted_variance=UpperCamelCase_ , prev_timestep=UpperCamelCase_ , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) lowerCAmelCase : List[Any] = variance * variance_noise lowerCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : int = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
637
0
"""simple docstring""" snake_case__ : Any = [ (1_000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def _snake_case ( _snake_case : str ): lowerCAmelCase : Any = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _snake_case ( _snake_case : int ): lowerCAmelCase : Dict = [] for arabic, roman in ROMAN: (lowerCAmelCase) : List[Any] = divmod(_snake_case , _snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case__ : Optional[int] = None snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Dict = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Optional[int] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } snake_case__ : Any = { '''google/rembert''': 256, } snake_case__ : List[str] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = RemBertTokenizer def __init__( self : List[str] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Optional[Any]="[CLS]" , UpperCamelCase_ : Dict="[SEP]" , UpperCamelCase_ : Tuple="<unk>" , UpperCamelCase_ : str="[SEP]" , UpperCamelCase_ : Optional[Any]="<pad>" , UpperCamelCase_ : List[str]="[CLS]" , UpperCamelCase_ : Optional[int]="[MASK]" , **UpperCamelCase_ : Dict , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : Any = remove_space lowerCAmelCase : Optional[Any] = keep_accents lowerCAmelCase : Any = vocab_file lowerCAmelCase : Optional[Any] = False if not self.vocab_file else True def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : List[str] = [self.sep_token_id] lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCamelCase_ ) ) return lowerCAmelCase : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
710
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_( a__ ): __UpperCamelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase = '''summarizer''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ['''text'''] __UpperCamelCase = ['''text'''] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
637
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case__ : Union[str, Any] = random.Random() if is_torch_available(): import torch def _snake_case ( _snake_case : str , _snake_case : List[str]=1.0 , _snake_case : int=None , _snake_case : Optional[int]=None ) -> int: if rng is None: lowerCAmelCase : int = global_rng lowerCAmelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case_( unittest.TestCase ): def __init__( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : List[Any]=4_0_0 , UpperCamelCase_ : Any=2_0_0_0 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : List[Any]=1_6_0_0_0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[Any]=True , ): lowerCAmelCase : str = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : str = min_seq_length lowerCAmelCase : List[Any] = max_seq_length lowerCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase : List[str] = feature_size lowerCAmelCase : Tuple = padding_value lowerCAmelCase : Union[str, Any] = sampling_rate lowerCAmelCase : str = return_attention_mask lowerCAmelCase : Optional[int] = do_normalize def lowerCamelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str=False , UpperCamelCase_ : int=False ): def _flatten(UpperCamelCase_ : Tuple ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: lowerCAmelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : List[Any] = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ASTFeatureExtractor def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = ASTFeatureExtractionTester(self ) def lowerCamelCase__ ( self : Optional[int] ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase : str = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase : int = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # Test batched lowerCAmelCase : int = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''np''' ).input_values lowerCAmelCase : Union[str, Any] = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase : str = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase : Optional[int] = np.asarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values lowerCAmelCase : int = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) @require_torch def lowerCamelCase__ ( self : List[Any] ): import torch lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Any = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase : Optional[int] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] ): from datasets import load_dataset lowerCAmelCase : Union[str, Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase : Tuple = ds.sort('''id''' ).select(range(UpperCamelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase__ ( self : List[str] ): # fmt: off lowerCAmelCase : List[str] = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase : Union[str, Any] = self._load_datasamples(1 ) lowerCAmelCase : Tuple = ASTFeatureExtractor() lowerCAmelCase : Optional[Any] = feature_extractor(UpperCamelCase_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCamelCase_ , atol=1E-4 ) )
711
"""simple docstring""" snake_case__ : List[Any] = '''Tobias Carryer''' from time import time class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=int(time() ) ): # noqa: B008 lowerCAmelCase : str = multiplier lowerCAmelCase : Optional[int] = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[Any] = seed def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : int = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
637
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS snake_case__ : str = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class snake_case_( a__ ): __UpperCamelCase = '''retribert''' def __init__( self : int , UpperCamelCase_ : Union[str, Any]=3_0_5_2_2 , UpperCamelCase_ : List[Any]=7_6_8 , UpperCamelCase_ : Union[str, Any]=8 , UpperCamelCase_ : str=1_2 , UpperCamelCase_ : Union[str, Any]=3_0_7_2 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : str=5_1_2 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=1_2_8 , UpperCamelCase_ : int=0 , **UpperCamelCase_ : Dict , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Any = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : str = layer_norm_eps lowerCAmelCase : Union[str, Any] = share_encoders lowerCAmelCase : Any = projection_dim
712
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
637
0
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = KandinskyVaaPriorPipeline __UpperCamelCase = ['''prompt'''] __UpperCamelCase = ['''prompt''', '''negative_prompt'''] __UpperCamelCase = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __UpperCamelCase = False @property def lowerCamelCase__ ( self : List[Any] ): return 3_2 @property def lowerCamelCase__ ( self : str ): return 3_2 @property def lowerCamelCase__ ( self : Tuple ): return self.time_input_dim @property def lowerCamelCase__ ( self : Any ): return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : int ): return 1_0_0 @property def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def lowerCamelCase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase : Any = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowerCAmelCase : List[Any] = PriorTransformer(**UpperCamelCase_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase : int = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCamelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowerCAmelCase : Union[str, Any] = CLIPVisionModelWithProjection(UpperCamelCase_ ) return model @property def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Dict = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = self.dummy_prior lowerCAmelCase : List[str] = self.dummy_image_encoder lowerCAmelCase : Tuple = self.dummy_text_encoder lowerCAmelCase : List[Any] = self.dummy_tokenizer lowerCAmelCase : List[str] = self.dummy_image_processor lowerCAmelCase : Optional[int] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=UpperCamelCase_ , clip_sample_range=10.0 , ) lowerCAmelCase : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple=0 ): if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCAmelCase : Dict = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : str = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = '''cpu''' lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Any = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = output.image_embeds lowerCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] lowerCAmelCase : Dict = image[0, -1_0:] lowerCAmelCase : str = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowerCAmelCase : List[str] = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = torch_device == '''cpu''' lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , test_mean_pixel_difference=UpperCamelCase_ , ) @skip_mps def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = torch_device == '''cpu''' lowerCAmelCase : Tuple = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase_ , test_mean_pixel_difference=UpperCamelCase_ , )
713
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any]=None ): lowerCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = True, True lowerCAmelCase : int = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[Any] = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] ): lowerCAmelCase : Any = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase, lowerCAmelCase : Optional[int] = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase : Dict = 1 if check == 2: lowerCAmelCase : int = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase : List[str] = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase : Any = { 1: [], 2: [] # all degree is zero } lowerCAmelCase : List[str] = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
637
0
"""simple docstring""" snake_case__ : List[Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' snake_case__ : Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case__ : Optional[Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
714
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
637
0
"""simple docstring""" import random def _snake_case ( _snake_case : int , _snake_case : float , _snake_case : bool = False ): lowerCAmelCase : dict = {i: [] for i in range(_snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if random.random() < probability: graph[i].append(_snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_snake_case ) return graph def _snake_case ( _snake_case : int ): return { i: [j for j in range(_snake_case ) if i != j] for i in range(_snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : List[Any] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): lowerCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase : str = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : int = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : List[str] = set() lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Optional[Any] = char return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Tuple="<mask>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCamelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[int] = errors # how to handle errors in decoding lowerCAmelCase : List[Any] = bytes_to_unicode() lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if token in self.cache: return self.cache[token] lowerCAmelCase : List[str] = tuple(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase, lowerCAmelCase : Any = bigram lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : int = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Tuple = tuple(UpperCamelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ''' '''.join(UpperCamelCase_ ) lowerCAmelCase : List[str] = word return word def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = [] for token in re.findall(self.pat , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCAmelCase : Optional[int] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase : Tuple = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Dict = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : int = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
637
0
"""simple docstring""" def _snake_case ( _snake_case : int = 1000 ) -> Any: return sum(e for e in range(3 , _snake_case ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
716
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : int = [0, 1] lowerCAmelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase : int = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
637
0
"""simple docstring""" import requests from bsa import BeautifulSoup def _snake_case ( _snake_case : str = "https://www.worldometers.info/coronavirus" ): lowerCAmelCase : str = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) lowerCAmelCase : Any = soup.findAll('''h1''' ) lowerCAmelCase : Optional[Any] = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(_snake_case , _snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
717
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
637
0
"""simple docstring""" import datasets from .evaluate import evaluate snake_case__ : List[Any] = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' snake_case__ : Tuple = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' snake_case__ : List[Any] = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCAmelCase : List[Any] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCAmelCase : Union[str, Any] = evaluate(dataset=UpperCamelCase_ , predictions=UpperCamelCase_ ) return score
718
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] , _snake_case : int ): if len(_snake_case ) == 0: return False lowerCAmelCase : List[Any] = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() snake_case__ : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] snake_case__ : Dict = int(input('''Enter the number to be found in the list:\n''').strip()) snake_case__ : str = '''''' if binary_search(sequence, target) else '''not ''' print(f"""{target} was {not_str}found in {sequence}""")
637
0
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Dict = ''' import os ''' snake_case__ : Dict = ''' def foo(): import os return False ''' snake_case__ : Dict = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Tuple = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : Union[str, Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[Any] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : List[str] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : int , _snake_case : Any ): lowerCAmelCase : Optional[int] = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : List[Any] = get_imports(_snake_case ) assert parsed_imports == ["os"]
719
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict snake_case__ : Optional[Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _snake_case ( _snake_case : Any ): lowerCAmelCase : Union[str, Any] = _TestCommandArgs(dataset=_snake_case , all_configs=_snake_case , save_infos=_snake_case ) lowerCAmelCase : str = TestCommand(*_snake_case ) test_command.run() lowerCAmelCase : str = os.path.join(_snake_case , '''README.md''' ) assert os.path.exists(_snake_case ) lowerCAmelCase : Tuple = DatasetInfosDict.from_directory(_snake_case ) lowerCAmelCase : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = getattr(dataset_infos['''default'''] , _snake_case ), getattr(expected_dataset_infos['''default'''] , _snake_case ) if key == "num_bytes": assert is_apercent_close(_snake_case , _snake_case ) elif key == "splits": assert list(_snake_case ) == list(_snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Dict = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ): return base * power(_snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case__ : Union[str, Any] = int(input('''Enter the base: ''').strip()) snake_case__ : Optional[Any] = int(input('''Enter the exponent: ''').strip()) snake_case__ : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case__ : Dict = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available snake_case__ : Optional[int] = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : int = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str=None , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=None , ): if attention_mask is None: lowerCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case_: def __init__( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Dict=9_9 , UpperCamelCase_ : Optional[int]=1_6 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0.02 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = eos_token_id lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : Optional[Any] = bos_token_id lowerCAmelCase : List[str] = initializer_range def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = 2_0 lowerCAmelCase : Tuple = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = 2_0 lowerCAmelCase : List[Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Dict = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class snake_case_( unittest.TestCase ): __UpperCamelCase = 99 def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : List[Any] = input_ids.shape[0] lowerCAmelCase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self._get_config_and_data() lowerCAmelCase : Any = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = lm_model(input_ids=UpperCamelCase_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[Any] = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowerCAmelCase : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Optional[int] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : str = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case_( a__ , unittest.TestCase , a__ ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = FlaxBlenderbotModelTester(self ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : List[str] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : List[str] = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : int = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : List[Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : str = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : List[str] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} lowerCAmelCase : List[str] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase : List[Any] = ['''Sam'''] lowerCAmelCase : str = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowerCAmelCase : Union[str, Any] = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
637
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class snake_case_: def __init__( self : int , UpperCamelCase_ : str = "cpu" , UpperCamelCase_ : str = "openai/clip-vit-large-patch14" ): lowerCAmelCase : int = device lowerCAmelCase : Optional[int] = CLIPTokenizerFast.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = [0.48_145_466, 0.4_578_275, 0.40_821_073] lowerCAmelCase : List[str] = [0.26_862_954, 0.26_130_258, 0.27_577_711] lowerCAmelCase : Dict = torchvision.transforms.Normalize(self.image_mean , self.image_std ) lowerCAmelCase : List[Any] = torchvision.transforms.Resize(2_2_4 ) lowerCAmelCase : str = torchvision.transforms.CenterCrop(2_2_4 ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = self.resize(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self.center_crop(UpperCamelCase_ ) lowerCAmelCase : str = self.normalize(UpperCamelCase_ ) return images def __call__( self : str , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Union[str, Any] = self.tokenizer(text=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.preprocess_img(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class snake_case_( nn.Module ): def __init__( self : str , UpperCamelCase_ : str=1_0 , UpperCamelCase_ : int=0.01 , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : int=None , UpperCamelCase_ : int=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : str=True , UpperCamelCase_ : Any="image" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=False , ): super().__init__() lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[Any] = device if device else get_device() if vqgan: lowerCAmelCase : Optional[int] = vqgan else: lowerCAmelCase : int = load_vqgan(self.device , conf_path=UpperCamelCase_ , ckpt_path=UpperCamelCase_ ) self.vqgan.eval() if clip: lowerCAmelCase : List[str] = clip else: lowerCAmelCase : Dict = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) lowerCAmelCase : Tuple = ProcessorGradientFlow(device=self.device ) lowerCAmelCase : int = iterations lowerCAmelCase : Optional[Any] = lr lowerCAmelCase : Dict = log lowerCAmelCase : List[Any] = make_grid lowerCAmelCase : Dict = return_val lowerCAmelCase : Tuple = quantize lowerCAmelCase : Union[str, Any] = self.vqgan.decoder.z_shape def lowerCamelCase__ ( self : str , UpperCamelCase_ : Any=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Tuple=5 , UpperCamelCase_ : List[Any]=True ): lowerCAmelCase : str = [] if output_path is None: lowerCAmelCase : List[Any] = '''./animation.gif''' if input_path is None: lowerCAmelCase : int = self.save_path lowerCAmelCase : Tuple = sorted(glob(input_path + '''/*''' ) ) if not len(UpperCamelCase_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(UpperCamelCase_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) lowerCAmelCase : int = total_duration / len(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = [frame_duration] * len(UpperCamelCase_ ) if extend_frames: lowerCAmelCase : Union[str, Any] = 1.5 lowerCAmelCase : str = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(UpperCamelCase_ ) ) imageio.mimsave(UpperCamelCase_ , UpperCamelCase_ , duration=UpperCamelCase_ ) print(F'''gif saved to {output_path}''' ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError lowerCAmelCase : Dict = preprocess(Image.open(UpperCamelCase_ ) , target_image_size=2_5_6 ).to(self.device ) lowerCAmelCase : str = preprocess_vqgan(UpperCamelCase_ ) lowerCAmelCase : Dict = self.vqgan.encode(UpperCamelCase_ ) return z def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[str] = self.latent.detach().requires_grad_() lowerCAmelCase : Optional[Any] = base_latent + transform_vector if self.quantize: lowerCAmelCase : str = self.vqgan.quantize(UpperCamelCase_ ) else: lowerCAmelCase : int = trans_latent return self.vqgan.decode(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict=None ): lowerCAmelCase : Dict = self.clip_preprocessor(text=UpperCamelCase_ , images=UpperCamelCase_ , return_tensors='''pt''' , padding=UpperCamelCase_ ) lowerCAmelCase : List[str] = self.clip(**UpperCamelCase_ ) lowerCAmelCase : Tuple = clip_outputs.logits_per_image if weights is not None: lowerCAmelCase : Tuple = similarity_logits * weights return similarity_logits.sum() def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , UpperCamelCase_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: lowerCAmelCase : Optional[int] = self._get_clip_similarity(neg_prompts['''prompts'''] , UpperCamelCase_ , weights=neg_prompts['''weights'''] ) else: lowerCAmelCase : List[Any] = torch.tensor([1] , device=self.device ) lowerCAmelCase : Tuple = -torch.log(UpperCamelCase_ ) + torch.log(UpperCamelCase_ ) return loss def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = torch.randn_like(self.latent , requires_grad=UpperCamelCase_ , device=self.device ) lowerCAmelCase : List[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowerCAmelCase : str = self._add_vector(UpperCamelCase_ ) lowerCAmelCase : int = loop_post_process(UpperCamelCase_ ) lowerCAmelCase : List[Any] = self._get_CLIP_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print('''CLIP loss''' , UpperCamelCase_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): wandb.init(reinit=UpperCamelCase_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: lowerCAmelCase : Optional[Any] = Image.open(UpperCamelCase_ ) lowerCAmelCase : str = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''' , wandb.Image(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): if not prompts: return [] lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[Any] = [] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(UpperCamelCase_ , (tuple, list) ): lowerCAmelCase : Optional[int] = prompt[0] lowerCAmelCase : Tuple = float(prompt[1] ) elif ":" in prompt: lowerCAmelCase : Dict = prompt.split(''':''' ) lowerCAmelCase : List[str] = float(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = prompt lowerCAmelCase : List[str] = 1.0 processed_prompts.append(UpperCamelCase_ ) weights.append(UpperCamelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase_ , device=self.device ), } def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=None , ): if image_path: lowerCAmelCase : Optional[int] = self._get_latent(UpperCamelCase_ ) else: lowerCAmelCase : str = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." lowerCAmelCase : str = self.process_prompts(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.process_prompts(UpperCamelCase_ ) if save_final and save_path is None: lowerCAmelCase : Tuple = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = save_path + '''_''' + get_timestamp() os.makedirs(UpperCamelCase_ ) lowerCAmelCase : Any = save_path lowerCAmelCase : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(UpperCamelCase_ ) ) lowerCAmelCase : str = loop_post_process(UpperCamelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ): if show_intermediate: show_pil(UpperCamelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(UpperCamelCase_ )} ) if show_final: show_pil(UpperCamelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
700
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example snake_case__ : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( _snake_case : list[list[int]] ): lowerCAmelCase : Union[str, Any] = [] for i in range(len(_snake_case ) ): lowerCAmelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(_snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_snake_case ) return next_generation def _snake_case ( _snake_case : list[list[int]] , _snake_case : int ): lowerCAmelCase : int = [] for _ in range(_snake_case ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new('''RGB''' , (len(cells[0] ), len(_snake_case )) ) lowerCAmelCase : Union[str, Any] = img.load() # Save cells to image for x in range(len(_snake_case ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Optional[int] = 255 - cells[y][x] * 255 lowerCAmelCase : List[Any] = (colour, colour, colour) # Save image images.append(_snake_case ) lowerCAmelCase : Union[str, Any] = new_generation(_snake_case ) return images if __name__ == "__main__": snake_case__ : Union[str, Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
637
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase : Any = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = AutoModel.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase : Any = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = AutoModelForPreTraining.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Optional[Any] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = TFAutoModelForCausalLM.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = AutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Dict ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = TFAutoModelForMaskedLM.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TFAutoModelForMaskedLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = AutoModelForMaskedLM.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoModelForMaskedLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Any ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowerCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = TFAutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = AutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 1_4_4_1_0 ) lowerCAmelCase : List[Any] = AutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 1_4_4_1_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[int] = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 1_4_4_1_0 ) lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 1_4_4_1_0 )
701
"""simple docstring""" from __future__ import annotations class snake_case_: def __init__( self : int , UpperCamelCase_ : str , UpperCamelCase_ : str ): lowerCAmelCase, lowerCAmelCase : List[str] = text, pattern lowerCAmelCase, lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self : Dict ): # searches pattern in text and returns index positions lowerCAmelCase : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase : str = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case__ : str = '''ABAABA''' snake_case__ : List[str] = '''AB''' snake_case__ : Union[str, Any] = BoyerMooreSearch(text, pattern) snake_case__ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
637
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Union[str, Any] = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case_( a__ ): __UpperCamelCase = '''realm''' def __init__( self : Optional[int] , UpperCamelCase_ : Tuple=3_0_5_2_2 , UpperCamelCase_ : Tuple=7_6_8 , UpperCamelCase_ : List[str]=1_2_8 , UpperCamelCase_ : List[str]=1_2 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : Dict=8 , UpperCamelCase_ : Dict=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu_new" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : List[str]=5_1_2 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : List[str]=1E-12 , UpperCamelCase_ : Any=2_5_6 , UpperCamelCase_ : Optional[int]=1_0 , UpperCamelCase_ : int=1E-3 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Optional[Any]=3_2_0 , UpperCamelCase_ : Any=1_3_3_5_3_7_1_8 , UpperCamelCase_ : Optional[Any]=5_0_0_0 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[Any]=2 , **UpperCamelCase_ : Optional[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) # Common config lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Any = retriever_proj_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Dict = num_candidates lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : Tuple = layer_norm_eps # Reader config lowerCAmelCase : Any = span_hidden_size lowerCAmelCase : Any = max_span_width lowerCAmelCase : Tuple = reader_layer_norm_eps lowerCAmelCase : List[Any] = reader_beam_size lowerCAmelCase : str = reader_seq_len # Retrieval config lowerCAmelCase : int = num_block_records lowerCAmelCase : Union[str, Any] = searcher_beam_size
702
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( a__ ): pass class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None def __iter__( self : int ): lowerCAmelCase : Any = self lowerCAmelCase : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowerCAmelCase : Optional[int] = node.next_node @property def lowerCamelCase__ ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Dict = Node(1) snake_case__ : Any = Node(2) snake_case__ : int = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Tuple = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : int = Node(6) snake_case__ : List[Any] = Node(5) snake_case__ : Dict = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
637
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : str = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class snake_case_( a__ ): __UpperCamelCase = '''xlm-roberta''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any]=3_0_5_2_2 , UpperCamelCase_ : Optional[int]=7_6_8 , UpperCamelCase_ : str=1_2 , UpperCamelCase_ : int=1_2 , UpperCamelCase_ : Tuple=3_0_7_2 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[int]=5_1_2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Dict , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : int = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : int = position_embedding_type lowerCAmelCase : Dict = use_cache lowerCAmelCase : List[str] = classifier_dropout class snake_case_( a__ ): @property def lowerCamelCase__ ( self : Tuple ): if self.task == "multiple-choice": lowerCAmelCase : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
703
"""simple docstring""" from torch import nn class snake_case_( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase : int = self.mlp(UpperCamelCase_ ) return logits
637
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets snake_case__ : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' snake_case__ : Dict = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' snake_case__ : Dict = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def lowerCamelCase__ ( self : List[Any] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]="uniform_average" , UpperCamelCase_ : Tuple=True ): lowerCAmelCase : int = mean_squared_error( UpperCamelCase_ , UpperCamelCase_ , sample_weight=UpperCamelCase_ , multioutput=UpperCamelCase_ , squared=UpperCamelCase_ ) return {"mse": mse}
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=2_2_4 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Dict=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Optional[Any]=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : Any=[1_6, 1_6, 1_6] , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : Optional[Any]=[2, 2, 2] , UpperCamelCase_ : str=0.02 , **UpperCamelCase_ : List[str] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Tuple = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Dict = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = depths lowerCAmelCase : Dict = key_dim lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): return 1E-4
637
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : float = 0 ): lowerCAmelCase : List[str] = row, column lowerCAmelCase : List[str] = [[default_value for c in range(UpperCamelCase_ )] for r in range(UpperCamelCase_ )] def __str__( self : str ): lowerCAmelCase : List[str] = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase : Dict = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase : Dict = max(UpperCamelCase_ , len(str(UpperCamelCase_ ) ) ) lowerCAmelCase : Optional[int] = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCamelCase_ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase : List[str] = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCamelCase_ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ): return str(self ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : tuple[int, int] ): if not (isinstance(UpperCamelCase_ , (list, tuple) ) and len(UpperCamelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : str , UpperCamelCase_ : tuple[int, int] ): assert self.validate_indicies(UpperCamelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Any , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : float ): assert self.validate_indicies(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = value def __add__( self : str , UpperCamelCase_ : Matrix ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase : Optional[int] = self[r, c] + another[r, c] return result def __neg__( self : str ): lowerCAmelCase : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase : Any = -self[r, c] return result def __sub__( self : Dict , UpperCamelCase_ : Matrix ): return self + (-another) def __mul__( self : str , UpperCamelCase_ : int | float | Matrix ): if isinstance(UpperCamelCase_ , (int, float) ): # Scalar multiplication lowerCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase : Tuple = self[r, c] * another return result elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase : int = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase : Dict = F'''Unsupported type given for another ({type(UpperCamelCase_ )})''' raise TypeError(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase : List[str] = self[r, c] return result def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Matrix , UpperCamelCase_ : Matrix ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase : Optional[int] = v.transpose() lowerCAmelCase : Any = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case ( ): # a^(-1) lowerCAmelCase : List[str] = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase : Union[str, Any] = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase : Dict = Matrix(3 , 1 , 0 ) lowerCAmelCase : Tuple = 1, 2, -3 lowerCAmelCase : List[str] = Matrix(3 , 1 , 0 ) lowerCAmelCase : Any = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_snake_case , _snake_case )}''' ) def _snake_case ( ): import doctest doctest.testmod() testa()
706
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : str = 3 lowerCAmelCase : Tuple = 2_5_0 lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) lowerCAmelCase : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self._get_tensors(5 ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
637
0
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = GPTSwaTokenizer __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = False def lowerCamelCase__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Any = GPTSwaTokenizer(UpperCamelCase_ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[Any] = '''This is a test''' lowerCAmelCase : int = '''This is a test''' return input_text, output_text def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = '''<s>''' lowerCAmelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCamelCase_ ) , 2_0_0_0 ) def lowerCamelCase__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = GPTSwaTokenizer(UpperCamelCase_ ) lowerCAmelCase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) lowerCAmelCase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( UpperCamelCase_ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) # fmt: off self.assertListEqual( UpperCamelCase_ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = GPTSwaTokenizer(UpperCamelCase_ ) lowerCAmelCase : int = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] lowerCAmelCase : str = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertListEqual(tokenizer.encode_fast(UpperCamelCase_ ) , UpperCamelCase_ ) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.decode_fast(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[int] = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off lowerCAmelCase : List[Any] = {'''input_ids''': [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=UpperCamelCase_ , )
707
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = None def _snake_case ( _snake_case : Dict , _snake_case : List[str]=0.999 , _snake_case : Dict="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : List[Any] = [] for i in range(_snake_case ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 1_0_0_0 , UpperCamelCase_ : str = "fixed_small_log" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[float] = 1.0 , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCAmelCase : Any = betas_for_alpha_bar(UpperCamelCase_ ) lowerCAmelCase : str = 1.0 - self.betas lowerCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Any = 1.0 # setable values lowerCAmelCase : Any = None lowerCAmelCase : Any = torch.from_numpy(np.arange(0 , UpperCamelCase_ )[::-1].copy() ) lowerCAmelCase : List[str] = variance_type def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Any = num_inference_steps lowerCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : int = self.alphas_cumprod[t] lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] else: lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Optional[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Any = torch.log(torch.clamp(UpperCamelCase_ , min=1E-20 ) ) lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Optional[Any] = variance.log() lowerCAmelCase : Union[str, Any] = beta.log() lowerCAmelCase : Dict = (predicted_variance + 1) / 2 lowerCAmelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase, lowerCAmelCase : List[Any] = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t] lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : int = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : List[Any] = self.betas[t] lowerCAmelCase : Optional[int] = self.alphas[t] else: lowerCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Dict = torch.clamp( UpperCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : int = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ , device=model_output.device ) lowerCAmelCase : Any = self._get_variance( UpperCamelCase_ , predicted_variance=UpperCamelCase_ , prev_timestep=UpperCamelCase_ , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) lowerCAmelCase : List[Any] = variance * variance_noise lowerCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : int = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
637
0
"""simple docstring""" import sys from pathlib import Path snake_case__ : str = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) snake_case__ : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} snake_case__ : str = '''zero2''' snake_case__ : Optional[Any] = '''zero3''' snake_case__ : Optional[int] = [ZEROa, ZEROa] def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : str ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowerCAmelCase : Union[str, Any] = parameterized.to_safe_name('''_'''.join(str(_snake_case ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test snake_case__ : str = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_( a__ ): @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Tuple = models[model] lowerCAmelCase : Any = self.run_trainer( stage=UpperCamelCase_ , model_name=UpperCamelCase_ , eval_steps=UpperCamelCase_ , num_train_epochs=1 , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) self.do_checks(UpperCamelCase_ ) return output_dir def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Any = self.get_auto_remove_tmp_dir('''./xxx''' , after=UpperCamelCase_ ) lowerCAmelCase : Tuple = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCamelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCAmelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() lowerCAmelCase : Dict = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] lowerCAmelCase : Optional[int] = self.get_launcher(UpperCamelCase_ ) lowerCAmelCase : Tuple = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) return output_dir def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[int]=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) lowerCAmelCase : Union[str, Any] = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar snake_case__ : Optional[int] = TypeVar('''T''') class snake_case_( Generic[T] ): def __init__( self : Optional[Any] , UpperCamelCase_ : T ): lowerCAmelCase : str = data lowerCAmelCase : Node[T] | None = None def __str__( self : List[Any] ): return F'''{self.data}''' class snake_case_( Generic[T] ): def __init__( self : List[Any] ): lowerCAmelCase : Node[T] | None = None def __iter__( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.top while node: yield node.data lowerCAmelCase : Dict = node.next def __str__( self : Optional[int] ): return "->".join([str(UpperCamelCase_ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def lowerCamelCase__ ( self : int ): return self.top is None def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : T ): lowerCAmelCase : List[Any] = Node(UpperCamelCase_ ) if not self.is_empty(): lowerCAmelCase : str = self.top lowerCAmelCase : Tuple = node def lowerCamelCase__ ( self : Any ): if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.top lowerCAmelCase : List[str] = self.top.next return pop_node.data def lowerCamelCase__ ( self : Optional[int] ): if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
709
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( _snake_case : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : str = [1, 2, 3] with pytest.raises(_snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(_snake_case , _snake_case , num_proc=2 ) with pytest.raises(_snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(_snake_case , _snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _snake_case ( _snake_case : str ): lowerCAmelCase : Any = [1, 2] lowerCAmelCase : List[str] = {'''a''': 1, '''b''': 2} lowerCAmelCase : int = {'''a''': [1, 2], '''b''': [3, 4]} lowerCAmelCase : str = {'''a''': {'''1''': 1}, '''b''': 2} lowerCAmelCase : List[str] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCAmelCase : Optional[Any] = [2, 3] lowerCAmelCase : Optional[Any] = {'''a''': 2, '''b''': 3} lowerCAmelCase : Optional[int] = {'''a''': [2, 3], '''b''': [4, 5]} lowerCAmelCase : str = {'''a''': {'''1''': 2}, '''b''': 3} lowerCAmelCase : Any = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa
710
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_( a__ ): __UpperCamelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase = '''summarizer''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ['''text'''] __UpperCamelCase = ['''text'''] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
637
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer snake_case__ : List[Any] = ['''gpt2'''] snake_case__ : Optional[int] = '''gpt2''' if is_tf_available(): class snake_case_( tf.Module ): def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ): super().__init__() lowerCAmelCase : Any = tokenizer lowerCAmelCase : Any = AutoConfig.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TFGPTaLMHeadModel.from_config(UpperCamelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Dict = self.tokenizer(UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenized['''input_ids'''].to_tensor() lowerCAmelCase : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCAmelCase : Any = self.model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ )['''logits'''] return outputs @require_tf @require_keras_nlp class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ): super().setUp() lowerCAmelCase : Optional[Any] = [GPTaTokenizer.from_pretrained(UpperCamelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCAmelCase : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCAmelCase : Any = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowerCAmelCase : List[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase__ ( self : Optional[Any] ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCAmelCase : Tuple = tokenizer([test_inputs] , return_tensors='''tf''' ) lowerCAmelCase : Optional[int] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCAmelCase : Optional[Any] = python_outputs[key].numpy() lowerCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase__ ( self : int ): for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase : Union[str, Any] = tf.function(UpperCamelCase_ ) for test_inputs in self.test_sentences: lowerCAmelCase : Union[str, Any] = tf.constant(UpperCamelCase_ ) lowerCAmelCase : str = compiled_tokenizer(UpperCamelCase_ ) lowerCAmelCase : Any = tf_tokenizer(UpperCamelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase : Any = ModelToSave(tokenizer=UpperCamelCase_ ) lowerCAmelCase : int = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase : str = model.serving(UpperCamelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCAmelCase : Dict = Path(UpperCamelCase_ ) / '''saved.model''' tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': model.serving} ) lowerCAmelCase : List[str] = tf.saved_model.load(UpperCamelCase_ ) lowerCAmelCase : Tuple = loaded_model.signatures['''serving_default'''](UpperCamelCase_ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase__ ( self : Any ): for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase : Dict = tf_tokenizer(UpperCamelCase_ ) # Build model with some sample inputs lowerCAmelCase : Optional[int] = tf_tokenizer.get_config() lowerCAmelCase : int = TFGPTaTokenizer.from_config(UpperCamelCase_ ) lowerCAmelCase : List[str] = model_from_config(UpperCamelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCAmelCase : str = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowerCAmelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase : Any = tf_tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ ) lowerCAmelCase : Dict = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
711
"""simple docstring""" snake_case__ : List[Any] = '''Tobias Carryer''' from time import time class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=int(time() ) ): # noqa: B008 lowerCAmelCase : str = multiplier lowerCAmelCase : Optional[int] = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[Any] = seed def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : int = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
637
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''spiece.model'''} snake_case__ : Union[str, Any] = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } snake_case__ : Union[str, Any] = { '''AI-Sweden/gpt-sw3-126m''': 2_048, '''AI-Sweden/gpt-sw3-350m''': 2_048, '''AI-Sweden/gpt-sw3-1.6b''': 2_048, '''AI-Sweden/gpt-sw3-6.7b''': 2_048, '''AI-Sweden/gpt-sw3-20b''': 2_048, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Any=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : str , ): lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase : Any = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCAmelCase : Optional[Any] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase : Dict = '''<|endoftext|>''' if eos_token is None else eos_token lowerCAmelCase : int = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase : Optional[Any] = unk_token if pad_token is None else pad_token lowerCAmelCase : Union[str, Any] = eos_token if bos_token is None else bos_token else: lowerCAmelCase : int = '''<pad>''' if pad_token is None else pad_token lowerCAmelCase : Tuple = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowerCAmelCase : str = do_lower_case lowerCAmelCase : Union[str, Any] = remove_space lowerCAmelCase : Dict = keep_accents lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase : int = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase : List[Any] = re.compile( F'''[{"".join(map(UpperCamelCase_ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]''' ) def __getstate__( self : Dict ): lowerCAmelCase : Tuple = self.__dict__.copy() lowerCAmelCase : Optional[Any] = None return state def __setstate__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase__ ( self : Any ): return len(self.sp_model ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Any = self.non_printing_characters_re.sub('''''' , UpperCamelCase_ ) # Normalize whitespaces lowerCAmelCase : str = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCAmelCase : Optional[Any] = unicodedata.normalize('''NFC''' , UpperCamelCase_ ) return text def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , **UpperCamelCase_ : int ): lowerCAmelCase : int = self.preprocess_text(UpperCamelCase_ ) return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str ): return self.sp_model.PieceToId(UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : int ): return self.sp_model.IdToPiece(UpperCamelCase_ ) @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : str ): return out_string def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] ): lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[int] = '''''' lowerCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token lowerCAmelCase : int = True lowerCAmelCase : Dict = [] else: current_sub_tokens.append(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowerCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[str, bool] = False ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Any = self.preprocess_text(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.sp_model.encode(UpperCamelCase_ ) else: lowerCAmelCase : Any = [self.preprocess_text(UpperCamelCase_ ) for t in text] lowerCAmelCase : Union[str, Any] = self.sp_model.encode(UpperCamelCase_ ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase : List[Any] = torch.tensor(UpperCamelCase_ ) return token_ids def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Union[int, List[int]] ): return self.sp_model.decode(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : "Conversation" ): lowerCAmelCase : Dict = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCAmelCase : List[str] = ( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(UpperCamelCase_ ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=UpperCamelCase_ )
712
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
637
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_( a__ ): __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''Pix2StructImageProcessor''' __UpperCamelCase = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple ): lowerCAmelCase : str = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self : Tuple , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = 2_0_4_8 , UpperCamelCase_ : int = 0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : str , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase : str = self.tokenizer lowerCAmelCase : Optional[int] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase : Any = self.image_processor( UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_patches=UpperCamelCase_ , **UpperCamelCase_ ) else: # add pixel_values and bbox lowerCAmelCase : Tuple = self.image_processor( UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase : Optional[int] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) if "attention_mask" in text_encoding: lowerCAmelCase : Any = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: lowerCAmelCase : Tuple = text_encoding.pop('''input_ids''' ) else: lowerCAmelCase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCamelCase__ ( self : str , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , *UpperCamelCase_ : int , **UpperCamelCase_ : Dict ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.tokenizer.model_input_names lowerCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
713
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any]=None ): lowerCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = True, True lowerCAmelCase : int = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[Any] = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] ): lowerCAmelCase : Any = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase, lowerCAmelCase : Optional[int] = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase : Dict = 1 if check == 2: lowerCAmelCase : int = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase : List[str] = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase : Any = { 1: [], 2: [] # all degree is zero } lowerCAmelCase : List[str] = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
637
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _snake_case ( _snake_case : Features ): lowerCAmelCase : int = np.inf def set_batch_size(_snake_case : FeatureType ) -> None: nonlocal batch_size if isinstance(_snake_case , _snake_case ): lowerCAmelCase : int = min(_snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_snake_case , _snake_case ): lowerCAmelCase : str = min(_snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_snake_case , _snake_case ) and feature.dtype == "binary": lowerCAmelCase : Dict = min(_snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_snake_case , _snake_case ) return None if batch_size is np.inf else batch_size class snake_case_( a__ ): def __init__( self : int , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : List[str] , ): super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} lowerCAmelCase : Optional[Any] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] lowerCAmelCase : Optional[Any] = Parquet( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , hash=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase__ ( self : Optional[Any] ): # Build iterable dataset if self.streaming: lowerCAmelCase : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : str = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) lowerCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : Dataset , UpperCamelCase_ : Union[PathLike, BinaryIO] , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Optional[int] = dataset lowerCAmelCase : str = path_or_buf lowerCAmelCase : Optional[int] = batch_size or get_writer_batch_size(dataset.features ) lowerCAmelCase : Optional[Any] = parquet_writer_kwargs def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: lowerCAmelCase : Any = self._write(file_obj=UpperCamelCase_ , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs ) else: lowerCAmelCase : List[str] = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs ) return written def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : BinaryIO , UpperCamelCase_ : int , **UpperCamelCase_ : Dict ): lowerCAmelCase : str = 0 lowerCAmelCase : int = parquet_writer_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dataset.features.arrow_schema lowerCAmelCase : Tuple = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ , **UpperCamelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase_ ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): lowerCAmelCase : Union[str, Any] = query_table( table=self.dataset._data , key=slice(UpperCamelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase_ ) written += batch.nbytes writer.close() return written
714
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
637
0
"""simple docstring""" snake_case__ : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] snake_case__ : Dict = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] snake_case__ : Any = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] snake_case__ : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] snake_case__ : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] snake_case__ : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] snake_case__ : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] snake_case__ : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
715
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : List[Any] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): lowerCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase : str = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : int = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : List[str] = set() lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Optional[Any] = char return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Tuple="<mask>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCamelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[int] = errors # how to handle errors in decoding lowerCAmelCase : List[Any] = bytes_to_unicode() lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if token in self.cache: return self.cache[token] lowerCAmelCase : List[str] = tuple(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase, lowerCAmelCase : Any = bigram lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : int = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Tuple = tuple(UpperCamelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ''' '''.join(UpperCamelCase_ ) lowerCAmelCase : List[str] = word return word def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = [] for token in re.findall(self.pat , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCAmelCase : Optional[int] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase : Tuple = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Dict = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : int = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
637
0
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[float] , _snake_case : List[str] ) -> Tuple: print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(_snake_case ): print(f'''{i}\t\t{d}''' ) def _snake_case ( _snake_case : list[dict[str, int]] , _snake_case : list[float] , _snake_case : int ) -> int: for j in range(_snake_case ): lowerCAmelCase : Optional[int] = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _snake_case ( _snake_case : list[dict[str, int]] , _snake_case : int , _snake_case : int , _snake_case : int ) -> str: lowerCAmelCase : Optional[int] = [float('''inf''' )] * vertex_count lowerCAmelCase : Tuple = 0.0 for _ in range(vertex_count - 1 ): for j in range(_snake_case ): lowerCAmelCase : int = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: lowerCAmelCase : int = distance[u] + w lowerCAmelCase : Optional[Any] = check_negative_cycle(_snake_case , _snake_case , _snake_case ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Dict = int(input('''Enter number of vertices: ''').strip()) snake_case__ : Any = int(input('''Enter number of edges: ''').strip()) snake_case__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) snake_case__ : Union[str, Any] = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) snake_case__ : Dict = {'''src''': src, '''dst''': dest, '''weight''': weight} snake_case__ : str = int(input('''\nEnter shortest path source:''').strip()) snake_case__ : Tuple = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
716
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : int = [0, 1] lowerCAmelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase : int = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
637
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function snake_case__ = 1.054571817e-34 # unit of ℏ : J * s snake_case__ = 3e8 # unit of c : m * s^-1 def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ): if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: lowerCAmelCase : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase : Optional[Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
637
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Optional[int] = '''▁''' snake_case__ : Any = {'''vocab_file''': '''spiece.model'''} snake_case__ : int = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } snake_case__ : Any = { '''google/pegasus-xsum''': 512, } snake_case__ : List[Any] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any]="<pad>" , UpperCamelCase_ : Any="</s>" , UpperCamelCase_ : Tuple="<unk>" , UpperCamelCase_ : List[Any]="<mask_2>" , UpperCamelCase_ : str="<mask_1>" , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=1_0_3 , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : int = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError( F'''additional_special_tokens should be of type {type(UpperCamelCase_ )}, but is''' F''' {type(UpperCamelCase_ )}''' ) lowerCAmelCase : Union[str, Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(UpperCamelCase_ ) , self.offset - 1 ) ] if len(set(UpperCamelCase_ ) ) != len(UpperCamelCase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowerCAmelCase : Tuple = additional_special_tokens_extended else: lowerCAmelCase : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] lowerCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token_sent=UpperCamelCase_ , offset=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowerCAmelCase : Tuple = mask_token_sent lowerCAmelCase : List[str] = vocab_file lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # add special tokens to encoder dict lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def lowerCamelCase__ ( self : str ): return len(self.sp_model ) + self.offset def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): lowerCAmelCase : List[str] = self.__dict__.copy() lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self : Any , UpperCamelCase_ : Tuple ): lowerCAmelCase : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase : int = {} lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase : List[Any] = self.sp_model.piece_to_id(UpperCamelCase_ ) return sp_id + self.offset def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase : Any = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : List[str] = [] lowerCAmelCase : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_ ) + token lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(UpperCamelCase_ ) out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[str]=False ): return 1 def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[str] ): lowerCAmelCase : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List , UpperCamelCase_ : Optional[List] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCamelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
718
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] , _snake_case : int ): if len(_snake_case ) == 0: return False lowerCAmelCase : List[Any] = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() snake_case__ : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] snake_case__ : Dict = int(input('''Enter the number to be found in the list:\n''').strip()) snake_case__ : str = '''''' if binary_search(sequence, target) else '''not ''' print(f"""{target} was {not_str}found in {sequence}""")
637
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) snake_case__ : int = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict snake_case__ : Optional[Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _snake_case ( _snake_case : Any ): lowerCAmelCase : Union[str, Any] = _TestCommandArgs(dataset=_snake_case , all_configs=_snake_case , save_infos=_snake_case ) lowerCAmelCase : str = TestCommand(*_snake_case ) test_command.run() lowerCAmelCase : str = os.path.join(_snake_case , '''README.md''' ) assert os.path.exists(_snake_case ) lowerCAmelCase : Tuple = DatasetInfosDict.from_directory(_snake_case ) lowerCAmelCase : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = getattr(dataset_infos['''default'''] , _snake_case ), getattr(expected_dataset_infos['''default'''] , _snake_case ) if key == "num_bytes": assert is_apercent_close(_snake_case , _snake_case ) elif key == "splits": assert list(_snake_case ) == list(_snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
637
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class snake_case_( a__ , a__ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase_ : int = 1_2_8 , UpperCamelCase_ : int = 2_5_6 , UpperCamelCase_ : float = 2_0_0_0.0 , UpperCamelCase_ : int = 7_6_8 , UpperCamelCase_ : int = 1_2 , UpperCamelCase_ : int = 1_2 , UpperCamelCase_ : int = 6_4 , UpperCamelCase_ : int = 2_0_4_8 , UpperCamelCase_ : float = 0.1 , ): super().__init__() lowerCAmelCase : Optional[int] = nn.Sequential( nn.Linear(UpperCamelCase_ , d_model * 4 , bias=UpperCamelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase_ ) , nn.SiLU() , ) lowerCAmelCase : Dict = nn.Embedding(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = nn.Dropout(p=UpperCamelCase_ ) lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(UpperCamelCase_ ): # FiLM conditional T5 decoder lowerCAmelCase : Tuple = DecoderLayer(d_model=UpperCamelCase_ , d_kv=UpperCamelCase_ , num_heads=UpperCamelCase_ , d_ff=UpperCamelCase_ , dropout_rate=UpperCamelCase_ ) self.decoders.append(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = TaLayerNorm(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = nn.Dropout(p=UpperCamelCase_ ) lowerCAmelCase : int = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : str ): lowerCAmelCase : Tuple = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCAmelCase : Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCAmelCase : str = self.conditioning_emb(UpperCamelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCAmelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCAmelCase : int = torch.broadcast_to( torch.arange(UpperCamelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCAmelCase : Any = self.position_encoding(UpperCamelCase_ ) lowerCAmelCase : Tuple = self.continuous_inputs_projection(UpperCamelCase_ ) inputs += position_encodings lowerCAmelCase : Tuple = self.dropout(UpperCamelCase_ ) # decoder: No padding present. lowerCAmelCase : Optional[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCAmelCase : int = [(x, self.encoder_decoder_mask(UpperCamelCase_ , UpperCamelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCAmelCase : Any = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCAmelCase : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCAmelCase : Optional[int] = lyr( UpperCamelCase_ , conditioning_emb=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , )[0] lowerCAmelCase : List[str] = self.decoder_norm(UpperCamelCase_ ) lowerCAmelCase : Any = self.post_dropout(UpperCamelCase_ ) lowerCAmelCase : int = self.spec_out(UpperCamelCase_ ) return spec_out class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any=1E-6 ): super().__init__() lowerCAmelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase_ , d_kv=UpperCamelCase_ , num_heads=UpperCamelCase_ , dropout_rate=UpperCamelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase_ , d_kv=UpperCamelCase_ , num_heads=UpperCamelCase_ , dropout_rate=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase_ , d_ff=UpperCamelCase_ , dropout_rate=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Any=None , ): lowerCAmelCase : Optional[int] = self.layer[0]( UpperCamelCase_ , conditioning_emb=UpperCamelCase_ , attention_mask=UpperCamelCase_ , ) if encoder_hidden_states is not None: lowerCAmelCase : List[str] = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowerCAmelCase : Optional[int] = self.layer[1]( UpperCamelCase_ , key_value_states=UpperCamelCase_ , attention_mask=UpperCamelCase_ , ) # Apply Film Conditional Feed Forward layer lowerCAmelCase : Dict = self.layer[-1](UpperCamelCase_ , UpperCamelCase_ ) return (hidden_states,) class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] ): super().__init__() lowerCAmelCase : Union[str, Any] = TaLayerNorm(UpperCamelCase_ ) lowerCAmelCase : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = Attention(query_dim=UpperCamelCase_ , heads=UpperCamelCase_ , dim_head=UpperCamelCase_ , out_bias=UpperCamelCase_ , scale_qk=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = nn.Dropout(UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[Any]=None , ): # pre_self_attention_layer_norm lowerCAmelCase : List[str] = self.layer_norm(UpperCamelCase_ ) if conditioning_emb is not None: lowerCAmelCase : Optional[Any] = self.FiLMLayer(UpperCamelCase_ , UpperCamelCase_ ) # Self-attention block lowerCAmelCase : int = self.attention(UpperCamelCase_ ) lowerCAmelCase : str = hidden_states + self.dropout(UpperCamelCase_ ) return hidden_states class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] ): super().__init__() lowerCAmelCase : str = Attention(query_dim=UpperCamelCase_ , heads=UpperCamelCase_ , dim_head=UpperCamelCase_ , out_bias=UpperCamelCase_ , scale_qk=UpperCamelCase_ ) lowerCAmelCase : Tuple = TaLayerNorm(UpperCamelCase_ , eps=UpperCamelCase_ ) lowerCAmelCase : Tuple = nn.Dropout(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : List[str]=None , ): lowerCAmelCase : Optional[Any] = self.layer_norm(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self.attention( UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) lowerCAmelCase : Tuple = hidden_states + self.dropout(UpperCamelCase_ ) return layer_output class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ): super().__init__() lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=UpperCamelCase_ , d_ff=UpperCamelCase_ , dropout_rate=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase_ ) lowerCAmelCase : int = TaLayerNorm(UpperCamelCase_ , eps=UpperCamelCase_ ) lowerCAmelCase : Dict = nn.Dropout(UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=None ): lowerCAmelCase : str = self.layer_norm(UpperCamelCase_ ) if conditioning_emb is not None: lowerCAmelCase : Tuple = self.film(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = self.DenseReluDense(UpperCamelCase_ ) lowerCAmelCase : List[str] = hidden_states + self.dropout(UpperCamelCase_ ) return hidden_states class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ): super().__init__() lowerCAmelCase : Union[str, Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) lowerCAmelCase : List[str] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) lowerCAmelCase : Dict = nn.Dropout(UpperCamelCase_ ) lowerCAmelCase : Any = NewGELUActivation() def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : str = self.act(self.wi_a(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = self.wi_a(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = hidden_gelu * hidden_linear lowerCAmelCase : Union[str, Any] = self.dropout(UpperCamelCase_ ) lowerCAmelCase : Dict = self.wo(UpperCamelCase_ ) return hidden_states class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any]=1E-6 ): super().__init__() lowerCAmelCase : Optional[int] = nn.Parameter(torch.ones(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = eps def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCAmelCase : Optional[Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase_ ) lowerCAmelCase : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCAmelCase : Any = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class snake_case_( nn.Module ): '''simple docstring''' def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase_ , 3.0 )) )) class snake_case_( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): super().__init__() lowerCAmelCase : Optional[Any] = nn.Linear(UpperCamelCase_ , out_features * 2 , bias=UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = self.scale_bias(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = torch.chunk(UpperCamelCase_ , 2 , -1 ) lowerCAmelCase : List[str] = x * (1 + scale) + shift return x
720
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ): return base * power(_snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case__ : Union[str, Any] = int(input('''Enter the base: ''').strip()) snake_case__ : Optional[Any] = int(input('''Enter the exponent: ''').strip()) snake_case__ : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case__ : Dict = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
637
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline snake_case__ : Optional[Any] = '''path-to-your-trained-model''' snake_case__ : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') snake_case__ : Optional[Any] = '''A photo of sks dog in a bucket''' snake_case__ : Optional[int] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
721
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : int = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str=None , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=None , ): if attention_mask is None: lowerCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case_: def __init__( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Dict=9_9 , UpperCamelCase_ : Optional[int]=1_6 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0.02 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = eos_token_id lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : Optional[Any] = bos_token_id lowerCAmelCase : List[str] = initializer_range def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = 2_0 lowerCAmelCase : Tuple = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = 2_0 lowerCAmelCase : List[Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Dict = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class snake_case_( unittest.TestCase ): __UpperCamelCase = 99 def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : List[Any] = input_ids.shape[0] lowerCAmelCase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self._get_config_and_data() lowerCAmelCase : Any = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = lm_model(input_ids=UpperCamelCase_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[Any] = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowerCAmelCase : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Optional[int] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : str = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case_( a__ , unittest.TestCase , a__ ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = FlaxBlenderbotModelTester(self ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : List[str] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : List[str] = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : int = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : List[Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : str = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : List[str] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} lowerCAmelCase : List[str] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase : List[Any] = ['''Sam'''] lowerCAmelCase : str = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowerCAmelCase : Union[str, Any] = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
637
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Tuple = '''Hello world! cécé herlolip''' def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : bool ): lowerCAmelCase : Any = FairseqRobertaModel.from_pretrained(_snake_case ) roberta.eval() # disable dropout lowerCAmelCase : Optional[int] = roberta.model.encoder.sentence_encoder lowerCAmelCase : Union[str, Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCAmelCase : Any = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _snake_case ) lowerCAmelCase : List[str] = XLMRobertaXLForSequenceClassification(_snake_case ) if classification_head else XLMRobertaXLForMaskedLM(_snake_case ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase : Tuple = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase : List[str] = roberta_sent_encoder.embed_positions.weight lowerCAmelCase : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase : Any = roberta_sent_encoder.layer_norm.weight lowerCAmelCase : Any = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase : BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase : RobertaAttention = layer.attention lowerCAmelCase : Optional[Any] = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase : str = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase : Dict = roberta_layer.self_attn.q_proj.weight lowerCAmelCase : Tuple = roberta_layer.self_attn.q_proj.bias lowerCAmelCase : Dict = roberta_layer.self_attn.k_proj.weight lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.k_proj.bias lowerCAmelCase : Tuple = roberta_layer.self_attn.v_proj.weight lowerCAmelCase : str = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase : Optional[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase : Any = roberta_layer.final_layer_norm.weight lowerCAmelCase : List[Any] = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase : Any = roberta_layer.fca.weight lowerCAmelCase : Any = roberta_layer.fca.bias # output lowerCAmelCase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase : Optional[int] = roberta_layer.fca.weight lowerCAmelCase : List[Any] = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase : int = roberta.model.classification_heads['''mnli'''].dense.weight lowerCAmelCase : Optional[int] = roberta.model.classification_heads['''mnli'''].dense.bias lowerCAmelCase : Union[str, Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight lowerCAmelCase : Optional[Any] = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCAmelCase : Tuple = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase : List[str] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase : str = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase : str = roberta.model.encoder.lm_head.weight lowerCAmelCase : Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase : torch.Tensor = roberta.encode(_snake_case ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase : Tuple = model(_snake_case )[0] if classification_head: lowerCAmelCase : int = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_snake_case ) ) else: lowerCAmelCase : Any = roberta.model(_snake_case )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase : int = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowerCAmelCase : Dict = torch.allclose(_snake_case , _snake_case , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_snake_case ).mkdir(parents=_snake_case , exist_ok=_snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) snake_case__ : int = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
700
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example snake_case__ : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( _snake_case : list[list[int]] ): lowerCAmelCase : Union[str, Any] = [] for i in range(len(_snake_case ) ): lowerCAmelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(_snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_snake_case ) return next_generation def _snake_case ( _snake_case : list[list[int]] , _snake_case : int ): lowerCAmelCase : int = [] for _ in range(_snake_case ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new('''RGB''' , (len(cells[0] ), len(_snake_case )) ) lowerCAmelCase : Union[str, Any] = img.load() # Save cells to image for x in range(len(_snake_case ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Optional[int] = 255 - cells[y][x] * 255 lowerCAmelCase : List[Any] = (colour, colour, colour) # Save image images.append(_snake_case ) lowerCAmelCase : Union[str, Any] = new_generation(_snake_case ) return images if __name__ == "__main__": snake_case__ : Union[str, Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
637
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right snake_case__ : Dict = 250_004 snake_case__ : List[Any] = 250_020 @require_sentencepiece @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = MBartTokenizer __UpperCamelCase = MBartTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def lowerCamelCase__ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : int = MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowerCamelCase__ ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : str = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = tokenizer_r.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : Dict = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : str = tokenizer_r.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class snake_case_( unittest.TestCase ): __UpperCamelCase = '''facebook/mbart-large-en-ro''' __UpperCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __UpperCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __UpperCamelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def lowerCamelCase__ ( cls : Optional[Any] ): lowerCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCAmelCase : List[Any] = 1 return cls def lowerCamelCase__ ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) lowerCAmelCase : Union[str, Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCAmelCase : Optional[Any] = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , UpperCamelCase_ ) lowerCAmelCase : Dict = 1_0 lowerCAmelCase : List[str] = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = MBartTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : str = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCAmelCase : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : str = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) lowerCAmelCase : Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=1_0 , return_tensors='''pt''' ) lowerCAmelCase : str = targets['''input_ids'''] lowerCAmelCase : int = shift_tokens_right(UpperCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
701
"""simple docstring""" from __future__ import annotations class snake_case_: def __init__( self : int , UpperCamelCase_ : str , UpperCamelCase_ : str ): lowerCAmelCase, lowerCAmelCase : List[str] = text, pattern lowerCAmelCase, lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self : Dict ): # searches pattern in text and returns index positions lowerCAmelCase : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase : str = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case__ : str = '''ABAABA''' snake_case__ : List[str] = '''AB''' snake_case__ : Union[str, Any] = BoyerMooreSearch(text, pattern) snake_case__ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
637
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = XLMRobertaTokenizer __UpperCamelCase = XLMRobertaTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def lowerCamelCase__ ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Dict = XLMRobertaTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = '''<pad>''' lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(UpperCamelCase_ ) , 1_0_0_2 ) def lowerCamelCase__ ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = XLMRobertaTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowerCamelCase__ ( self : List[str] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : Any = tokenizer_r.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) lowerCAmelCase : str = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : int = tokenizer_r.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : Dict = tempfile.mkdtemp() lowerCAmelCase : Any = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : str = tokenizer_r.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) @cached_property def lowerCamelCase__ ( self : List[str] ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowerCamelCase__ ( self : Optional[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase_ , f.name ) lowerCAmelCase : List[str] = XLMRobertaTokenizer(f.name , keep_accents=UpperCamelCase_ ) lowerCAmelCase : Dict = pickle.dumps(UpperCamelCase_ ) pickle.loads(UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): if not self.test_rust_tokenizer: return lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase : Optional[Any] = '''I was born in 92000, and this is falsé.''' lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) lowerCAmelCase : List[str] = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = self.get_rust_tokenizer() lowerCAmelCase : Dict = tokenizer.encode(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : str ): lowerCAmelCase : Dict = '''Hello World!''' lowerCAmelCase : Tuple = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCAmelCase : Tuple = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @slow def lowerCamelCase__ ( self : Any ): # fmt: off lowerCAmelCase : List[str] = {'''input_ids''': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
702
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( a__ ): pass class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None def __iter__( self : int ): lowerCAmelCase : Any = self lowerCAmelCase : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowerCAmelCase : Optional[int] = node.next_node @property def lowerCamelCase__ ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Dict = Node(1) snake_case__ : Any = Node(2) snake_case__ : int = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Tuple = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : int = Node(6) snake_case__ : List[Any] = Node(5) snake_case__ : Dict = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
637
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''falcon''' __UpperCamelCase = ['''past_key_values'''] def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any]=6_5_0_2_4 , UpperCamelCase_ : List[Any]=4_5_4_4 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=7_1 , UpperCamelCase_ : Tuple=1E-5 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Any=None , UpperCamelCase_ : str=False , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Optional[Any]=1_1 , UpperCamelCase_ : Optional[int]=1_1 , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : str = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase : List[Any] = kwargs.pop('''n_embed''' , UpperCamelCase_ ) lowerCAmelCase : str = hidden_size if n_embed is None else n_embed lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : str = layer_norm_epsilon lowerCAmelCase : str = initializer_range lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = hidden_dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : List[Any] = bos_token_id lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : Union[str, Any] = num_attention_heads if num_kv_heads is None else num_kv_heads lowerCAmelCase : Optional[int] = alibi lowerCAmelCase : Union[str, Any] = new_decoder_architecture lowerCAmelCase : List[Any] = multi_query # Ignored when new_decoder_architecture is True lowerCAmelCase : Any = parallel_attn lowerCAmelCase : Union[str, Any] = bias super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase__ ( self : Optional[Any] ): return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ ( self : Dict ): return not self.alibi
703
"""simple docstring""" from torch import nn class snake_case_( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase : int = self.mlp(UpperCamelCase_ ) return logits
637
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ : Tuple = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : int = len(_snake_case ) lowerCAmelCase : int = len(_snake_case ) lowerCAmelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCAmelCase : list = [] for char_count in range(_snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_snake_case ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=2_2_4 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Dict=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Optional[Any]=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : Any=[1_6, 1_6, 1_6] , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : Optional[Any]=[2, 2, 2] , UpperCamelCase_ : str=0.02 , **UpperCamelCase_ : List[str] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Tuple = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Dict = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = depths lowerCAmelCase : Dict = key_dim lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): return 1E-4
637
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = DebertaTokenizer __UpperCamelCase = True __UpperCamelCase = DebertaTokenizerFast def lowerCamelCase__ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCAmelCase : Optional[Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase : Union[str, Any] = {'''unk_token''': '''[UNK]'''} lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Dict ): lowerCAmelCase : Tuple = '''lower newer''' lowerCAmelCase : List[Any] = '''lower newer''' return input_text, output_text def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : str = '''lower newer''' lowerCAmelCase : Optional[int] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase : List[str] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : List[Any] = tokenizer('''Hello''' , '''World''' ) lowerCAmelCase : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCAmelCase : str = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase : Tuple = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCAmelCase : Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCAmelCase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = [tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for seq in encoding['''input_ids''']] # fmt: off lowerCAmelCase : int = { '''input_ids''': [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase_ ) for expected, decoded in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
706
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : str = 3 lowerCAmelCase : Tuple = 2_5_0 lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) lowerCAmelCase : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self._get_tensors(5 ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
637
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case__ : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') snake_case__ : Union[str, Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) snake_case__ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case_: __UpperCamelCase = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''A folder containing the training data.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''A folder containing the validation data.'''} ) __UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) __UpperCamelCase = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) __UpperCamelCase = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Tuple = {} if self.train_dir is not None: lowerCAmelCase : List[Any] = self.train_dir if self.validation_dir is not None: lowerCAmelCase : Tuple = self.validation_dir lowerCAmelCase : Dict = data_files if data_files else None @dataclass class snake_case_: __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(a__ )} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) __UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class snake_case_: def __init__( self : Dict , UpperCamelCase_ : List[Any]=1_9_2 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Optional[int]=0.6 ): lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : List[Any] = mask_patch_size lowerCAmelCase : Any = model_patch_size lowerCAmelCase : Any = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) lowerCAmelCase : int = self.input_size // self.mask_patch_size lowerCAmelCase : List[Any] = self.mask_patch_size // self.model_patch_size lowerCAmelCase : Tuple = self.rand_size**2 lowerCAmelCase : Optional[Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : str ): lowerCAmelCase : Any = np.random.permutation(self.token_count )[: self.mask_count] lowerCAmelCase : Optional[Any] = np.zeros(self.token_count , dtype=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : Optional[int] = mask.reshape((self.rand_size, self.rand_size) ) lowerCAmelCase : List[str] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _snake_case ( _snake_case : str ): lowerCAmelCase : int = torch.stack([example['''pixel_values'''] for example in examples] ) lowerCAmelCase : Any = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowerCAmelCase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase : Optional[int] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: lowerCAmelCase : List[str] = ds['''train'''].train_test_split(data_args.train_val_split ) lowerCAmelCase : List[str] = split['''train'''] lowerCAmelCase : Dict = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **_snake_case ) elif model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(_snake_case , '''decoder_type''' ): lowerCAmelCase : Tuple = '''simmim''' # adapt config lowerCAmelCase : List[str] = model_args.image_size if model_args.image_size is not None else config.image_size lowerCAmelCase : int = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCAmelCase : str = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: lowerCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: lowerCAmelCase : List[str] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCAmelCase : List[Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCAmelCase : Any = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowerCAmelCase : int = AutoModelForMaskedImageModeling.from_config(_snake_case ) if training_args.do_train: lowerCAmelCase : Union[str, Any] = ds['''train'''].column_names else: lowerCAmelCase : str = ds['''validation'''].column_names if data_args.image_column_name is not None: lowerCAmelCase : Dict = data_args.image_column_name elif "image" in column_names: lowerCAmelCase : Union[str, Any] = '''image''' elif "img" in column_names: lowerCAmelCase : Optional[int] = '''img''' else: lowerCAmelCase : str = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCAmelCase : str = Compose( [ Lambda(lambda _snake_case : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCAmelCase : Union[str, Any] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_snake_case : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = [transforms(_snake_case ) for image in examples[image_column_name]] lowerCAmelCase : Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowerCAmelCase : Optional[int] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowerCAmelCase : Dict = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Initialize our trainer lowerCAmelCase : Any = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: lowerCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : Dict = last_checkpoint lowerCAmelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , _snake_case ) trainer.save_metrics('''eval''' , _snake_case ) # Write model card and (optionally) push to hub lowerCAmelCase : List[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) if __name__ == "__main__": main()
707
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = None def _snake_case ( _snake_case : Dict , _snake_case : List[str]=0.999 , _snake_case : Dict="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : List[Any] = [] for i in range(_snake_case ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 1_0_0_0 , UpperCamelCase_ : str = "fixed_small_log" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[float] = 1.0 , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCAmelCase : Any = betas_for_alpha_bar(UpperCamelCase_ ) lowerCAmelCase : str = 1.0 - self.betas lowerCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Any = 1.0 # setable values lowerCAmelCase : Any = None lowerCAmelCase : Any = torch.from_numpy(np.arange(0 , UpperCamelCase_ )[::-1].copy() ) lowerCAmelCase : List[str] = variance_type def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Any = num_inference_steps lowerCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : int = self.alphas_cumprod[t] lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] else: lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Optional[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Any = torch.log(torch.clamp(UpperCamelCase_ , min=1E-20 ) ) lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Optional[Any] = variance.log() lowerCAmelCase : Union[str, Any] = beta.log() lowerCAmelCase : Dict = (predicted_variance + 1) / 2 lowerCAmelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase, lowerCAmelCase : List[Any] = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t] lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : int = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : List[Any] = self.betas[t] lowerCAmelCase : Optional[int] = self.alphas[t] else: lowerCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Dict = torch.clamp( UpperCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : int = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ , device=model_output.device ) lowerCAmelCase : Any = self._get_variance( UpperCamelCase_ , predicted_variance=UpperCamelCase_ , prev_timestep=UpperCamelCase_ , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) lowerCAmelCase : List[Any] = variance * variance_noise lowerCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : int = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
637
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : int ): lowerCAmelCase : Optional[int] = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : List[str] = self.find_component(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCamelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCamelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : Any = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase : List[Any] = edge lowerCAmelCase : Union[str, Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[str] = edge lowerCAmelCase : int = self.m_component[u] lowerCAmelCase : Any = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowerCAmelCase : Dict = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def _snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _snake_case ( _snake_case : str , _snake_case : List[Any]=7 ): lowerCAmelCase : Any = None if token is not None: lowerCAmelCase : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowerCAmelCase : Union[str, Any] = '''636036''' lowerCAmelCase : Tuple = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowerCAmelCase : int = requests.get(_snake_case , headers=_snake_case ).json() return result["workflow_runs"] def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : int = get_daily_ci_runs(_snake_case ) lowerCAmelCase : Dict = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCAmelCase : List[Any] = workflow_run['''id'''] break return workflow_run_id def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Any ): lowerCAmelCase : Tuple = get_last_daily_ci_runs(_snake_case ) if workflow_run_id is not None: lowerCAmelCase : List[Any] = get_artifacts_links(worflow_run_id=_snake_case , token=_snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCAmelCase : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=_snake_case , artifact_url=_snake_case , output_dir=_snake_case , token=_snake_case ) def _snake_case ( _snake_case : Optional[int] , _snake_case : int , _snake_case : Optional[Any] ): get_last_daily_ci_artifacts(_snake_case , _snake_case , _snake_case ) lowerCAmelCase : List[Any] = {} for artifact_name in artifact_names: lowerCAmelCase : Union[str, Any] = os.path.join(_snake_case , f'''{artifact_name}.zip''' ) if os.path.isfile(_snake_case ): lowerCAmelCase : Dict = {} with zipfile.ZipFile(_snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(_snake_case ): # read the file with z.open(_snake_case ) as f: lowerCAmelCase : List[Any] = f.read().decode('''UTF-8''' ) return results
709
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case__ : Optional[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ['''MobileViTFeatureExtractor'''] snake_case__ : Optional[Any] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_( a__ ): __UpperCamelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase = '''summarizer''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ['''text'''] __UpperCamelCase = ['''text'''] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
637
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = 1_0 def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = [1, 2, 3, 4] lowerCAmelCase : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' lowerCAmelCase : Union[str, Any] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = '''''' lowerCAmelCase : str = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) lowerCAmelCase : Union[str, Any] = process_story(UpperCamelCase_ ) lowerCAmelCase : Dict = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = torch.tensor([1, 2, 3, 4] ) lowerCAmelCase : str = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowerCAmelCase : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 2_3 ).numpy() , expected.numpy() ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCAmelCase : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = 1_0_1 lowerCAmelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowerCAmelCase : str = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCAmelCase : Dict = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
711
"""simple docstring""" snake_case__ : List[Any] = '''Tobias Carryer''' from time import time class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=int(time() ) ): # noqa: B008 lowerCAmelCase : str = multiplier lowerCAmelCase : Optional[int] = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[Any] = seed def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : int = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
637
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : int=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[str]=3_7 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[str]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : str = seq_length lowerCAmelCase : Any = is_training lowerCAmelCase : Tuple = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Any = projection_dim lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = intermediate_size lowerCAmelCase : List[str] = dropout lowerCAmelCase : int = attention_dropout lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = scope lowerCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : int = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCAmelCase : Optional[int] = input_mask.numpy() lowerCAmelCase : str = input_mask.shape lowerCAmelCase : List[Any] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = TFBlipTextModel(config=UpperCamelCase_ ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , training=UpperCamelCase_ ) lowerCAmelCase : Any = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = BlipTextModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : int ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCamelCase__ ( self : Tuple ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCamelCase__ ( self : List[Any] ): pass @slow def lowerCamelCase__ ( self : Tuple ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFBlipTextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase_ )
712
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
637
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class snake_case_( a__ ): def __init__( self : str , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = {}, {} if padding is not None: lowerCAmelCase : Optional[int] = padding if truncation is not None: lowerCAmelCase : Optional[Any] = truncation if top_k is not None: lowerCAmelCase : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , UpperCamelCase_ : Union["Image.Image", str] , UpperCamelCase_ : str = None , **UpperCamelCase_ : Any ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = {'''image''': image, '''question''': question} else: lowerCAmelCase : Union[str, Any] = image lowerCAmelCase : List[Any] = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : str=False ): lowerCAmelCase : Optional[int] = load_image(inputs['''image'''] ) lowerCAmelCase : Any = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) lowerCAmelCase : int = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCamelCase__ ( self : str , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = self.model(**UpperCamelCase_ ) return model_outputs def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase : List[Any] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase : Optional[int] = model_outputs.logits.sigmoid()[0] lowerCAmelCase : List[Any] = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCAmelCase : Union[str, Any] = scores.tolist() lowerCAmelCase : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
713
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any]=None ): lowerCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = True, True lowerCAmelCase : int = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[Any] = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] ): lowerCAmelCase : Any = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase, lowerCAmelCase : Optional[int] = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase : Dict = 1 if check == 2: lowerCAmelCase : int = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase : List[str] = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase : Any = { 1: [], 2: [] # all degree is zero } lowerCAmelCase : List[str] = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
637
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') snake_case__ : List[str] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') snake_case__ : List[str] = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = CamembertTokenizer __UpperCamelCase = CamembertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def lowerCamelCase__ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Optional[Any] = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : int = '''<pad>''' lowerCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(UpperCamelCase_ ) , 1_0_0_4 ) def lowerCamelCase__ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) lowerCAmelCase : str = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = '''I was born in 92000, and this is falsé.''' lowerCAmelCase : Dict = tokenizer.encode(UpperCamelCase_ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : List[str] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) lowerCAmelCase : Dict = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): if not self.test_rust_tokenizer: return lowerCAmelCase : Tuple = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' lowerCAmelCase : Any = tokenizer.tokenize(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ ) lowerCAmelCase : Dict = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[str] ): # fmt: off lowerCAmelCase : Dict = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowerCAmelCase : Any = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=UpperCamelCase_ , )
714
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
637
0
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Optional[int] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : Any = { '''allenai/led-base-16384''': 16_384, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = LEDTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]="replace" , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : Tuple="<unk>" , UpperCamelCase_ : List[str]="<pad>" , UpperCamelCase_ : Optional[Any]="<mask>" , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : List[str]=True , **UpperCamelCase_ : List[str] , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowerCAmelCase : List[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowerCAmelCase : Any = add_prefix_space lowerCAmelCase : int = pre_tok_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase : int = '''post_processor''' lowerCAmelCase : Union[str, Any] = getattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) if tokenizer_component_instance: lowerCAmelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase : List[str] = tuple(state['''sep'''] ) if "cls" in state: lowerCAmelCase : Optional[int] = tuple(state['''cls'''] ) lowerCAmelCase : str = False if state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowerCAmelCase : Optional[int] = add_prefix_space lowerCAmelCase : Tuple = True if state.get('''trim_offsets''' , UpperCamelCase_ ) != trim_offsets: lowerCAmelCase : List[str] = trim_offsets lowerCAmelCase : Optional[int] = True if changes_to_apply: lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , state.pop('''type''' ) ) lowerCAmelCase : Optional[int] = component_class(**UpperCamelCase_ ) setattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase__ ( self : Optional[Any] ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int ): lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else value lowerCAmelCase : Optional[int] = value def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[Any] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : str = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : List[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : Union[str, Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : Tuple = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Optional[Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
715
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : List[Any] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): lowerCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase : str = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : int = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : List[str] = set() lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Optional[Any] = char return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Tuple="<mask>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCamelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[int] = errors # how to handle errors in decoding lowerCAmelCase : List[Any] = bytes_to_unicode() lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if token in self.cache: return self.cache[token] lowerCAmelCase : List[str] = tuple(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase, lowerCAmelCase : Any = bigram lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : int = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Tuple = tuple(UpperCamelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ''' '''.join(UpperCamelCase_ ) lowerCAmelCase : List[str] = word return word def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = [] for token in re.findall(self.pat , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCAmelCase : Optional[int] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase : Tuple = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Dict = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : int = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
637
0
"""simple docstring""" from __future__ import annotations import numpy as np def _snake_case ( _snake_case : np.ndarray ) -> List[str]: lowerCAmelCase : int = np.shape(_snake_case ) if rows != columns: lowerCAmelCase : Union[str, Any] = ( '''\'table\' has to be of square shaped array but got a ''' f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(_snake_case ) lowerCAmelCase : List[str] = np.zeros((rows, columns) ) lowerCAmelCase : str = np.zeros((rows, columns) ) for i in range(_snake_case ): for j in range(_snake_case ): lowerCAmelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(_snake_case ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) lowerCAmelCase : Any = (table[i][j] - total) / upper[j][j] lowerCAmelCase : Optional[int] = 1 for j in range(_snake_case , _snake_case ): lowerCAmelCase : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(_snake_case ) ) lowerCAmelCase : Any = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : int = [0, 1] lowerCAmelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase : int = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
637
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] ): lowerCAmelCase : Optional[int] = k_size // 2 lowerCAmelCase : str = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase : int = 1 / (2 * pi * sigma) * exp(-(square(_snake_case ) + square(_snake_case )) / (2 * square(_snake_case )) ) return g def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : List[str] ): lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase : Optional[Any] = height - k_size + 1 lowerCAmelCase : Any = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase : Dict = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase : Optional[int] = 0 for i, j in product(range(_snake_case ) , range(_snake_case ) ): lowerCAmelCase : int = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase : Union[str, Any] = gen_gaussian_kernel(_snake_case , _snake_case ) lowerCAmelCase : List[str] = ravel(_snake_case ) # reshape and get the dst image lowerCAmelCase : str = dot(_snake_case , _snake_case ).reshape(_snake_case , _snake_case ).astype(_snake_case ) return dst if __name__ == "__main__": # read original image snake_case__ = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value snake_case__ = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size snake_case__ = gaussian_filter(gray, 3, sigma=1) snake_case__ = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
717
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
637
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): def __init__( self : Union[str, Any] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Tuple ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
718
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] , _snake_case : int ): if len(_snake_case ) == 0: return False lowerCAmelCase : List[Any] = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() snake_case__ : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] snake_case__ : Dict = int(input('''Enter the number to be found in the list:\n''').strip()) snake_case__ : str = '''''' if binary_search(sequence, target) else '''not ''' print(f"""{target} was {not_str}found in {sequence}""")
637
0
from string import ascii_uppercase snake_case__ : Union[str, Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def _snake_case ( _snake_case : int , _snake_case : int ): if isinstance(_snake_case , _snake_case ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(_snake_case , _snake_case ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(_snake_case , _snake_case ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) lowerCAmelCase : Optional[Any] = '''''' lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Dict = 0 while div != 1: lowerCAmelCase : Tuple = divmod(_snake_case , _snake_case ) if base >= 11 and 9 < mod < 36: lowerCAmelCase : int = ALPHABET_VALUES[str(_snake_case )] else: lowerCAmelCase : int = str(_snake_case ) new_value += actual_value lowerCAmelCase : List[str] = num // base lowerCAmelCase : List[Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_snake_case ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
719
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict snake_case__ : Optional[Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _snake_case ( _snake_case : Any ): lowerCAmelCase : Union[str, Any] = _TestCommandArgs(dataset=_snake_case , all_configs=_snake_case , save_infos=_snake_case ) lowerCAmelCase : str = TestCommand(*_snake_case ) test_command.run() lowerCAmelCase : str = os.path.join(_snake_case , '''README.md''' ) assert os.path.exists(_snake_case ) lowerCAmelCase : Tuple = DatasetInfosDict.from_directory(_snake_case ) lowerCAmelCase : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = getattr(dataset_infos['''default'''] , _snake_case ), getattr(expected_dataset_infos['''default'''] , _snake_case ) if key == "num_bytes": assert is_apercent_close(_snake_case , _snake_case ) elif key == "splits": assert list(_snake_case ) == list(_snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
637
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets snake_case__ : List[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' snake_case__ : Union[str, Any] = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' snake_case__ : Tuple = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any=None ): return { "matthews_correlation": float(matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ , sample_weight=UpperCamelCase_ ) ), }
720
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ): return base * power(_snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case__ : Union[str, Any] = int(input('''Enter the base: ''').strip()) snake_case__ : Optional[Any] = int(input('''Enter the exponent: ''').strip()) snake_case__ : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case__ : Dict = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
637
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : int = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class snake_case_( a__ ): __UpperCamelCase = '''efficientformer''' def __init__( self : int , UpperCamelCase_ : List[int] = [3, 2, 6, 4] , UpperCamelCase_ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , UpperCamelCase_ : List[bool] = [True, True, True, True] , UpperCamelCase_ : int = 4_4_8 , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : int = 4 , UpperCamelCase_ : int = 7 , UpperCamelCase_ : int = 5 , UpperCamelCase_ : int = 8 , UpperCamelCase_ : int = 4 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_6 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 2 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : float = 1E-5 , UpperCamelCase_ : str = "gelu" , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : float = 1E-12 , UpperCamelCase_ : int = 2_2_4 , UpperCamelCase_ : float = 1E-05 , **UpperCamelCase_ : List[Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = hidden_sizes lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Optional[int] = patch_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : Optional[int] = depths lowerCAmelCase : Optional[Any] = mlp_expansion_ratio lowerCAmelCase : Optional[int] = downsamples lowerCAmelCase : List[str] = dim lowerCAmelCase : List[Any] = key_dim lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : int = resolution lowerCAmelCase : Tuple = pool_size lowerCAmelCase : str = downsample_patch_size lowerCAmelCase : List[Any] = downsample_stride lowerCAmelCase : Optional[Any] = downsample_pad lowerCAmelCase : List[str] = drop_path_rate lowerCAmelCase : Tuple = num_metaad_blocks lowerCAmelCase : str = distillation lowerCAmelCase : int = use_layer_scale lowerCAmelCase : Any = layer_scale_init_value lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : int = batch_norm_eps
721
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : int = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str=None , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=None , ): if attention_mask is None: lowerCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case_: def __init__( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Dict=9_9 , UpperCamelCase_ : Optional[int]=1_6 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0.02 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = eos_token_id lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : Optional[Any] = bos_token_id lowerCAmelCase : List[str] = initializer_range def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = 2_0 lowerCAmelCase : Tuple = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = 2_0 lowerCAmelCase : List[Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Dict = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class snake_case_( unittest.TestCase ): __UpperCamelCase = 99 def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : List[Any] = input_ids.shape[0] lowerCAmelCase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self._get_config_and_data() lowerCAmelCase : Any = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = lm_model(input_ids=UpperCamelCase_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[Any] = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowerCAmelCase : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Optional[int] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : str = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case_( a__ , unittest.TestCase , a__ ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = FlaxBlenderbotModelTester(self ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : List[str] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : List[str] = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : int = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : List[Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : str = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : List[str] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} lowerCAmelCase : List[str] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase : List[Any] = ['''Sam'''] lowerCAmelCase : str = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowerCAmelCase : Union[str, Any] = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
637
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = BioGptTokenizer __UpperCamelCase = False def lowerCamelCase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[str] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : List[str] = '''lower newer''' lowerCAmelCase : List[str] = '''lower newer''' return input_text, output_text def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase : List[str] = '''lower''' lowerCAmelCase : Tuple = ['''low''', '''er</w>'''] lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = tokens + ['''<unk>'''] lowerCAmelCase : Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCAmelCase : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
700
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example snake_case__ : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( _snake_case : list[list[int]] ): lowerCAmelCase : Union[str, Any] = [] for i in range(len(_snake_case ) ): lowerCAmelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(_snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_snake_case ) return next_generation def _snake_case ( _snake_case : list[list[int]] , _snake_case : int ): lowerCAmelCase : int = [] for _ in range(_snake_case ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new('''RGB''' , (len(cells[0] ), len(_snake_case )) ) lowerCAmelCase : Union[str, Any] = img.load() # Save cells to image for x in range(len(_snake_case ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Optional[int] = 255 - cells[y][x] * 255 lowerCAmelCase : List[Any] = (colour, colour, colour) # Save image images.append(_snake_case ) lowerCAmelCase : Union[str, Any] = new_generation(_snake_case ) return images if __name__ == "__main__": snake_case__ : Union[str, Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
637
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_( a__ ): __UpperCamelCase = '''vit_mae''' def __init__( self : Tuple , UpperCamelCase_ : List[Any]=7_6_8 , UpperCamelCase_ : List[str]=1_2 , UpperCamelCase_ : Tuple=1_2 , UpperCamelCase_ : List[Any]=3_0_7_2 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Tuple=1E-12 , UpperCamelCase_ : Optional[int]=2_2_4 , UpperCamelCase_ : Any=1_6 , UpperCamelCase_ : str=3 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=1_6 , UpperCamelCase_ : str=5_1_2 , UpperCamelCase_ : Union[str, Any]=8 , UpperCamelCase_ : Dict=2_0_4_8 , UpperCamelCase_ : Optional[int]=0.75 , UpperCamelCase_ : Tuple=False , **UpperCamelCase_ : Any , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : int = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : int = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : str = num_channels lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : Optional[Any] = decoder_num_attention_heads lowerCAmelCase : int = decoder_hidden_size lowerCAmelCase : Any = decoder_num_hidden_layers lowerCAmelCase : Any = decoder_intermediate_size lowerCAmelCase : List[str] = mask_ratio lowerCAmelCase : int = norm_pix_loss
701
"""simple docstring""" from __future__ import annotations class snake_case_: def __init__( self : int , UpperCamelCase_ : str , UpperCamelCase_ : str ): lowerCAmelCase, lowerCAmelCase : List[str] = text, pattern lowerCAmelCase, lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self : Dict ): # searches pattern in text and returns index positions lowerCAmelCase : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase : str = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case__ : str = '''ABAABA''' snake_case__ : List[str] = '''AB''' snake_case__ : Union[str, Any] = BoyerMooreSearch(text, pattern) snake_case__ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
637
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class snake_case_: __UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) __UpperCamelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) __UpperCamelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) __UpperCamelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) __UpperCamelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) __UpperCamelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) __UpperCamelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) __UpperCamelCase = field( default=10_000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) __UpperCamelCase = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) __UpperCamelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) __UpperCamelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) __UpperCamelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) __UpperCamelCase = field(default=50_000 , metadata={'''help''': '''Maximum number of training steps.'''} ) __UpperCamelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) __UpperCamelCase = field(default=1_024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) __UpperCamelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) __UpperCamelCase = field( default=1_024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class snake_case_: __UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) __UpperCamelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) __UpperCamelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) __UpperCamelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) __UpperCamelCase = field(default=1_024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) __UpperCamelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class snake_case_: __UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) __UpperCamelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) __UpperCamelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) __UpperCamelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) __UpperCamelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) __UpperCamelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) __UpperCamelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) __UpperCamelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) __UpperCamelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) __UpperCamelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) __UpperCamelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class snake_case_: __UpperCamelCase = field( default=a__ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) __UpperCamelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) __UpperCamelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) __UpperCamelCase = field( default=100_000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) __UpperCamelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) __UpperCamelCase = field( default=1_000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) __UpperCamelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) __UpperCamelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) __UpperCamelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) __UpperCamelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) __UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) __UpperCamelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class snake_case_: __UpperCamelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) __UpperCamelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) __UpperCamelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) __UpperCamelCase = field(default=200_000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) __UpperCamelCase = field( default=32_768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) __UpperCamelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class snake_case_: __UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) __UpperCamelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) __UpperCamelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class snake_case_: __UpperCamelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) __UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) __UpperCamelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
702
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( a__ ): pass class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None def __iter__( self : int ): lowerCAmelCase : Any = self lowerCAmelCase : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowerCAmelCase : Optional[int] = node.next_node @property def lowerCamelCase__ ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Dict = Node(1) snake_case__ : Any = Node(2) snake_case__ : int = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Tuple = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : int = Node(6) snake_case__ : List[Any] = Node(5) snake_case__ : Dict = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
637
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py snake_case__ : List[str] = '''.''' if __name__ == "__main__": snake_case__ : Any = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') snake_case__ : Dict = [] snake_case__ : Tuple = [] with open(doctest_file_path) as fp: for line in fp: snake_case__ : Optional[int] = line.strip() snake_case__ : Union[str, Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: snake_case__ : str = '''\n'''.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
703
"""simple docstring""" from torch import nn class snake_case_( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase : int = self.mlp(UpperCamelCase_ ) return logits
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available snake_case__ : str = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys snake_case__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ShapEImgaImgPipeline __UpperCamelCase = ['''image'''] __UpperCamelCase = ['''image'''] __UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __UpperCamelCase = False @property def lowerCamelCase__ ( self : Dict ): return 3_2 @property def lowerCamelCase__ ( self : List[str] ): return 3_2 @property def lowerCamelCase__ ( self : Optional[int] ): return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : Union[str, Any] ): return 8 @property def lowerCamelCase__ ( self : Dict ): torch.manual_seed(0 ) lowerCAmelCase : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowerCAmelCase : Optional[Any] = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_2_4 , ) return image_processor @property def lowerCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase : List[str] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCAmelCase : List[Any] = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCAmelCase : Any = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[int] = self.dummy_prior lowerCAmelCase : str = self.dummy_image_encoder lowerCAmelCase : Optional[Any] = self.dummy_image_processor lowerCAmelCase : Tuple = self.dummy_renderer lowerCAmelCase : List[str] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) lowerCAmelCase : Optional[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=0 ): lowerCAmelCase : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : int = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = '''cpu''' lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : str = self.pipeline_class(**UpperCamelCase_ ) lowerCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = output.images[0] lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) lowerCAmelCase : List[Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = torch_device == '''cpu''' lowerCAmelCase : List[str] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : int = self.pipeline_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Dict = 1 lowerCAmelCase : List[Any] = 2 lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase : Dict = batch_size * [inputs[key]] lowerCAmelCase : int = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCAmelCase : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCAmelCase : int = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : str = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=2_2_4 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Dict=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Optional[Any]=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : Any=[1_6, 1_6, 1_6] , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : Optional[Any]=[2, 2, 2] , UpperCamelCase_ : str=0.02 , **UpperCamelCase_ : List[str] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Tuple = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Dict = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = depths lowerCAmelCase : Dict = key_dim lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): return 1E-4
637
0
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : list ): _enforce_args(_snake_case , _snake_case ) if n == 0: return 0 lowerCAmelCase : List[str] = float('''-inf''' ) for i in range(1 , n + 1 ): lowerCAmelCase : int = max( _snake_case , prices[i - 1] + naive_cut_rod_recursive(n - i , _snake_case ) ) return max_revue def _snake_case ( _snake_case : int , _snake_case : list ): _enforce_args(_snake_case , _snake_case ) lowerCAmelCase : Dict = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_snake_case , _snake_case , _snake_case ) def _snake_case ( _snake_case : int , _snake_case : list , _snake_case : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCAmelCase : List[str] = float('''-inf''' ) for i in range(1 , n + 1 ): lowerCAmelCase : Union[str, Any] = max( _snake_case , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _snake_case , _snake_case ) , ) lowerCAmelCase : Optional[int] = max_revenue return max_rev[n] def _snake_case ( _snake_case : int , _snake_case : list ): _enforce_args(_snake_case , _snake_case ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCAmelCase : int = [float('''-inf''' ) for _ in range(n + 1 )] lowerCAmelCase : Union[str, Any] = 0 for i in range(1 , n + 1 ): lowerCAmelCase : Any = max_rev[i] for j in range(1 , i + 1 ): lowerCAmelCase : Dict = max(_snake_case , prices[j - 1] + max_rev[i - j] ) lowerCAmelCase : Optional[Any] = max_revenue_i return max_rev[n] def _snake_case ( _snake_case : int , _snake_case : list ): if n < 0: lowerCAmelCase : Dict = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(_snake_case ) if n > len(_snake_case ): lowerCAmelCase : Dict = ( '''Each integral piece of rod must have a corresponding price. ''' f'''Got n = {n} but length of prices = {len(_snake_case )}''' ) raise ValueError(_snake_case ) def _snake_case ( ): lowerCAmelCase : List[str] = [6, 10, 12, 15, 20, 23] lowerCAmelCase : Tuple = len(_snake_case ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCAmelCase : List[str] = 36 lowerCAmelCase : Dict = top_down_cut_rod(_snake_case , _snake_case ) lowerCAmelCase : List[str] = bottom_up_cut_rod(_snake_case , _snake_case ) lowerCAmelCase : List[str] = naive_cut_rod_recursive(_snake_case , _snake_case ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
706
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : str = 3 lowerCAmelCase : Tuple = 2_5_0 lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) lowerCAmelCase : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self._get_tensors(5 ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
637
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class snake_case_: def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[str] ): raise NotImplementedError() def lowerCamelCase__ ( self : List[Any] ): raise NotImplementedError() class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : "AutoTokenizer" , UpperCamelCase_ : bool = False , **UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = tokenizer lowerCAmelCase : str = skip_prompt lowerCAmelCase : Dict = decode_kwargs # variables used in the streaming process lowerCAmelCase : List[Any] = [] lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = True def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: lowerCAmelCase : Optional[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCAmelCase : List[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): lowerCAmelCase : Tuple = text[self.print_len :] lowerCAmelCase : List[Any] = [] lowerCAmelCase : str = 0 # If the last token is a CJK character, we print the characters. elif len(UpperCamelCase_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCAmelCase : Tuple = text[self.print_len :] self.print_len += len(UpperCamelCase_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCAmelCase : Dict = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(UpperCamelCase_ ) self.on_finalized_text(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCAmelCase : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCAmelCase : Optional[int] = text[self.print_len :] lowerCAmelCase : Dict = [] lowerCAmelCase : Tuple = 0 else: lowerCAmelCase : List[str] = '''''' lowerCAmelCase : Tuple = True self.on_finalized_text(UpperCamelCase_ , stream_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : bool = False ): print(UpperCamelCase_ , flush=UpperCamelCase_ , end='''''' if not stream_end else None ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False class snake_case_( a__ ): def __init__( self : Any , UpperCamelCase_ : "AutoTokenizer" , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[float] = None , **UpperCamelCase_ : List[str] ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = Queue() lowerCAmelCase : Dict = None lowerCAmelCase : Dict = timeout def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : bool = False ): self.text_queue.put(UpperCamelCase_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ): return self def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
707
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = None def _snake_case ( _snake_case : Dict , _snake_case : List[str]=0.999 , _snake_case : Dict="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : List[Any] = [] for i in range(_snake_case ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 1_0_0_0 , UpperCamelCase_ : str = "fixed_small_log" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[float] = 1.0 , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCAmelCase : Any = betas_for_alpha_bar(UpperCamelCase_ ) lowerCAmelCase : str = 1.0 - self.betas lowerCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Any = 1.0 # setable values lowerCAmelCase : Any = None lowerCAmelCase : Any = torch.from_numpy(np.arange(0 , UpperCamelCase_ )[::-1].copy() ) lowerCAmelCase : List[str] = variance_type def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Any = num_inference_steps lowerCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : int = self.alphas_cumprod[t] lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] else: lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Optional[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Any = torch.log(torch.clamp(UpperCamelCase_ , min=1E-20 ) ) lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Optional[Any] = variance.log() lowerCAmelCase : Union[str, Any] = beta.log() lowerCAmelCase : Dict = (predicted_variance + 1) / 2 lowerCAmelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase, lowerCAmelCase : List[Any] = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t] lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : int = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : List[Any] = self.betas[t] lowerCAmelCase : Optional[int] = self.alphas[t] else: lowerCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Dict = torch.clamp( UpperCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : int = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ , device=model_output.device ) lowerCAmelCase : Any = self._get_variance( UpperCamelCase_ , predicted_variance=UpperCamelCase_ , prev_timestep=UpperCamelCase_ , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) lowerCAmelCase : List[Any] = variance * variance_noise lowerCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : int = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
637
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : List[str] = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
709
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = PhobertTokenizer __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : str = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] lowerCAmelCase : Dict = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : Tuple = ['''#version: 0.2''', '''l à</w>'''] lowerCAmelCase : Any = {'''unk_token''': '''<unk>'''} lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[str] , **UpperCamelCase_ : Tuple ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Union[str, Any] = '''Tôi là VinAI Research''' lowerCAmelCase : str = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : int = '''Tôi là VinAI Research''' lowerCAmelCase : Any = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() lowerCAmelCase : Tuple = tokenizer.tokenize(UpperCamelCase_ ) print(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = tokens + [tokenizer.unk_token] lowerCAmelCase : Tuple = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
710
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_( a__ ): __UpperCamelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase = '''summarizer''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ['''text'''] __UpperCamelCase = ['''text'''] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
637
0
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _snake_case ( _snake_case : int , _snake_case : List[Any] , _snake_case : Union[str, Any] ) -> List[str]: lowerCAmelCase : int = hf_hub_url(repo_id=_snake_case , path=_snake_case , revision=_snake_case ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_snake_case )}'''
711
"""simple docstring""" snake_case__ : List[Any] = '''Tobias Carryer''' from time import time class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=int(time() ) ): # noqa: B008 lowerCAmelCase : str = multiplier lowerCAmelCase : Optional[int] = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[Any] = seed def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : int = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
637
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : List[Any] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): lowerCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase : str = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : int = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : List[str] = set() lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Optional[Any] = char return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Tuple="<mask>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCamelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[int] = errors # how to handle errors in decoding lowerCAmelCase : List[Any] = bytes_to_unicode() lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if token in self.cache: return self.cache[token] lowerCAmelCase : List[str] = tuple(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase : Any = bigram lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : int = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Tuple = tuple(UpperCamelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ''' '''.join(UpperCamelCase_ ) lowerCAmelCase : List[str] = word return word def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = [] for token in re.findall(self.pat , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCAmelCase : Optional[int] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase : Tuple = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Dict = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : int = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
712
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
637
0
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : int = [0, 1] lowerCAmelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase : int = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
713
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any]=None ): lowerCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = True, True lowerCAmelCase : int = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[Any] = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] ): lowerCAmelCase : Any = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase, lowerCAmelCase : Optional[int] = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase : Dict = 1 if check == 2: lowerCAmelCase : int = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase : List[str] = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase : Any = { 1: [], 2: [] # all degree is zero } lowerCAmelCase : List[str] = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
637
0
"""simple docstring""" from math import ceil def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): lowerCAmelCase : str = list(range(0 , _snake_case ) ) lowerCAmelCase : List[str] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCAmelCase : Union[str, Any] = [] for i in device_map_blocks: if device_map_blocks.count(_snake_case ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_snake_case ) # Missing blocks lowerCAmelCase : Optional[Any] = [i for i in blocks if i not in device_map_blocks] lowerCAmelCase : int = [i for i in device_map_blocks if i not in blocks] if len(_snake_case ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(_snake_case ) ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[int] ): lowerCAmelCase : Any = list(range(_snake_case ) ) lowerCAmelCase : Optional[int] = int(ceil(n_layers / len(_snake_case ) ) ) lowerCAmelCase : Any = [layers[i : i + n_blocks] for i in range(0 , _snake_case , _snake_case )] return dict(zip(_snake_case , _snake_case ) )
714
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
637
0
"""simple docstring""" def _snake_case ( _snake_case : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCAmelCase : int = sum(_snake_case ) / len(_snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case__ : List[Any] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): lowerCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase : str = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : int = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : List[str] = set() lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Optional[Any] = char return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Tuple="<mask>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCamelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[int] = errors # how to handle errors in decoding lowerCAmelCase : List[Any] = bytes_to_unicode() lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if token in self.cache: return self.cache[token] lowerCAmelCase : List[str] = tuple(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase, lowerCAmelCase : Any = bigram lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : int = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Tuple = tuple(UpperCamelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[Any] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ''' '''.join(UpperCamelCase_ ) lowerCAmelCase : List[str] = word return word def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = [] for token in re.findall(self.pat , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCAmelCase : Optional[int] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase : Tuple = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Dict = super()._pad( encoded_inputs=UpperCamelCase_ , max_length=UpperCamelCase_ , padding_strategy=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase_ ) if needs_to_be_padded: lowerCAmelCase : int = len(UpperCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
637
0
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ) -> Any: if exponent == 1: return base if exponent % 2 == 0: lowerCAmelCase : Dict = _modexpt(_snake_case , exponent // 2 , _snake_case ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_snake_case , exponent - 1 , _snake_case )) % modulo_value def _snake_case ( _snake_case : int = 1777 , _snake_case : int = 1855 , _snake_case : int = 8 ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = base for _ in range(1 , _snake_case ): lowerCAmelCase : Optional[Any] = _modexpt(_snake_case , _snake_case , 10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
716
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : int = [0, 1] lowerCAmelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase : int = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
637
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : List[str] ): lowerCAmelCase : Tuple = original_name.split('''.''' )[0] lowerCAmelCase : Optional[int] = key.split('''.''' ) lowerCAmelCase : Tuple = int(key_list[key_list.index(_snake_case ) - 2] ) lowerCAmelCase : List[str] = int(key_list[key_list.index(_snake_case ) - 1] ) lowerCAmelCase : Optional[int] = orig_block_num - offset lowerCAmelCase : Tuple = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : Union[str, Any] = OrderedDict() lowerCAmelCase : List[Any] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowerCAmelCase : List[Any] = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowerCAmelCase : Optional[int] = key[: key.find('''proj''' )] lowerCAmelCase : Union[str, Any] = key.replace(_snake_case , f'''patch_embeddings.{total_embed_found}.''' ) lowerCAmelCase : Optional[int] = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowerCAmelCase : List[Any] = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowerCAmelCase : Dict = replace_key_with_offset(_snake_case , _snake_case , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowerCAmelCase : int = replace_key_with_offset(_snake_case , _snake_case , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowerCAmelCase : Optional[int] = replace_key_with_offset(_snake_case , _snake_case , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowerCAmelCase : int = replace_key_with_offset(_snake_case , _snake_case , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowerCAmelCase : Any = replace_key_with_offset(_snake_case , _snake_case , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowerCAmelCase : List[Any] = replace_key_with_offset(_snake_case , _snake_case , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowerCAmelCase : Union[str, Any] = key.replace('''head''' , '''classifier''' ) lowerCAmelCase : Union[str, Any] = value return new_state_dict def _snake_case ( ): lowerCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Optional[int] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : List[str] ): lowerCAmelCase : Dict = PoolFormerConfig() # set attributes based on model_name lowerCAmelCase : int = '''huggingface/label-files''' lowerCAmelCase : Optional[int] = model_name[-3:] lowerCAmelCase : Union[str, Any] = 1000 lowerCAmelCase : Any = '''imagenet-1k-id2label.json''' lowerCAmelCase : Dict = (1, 1000) # set config attributes lowerCAmelCase : List[str] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Tuple = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : List[str] = {v: k for k, v in idalabel.items()} if size == "s12": lowerCAmelCase : int = [2, 2, 6, 2] lowerCAmelCase : Tuple = [64, 128, 320, 512] lowerCAmelCase : Optional[Any] = 4.0 lowerCAmelCase : Tuple = 0.9 elif size == "s24": lowerCAmelCase : Dict = [4, 4, 12, 4] lowerCAmelCase : List[str] = [64, 128, 320, 512] lowerCAmelCase : List[Any] = 4.0 lowerCAmelCase : List[str] = 0.9 elif size == "s36": lowerCAmelCase : Union[str, Any] = [6, 6, 18, 6] lowerCAmelCase : Union[str, Any] = [64, 128, 320, 512] lowerCAmelCase : Union[str, Any] = 4.0 lowerCAmelCase : int = 1E-6 lowerCAmelCase : Dict = 0.9 elif size == "m36": lowerCAmelCase : Optional[int] = [6, 6, 18, 6] lowerCAmelCase : Optional[Any] = [96, 192, 384, 768] lowerCAmelCase : str = 4.0 lowerCAmelCase : List[Any] = 1E-6 lowerCAmelCase : Tuple = 0.95 elif size == "m48": lowerCAmelCase : Any = [8, 8, 24, 8] lowerCAmelCase : Union[str, Any] = [96, 192, 384, 768] lowerCAmelCase : List[str] = 4.0 lowerCAmelCase : Tuple = 1E-6 lowerCAmelCase : Union[str, Any] = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor lowerCAmelCase : List[str] = PoolFormerImageProcessor(crop_pct=_snake_case ) # Prepare image lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : int = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict lowerCAmelCase : Tuple = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase : List[str] = rename_keys(_snake_case ) # create HuggingFace model and load state dict lowerCAmelCase : Dict = PoolFormerForImageClassification(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Define image processor lowerCAmelCase : Tuple = PoolFormerImageProcessor(crop_pct=_snake_case ) lowerCAmelCase : str = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowerCAmelCase : Optional[Any] = model(_snake_case ) lowerCAmelCase : int = outputs.logits # define expected logit slices for different models if size == "s12": lowerCAmelCase : Union[str, Any] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": lowerCAmelCase : Any = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": lowerCAmelCase : Union[str, Any] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": lowerCAmelCase : List[str] = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": lowerCAmelCase : int = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
717
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
637
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCAmelCase : str = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids lowerCAmelCase : Any = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids lowerCAmelCase : Union[str, Any] = model(input_ids.to(UpperCamelCase_ ) , labels=labels.to(UpperCamelCase_ ) ).loss lowerCAmelCase : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowerCAmelCase : Dict = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
718
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] , _snake_case : int ): if len(_snake_case ) == 0: return False lowerCAmelCase : List[Any] = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() snake_case__ : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] snake_case__ : Dict = int(input('''Enter the number to be found in the list:\n''').strip()) snake_case__ : str = '''''' if binary_search(sequence, target) else '''not ''' print(f"""{target} was {not_str}found in {sequence}""")
637
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Dict = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict snake_case__ : Optional[Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _snake_case ( _snake_case : Any ): lowerCAmelCase : Union[str, Any] = _TestCommandArgs(dataset=_snake_case , all_configs=_snake_case , save_infos=_snake_case ) lowerCAmelCase : str = TestCommand(*_snake_case ) test_command.run() lowerCAmelCase : str = os.path.join(_snake_case , '''README.md''' ) assert os.path.exists(_snake_case ) lowerCAmelCase : Tuple = DatasetInfosDict.from_directory(_snake_case ) lowerCAmelCase : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = getattr(dataset_infos['''default'''] , _snake_case ), getattr(expected_dataset_infos['''default'''] , _snake_case ) if key == "num_bytes": assert is_apercent_close(_snake_case , _snake_case ) elif key == "splits": assert list(_snake_case ) == list(_snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) snake_case__ : Optional[Any] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys snake_case__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ): return base * power(_snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case__ : Union[str, Any] = int(input('''Enter the base: ''').strip()) snake_case__ : Optional[Any] = int(input('''Enter the exponent: ''').strip()) snake_case__ : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case__ : Dict = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
637
0
"""simple docstring""" import math def _snake_case ( _snake_case : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case ( _snake_case : float = 0.1 ): lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : int = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str=None , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=None , ): if attention_mask is None: lowerCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case_: def __init__( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Dict=9_9 , UpperCamelCase_ : Optional[int]=1_6 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0.02 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = eos_token_id lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : Optional[Any] = bos_token_id lowerCAmelCase : List[str] = initializer_range def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = 2_0 lowerCAmelCase : Tuple = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Union[str, Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = 2_0 lowerCAmelCase : List[Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Dict = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class snake_case_( unittest.TestCase ): __UpperCamelCase = 99 def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : List[Any] = input_ids.shape[0] lowerCAmelCase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self._get_config_and_data() lowerCAmelCase : Any = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = lm_model(input_ids=UpperCamelCase_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[Any] = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowerCAmelCase : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCAmelCase : Tuple = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowerCAmelCase : Optional[int] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : str = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case_( a__ , unittest.TestCase , a__ ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = FlaxBlenderbotModelTester(self ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : List[str] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : List[str] = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : int = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : List[Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : str = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : List[str] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} lowerCAmelCase : List[str] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase : List[Any] = ['''Sam'''] lowerCAmelCase : str = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowerCAmelCase : Union[str, Any] = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
637
0
"""simple docstring""" import math import sys import cva import numpy as np def _snake_case ( _snake_case : np.ndarray , _snake_case : float ): # For applying gaussian function for each element in matrix. lowerCAmelCase : str = math.sqrt(_snake_case ) lowerCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int , _snake_case : int ): lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _snake_case ( _snake_case : int , _snake_case : float ): # Creates a gaussian kernel of given dimension. lowerCAmelCase : Optional[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _snake_case ): for j in range(0 , _snake_case ): lowerCAmelCase : Tuple = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_snake_case , _snake_case ) def _snake_case ( _snake_case : np.ndarray , _snake_case : float , _snake_case : float , _snake_case : int , ): lowerCAmelCase : Any = np.zeros(img.shape ) lowerCAmelCase : List[Any] = get_gauss_kernel(_snake_case , _snake_case ) lowerCAmelCase : int = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : Optional[Any] = get_slice(_snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase : str = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : Dict = vec_gaussian(_snake_case , _snake_case ) lowerCAmelCase : Tuple = np.multiply(_snake_case , _snake_case ) lowerCAmelCase : Optional[Any] = np.multiply(_snake_case , _snake_case ) lowerCAmelCase : Any = np.sum(_snake_case ) / np.sum(_snake_case ) lowerCAmelCase : List[str] = val return imga def _snake_case ( _snake_case : list ): lowerCAmelCase : List[Any] = args[1] if args[1:] else '''../image_data/lena.jpg''' lowerCAmelCase : List[str] = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : Tuple = int(args[4] ) lowerCAmelCase : Dict = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : List[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": snake_case__ : List[Any] = parse_args(sys.argv) snake_case__ : List[str] = cva.imread(filename, 0) cva.imshow('''input image''', img) snake_case__ : Tuple = img / 255 snake_case__ : Optional[Any] = out.astype('''float32''') snake_case__ : Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) snake_case__ : int = out * 255 snake_case__ : Optional[Any] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
700
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example snake_case__ : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( _snake_case : list[list[int]] ): lowerCAmelCase : Union[str, Any] = [] for i in range(len(_snake_case ) ): lowerCAmelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(_snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_snake_case ) return next_generation def _snake_case ( _snake_case : list[list[int]] , _snake_case : int ): lowerCAmelCase : int = [] for _ in range(_snake_case ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new('''RGB''' , (len(cells[0] ), len(_snake_case )) ) lowerCAmelCase : Union[str, Any] = img.load() # Save cells to image for x in range(len(_snake_case ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Optional[int] = 255 - cells[y][x] * 255 lowerCAmelCase : List[Any] = (colour, colour, colour) # Save image images.append(_snake_case ) lowerCAmelCase : Union[str, Any] = new_generation(_snake_case ) return images if __name__ == "__main__": snake_case__ : Union[str, Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
637
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: snake_case__ : str = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } snake_case__ : List[Any] = { '''moussaKam/mbarthez''': 1_024, '''moussaKam/barthez''': 1_024, '''moussaKam/barthez-orangesum-title''': 1_024, } snake_case__ : Union[str, Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase_ : str=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Any="<mask>" , **UpperCamelCase_ : int , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] lowerCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
701
"""simple docstring""" from __future__ import annotations class snake_case_: def __init__( self : int , UpperCamelCase_ : str , UpperCamelCase_ : str ): lowerCAmelCase, lowerCAmelCase : List[str] = text, pattern lowerCAmelCase, lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self : Dict ): # searches pattern in text and returns index positions lowerCAmelCase : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase : str = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case__ : str = '''ABAABA''' snake_case__ : List[str] = '''AB''' snake_case__ : Union[str, Any] = BoyerMooreSearch(text, pattern) snake_case__ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( a__ ): pass class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None def __iter__( self : int ): lowerCAmelCase : Any = self lowerCAmelCase : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase_ ) yield node.data lowerCAmelCase : Optional[int] = node.next_node @property def lowerCamelCase__ ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Dict = Node(1) snake_case__ : Any = Node(2) snake_case__ : int = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Tuple = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : int = Node(6) snake_case__ : List[Any] = Node(5) snake_case__ : Dict = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
637
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase : Union[str, Any] = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase : Optional[int] = tf_top_k_top_p_filtering(UpperCamelCase_ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase : Union[str, Any] = output[output != -float('''inf''' )] lowerCAmelCase : Union[str, Any] = tf.cast( tf.where(tf.not_equal(UpperCamelCase_ , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-12 ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @require_tf class snake_case_( unittest.TestCase , a__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __UpperCamelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowerCamelCase__ ( self : Any ): # TF-only test: tf.saved_model export lowerCAmelCase : Any = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Any = 2 class snake_case_( tf.Module ): def __init__( self : Any , UpperCamelCase_ : Optional[Any] ): super(UpperCamelCase_ , self ).__init__() lowerCAmelCase : List[str] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Tuple = [[2, 0], [1_0_2, 1_0_3]] lowerCAmelCase : Dict = [[1, 0], [1, 1]] lowerCAmelCase : str = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) lowerCAmelCase : Union[str, Any] = tf.saved_model.load(UpperCamelCase_ ).signatures['''serving_default'''] for batch_size in range(1 , len(UpperCamelCase_ ) + 1 ): lowerCAmelCase : List[str] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase : Dict = serving_func(**UpperCamelCase_ )['''sequences'''] lowerCAmelCase : Tuple = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Any ): # TF-only test: tf.saved_model export lowerCAmelCase : str = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Dict = 2 class snake_case_( tf.Module ): def __init__( self : Dict , UpperCamelCase_ : str ): super(UpperCamelCase_ , self ).__init__() lowerCAmelCase : int = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Optional[int] = [[2], [1_0_2, 1_0_3]] lowerCAmelCase : Tuple = [[1], [1, 1]] lowerCAmelCase : Optional[int] = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) lowerCAmelCase : List[Any] = tf.saved_model.load(UpperCamelCase_ ).signatures['''serving_default'''] for input_row in range(len(UpperCamelCase_ ) ): lowerCAmelCase : Optional[Any] = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase : Union[str, Any] = serving_func(**UpperCamelCase_ )['''sequences'''] lowerCAmelCase : Optional[Any] = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow @require_tensorflow_text def lowerCamelCase__ ( self : int ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=UpperCamelCase_ ) class snake_case_( tf.keras.layers.Layer ): def __init__( self : Any ): super().__init__() lowerCAmelCase : Union[str, Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase_ , '''spiece.model''' ) , '''rb''' ).read() ) lowerCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): lowerCAmelCase : str = self.tokenizer.tokenize(UpperCamelCase_ ) lowerCAmelCase : Dict = text.pad_model_inputs( UpperCamelCase_ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase : Dict = self.model.generate(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) return self.tokenizer.detokenize(UpperCamelCase_ ) lowerCAmelCase : Dict = CompleteSentenceTransformer() lowerCAmelCase : List[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) lowerCAmelCase : Dict = complete_model(UpperCamelCase_ ) lowerCAmelCase : int = tf.keras.Model(UpperCamelCase_ , UpperCamelCase_ ) keras_model.save(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Has PT equivalent: this test relies on random sampling lowerCAmelCase : Dict = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } lowerCAmelCase : int = 1_4 lowerCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Union[str, Any] = '''Hello, my dog is cute and''' lowerCAmelCase : List[Any] = tokenizer(UpperCamelCase_ , return_tensors='''tf''' ) lowerCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Union[str, Any] = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowerCAmelCase : Any = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase : int = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowerCAmelCase : str = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase__ ( self : Dict ): # Has PT equivalent: ample use of framework-specific code lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCAmelCase : Dict = '''Hugging Face is a technology company based in New York and Paris.''' lowerCAmelCase : Tuple = bart_tokenizer(UpperCamelCase_ , return_tensors='''tf''' ).input_ids lowerCAmelCase : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCAmelCase : Optional[int] = bart_model.generate(UpperCamelCase_ ).numpy() class snake_case_( a__ ): def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : Dict ): return super().call(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Any = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCAmelCase : Tuple = bart_model.generate(UpperCamelCase_ , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(UpperCamelCase_ , UpperCamelCase_ ) ) class snake_case_( bart_model.model.encoder.__class__ ): def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : int ): return super().call(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : str = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase : Union[str, Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase : Optional[Any] = bart_model.generate(UpperCamelCase_ ).numpy() with self.assertRaises(UpperCamelCase_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase_ , foo='''bar''' )
703
"""simple docstring""" from torch import nn class snake_case_( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : Any = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase : int = self.mlp(UpperCamelCase_ ) return logits
637
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case__ : int = datasets.utils.logging.get_logger(__name__) class snake_case_( folder_based_builder.FolderBasedBuilderConfig ): __UpperCamelCase = None __UpperCamelCase = None class snake_case_( folder_based_builder.FolderBasedBuilder ): __UpperCamelCase = datasets.Audio() __UpperCamelCase = '''audio''' __UpperCamelCase = AudioFolderConfig __UpperCamelCase = 42 # definition at the bottom of the script __UpperCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) snake_case__ : Union[str, Any] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] snake_case__ : str = AUDIO_EXTENSIONS
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
"""simple docstring""" def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any ): lowerCAmelCase : Tuple = [1] for i in range(2 , _snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCAmelCase : str = [] lowerCAmelCase : Any = list(range(_snake_case ) ) # Find permutation while factorials: lowerCAmelCase : List[Any] = factorials.pop() lowerCAmelCase : str = divmod(_snake_case , _snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=2_2_4 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Dict=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Optional[Any]=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : Any=[1_6, 1_6, 1_6] , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : Optional[Any]=[2, 2, 2] , UpperCamelCase_ : str=0.02 , **UpperCamelCase_ : List[str] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Tuple = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Dict = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = depths lowerCAmelCase : Dict = key_dim lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): return 1E-4
637
0
"""simple docstring""" from math import factorial, radians def _snake_case ( _snake_case : float , _snake_case : int = 18 , _snake_case : int = 10 ): lowerCAmelCase : Optional[int] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians lowerCAmelCase : Any = radians(_snake_case ) lowerCAmelCase : Any = angle_in_radians lowerCAmelCase : List[Any] = 3 lowerCAmelCase : Optional[int] = -1 for _ in range(_snake_case ): result += (b * (angle_in_radians**a)) / factorial(_snake_case ) lowerCAmelCase : str = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_snake_case , _snake_case ) if __name__ == "__main__": __import__('''doctest''').testmod()
706
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : str = 3 lowerCAmelCase : Tuple = 2_5_0 lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) lowerCAmelCase : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self._get_tensors(5 ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
637
0
"""simple docstring""" snake_case__ : List[Any] = '''Tobias Carryer''' from time import time class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=int(time() ) ): # noqa: B008 lowerCAmelCase : str = multiplier lowerCAmelCase : Optional[int] = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[Any] = seed def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : int = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
707
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = None def _snake_case ( _snake_case : Dict , _snake_case : List[str]=0.999 , _snake_case : Dict="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : List[Any] = [] for i in range(_snake_case ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 1_0_0_0 , UpperCamelCase_ : str = "fixed_small_log" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[float] = 1.0 , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCAmelCase : Any = betas_for_alpha_bar(UpperCamelCase_ ) lowerCAmelCase : str = 1.0 - self.betas lowerCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Any = 1.0 # setable values lowerCAmelCase : Any = None lowerCAmelCase : Any = torch.from_numpy(np.arange(0 , UpperCamelCase_ )[::-1].copy() ) lowerCAmelCase : List[str] = variance_type def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Any = num_inference_steps lowerCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : int = self.alphas_cumprod[t] lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] else: lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Optional[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Any = torch.log(torch.clamp(UpperCamelCase_ , min=1E-20 ) ) lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Optional[Any] = variance.log() lowerCAmelCase : Union[str, Any] = beta.log() lowerCAmelCase : Dict = (predicted_variance + 1) / 2 lowerCAmelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase, lowerCAmelCase : List[Any] = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t] lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : int = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : List[Any] = self.betas[t] lowerCAmelCase : Optional[int] = self.alphas[t] else: lowerCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Dict = torch.clamp( UpperCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : int = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ , device=model_output.device ) lowerCAmelCase : Any = self._get_variance( UpperCamelCase_ , predicted_variance=UpperCamelCase_ , prev_timestep=UpperCamelCase_ , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) lowerCAmelCase : List[Any] = variance * variance_noise lowerCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : int = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
637
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if length <= 0 or not isinstance(_snake_case , _snake_case ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_snake_case )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[str] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class snake_case_( a__ ): __UpperCamelCase = '''swinv2''' __UpperCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , UpperCamelCase_ : Any=2_2_4 , UpperCamelCase_ : int=4 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : int=9_6 , UpperCamelCase_ : str=[2, 2, 6, 2] , UpperCamelCase_ : Dict=[3, 6, 1_2, 2_4] , UpperCamelCase_ : List[str]=7 , UpperCamelCase_ : Dict=4.0 , UpperCamelCase_ : Any=True , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Union[str, Any]=0.0 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[int]=1E-5 , UpperCamelCase_ : str=3_2 , **UpperCamelCase_ : str , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : int = image_size lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Tuple = embed_dim lowerCAmelCase : Optional[int] = depths lowerCAmelCase : Optional[int] = len(UpperCamelCase_ ) lowerCAmelCase : int = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[Any] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : int = drop_path_rate lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = use_absolute_embeddings lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : str = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : List[str] = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) lowerCAmelCase : Dict = (0, 0, 0, 0)
709
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
0
"""simple docstring""" from __future__ import annotations snake_case__ : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] snake_case__ : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _snake_case ( _snake_case : list[float] ): lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : int = len(_snake_case ) for i in range(_snake_case ): lowerCAmelCase : float = -1 for j in range(i + 1 , _snake_case ): if arr[i] < arr[j]: lowerCAmelCase : Union[str, Any] = arr[j] break result.append(_snake_case ) return result def _snake_case ( _snake_case : list[float] ): lowerCAmelCase : Tuple = [] for i, outer in enumerate(_snake_case ): lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase : Optional[Any] = inner break result.append(_snake_case ) return result def _snake_case ( _snake_case : list[float] ): lowerCAmelCase : Dict = len(_snake_case ) lowerCAmelCase : list[float] = [] lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(_snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase : Optional[int] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) snake_case__ : Optional[Any] = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
710
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_( a__ ): __UpperCamelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase = '''summarizer''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ['''text'''] __UpperCamelCase = ['''text'''] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
637
0
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> List[Any]: return base * power(_snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case__ : Union[str, Any] = int(input('''Enter the base: ''').strip()) snake_case__ : Optional[Any] = int(input('''Enter the exponent: ''').strip()) snake_case__ : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case__ : Dict = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
711
"""simple docstring""" snake_case__ : List[Any] = '''Tobias Carryer''' from time import time class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=int(time() ) ): # noqa: B008 lowerCAmelCase : str = multiplier lowerCAmelCase : Optional[int] = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[Any] = seed def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : int = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
637
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : str = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
637
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[int] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Dict = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : int = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : List[str] ): if params.n_gpu <= 0: lowerCAmelCase : int = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : List[str] = True lowerCAmelCase : List[str] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : int = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : str = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : Any = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : str = params.world_size // params.n_gpu_per_node lowerCAmelCase : Optional[int] = params.global_rank // params.n_gpu_per_node lowerCAmelCase : Any = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : int = 1 lowerCAmelCase : int = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : int = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : str = params.n_nodes > 1 # summary lowerCAmelCase : List[str] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Dict ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
713
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any]=None ): lowerCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = True, True lowerCAmelCase : int = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[Any] = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] ): lowerCAmelCase : Any = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase, lowerCAmelCase : Optional[int] = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase : Dict = 1 if check == 2: lowerCAmelCase : int = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase : List[str] = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase : Any = { 1: [], 2: [] # all degree is zero } lowerCAmelCase : List[str] = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
637
0